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THE TERWILLIGER ALGEBRA OF THE DODECAHEDRON

F. LEVSTEIN AND D. PENAZZI*

ABSTRACT. In this paper, we consider the platonic solids as association schemes.
All of them are P— and @—polynomial, except for the dodecahedron, which is
not @Q—polynomial. We compute explicitely the Terwilliger algebra associated to
it, and show it is isomorphic to Mg() ® Me() ® M2 (C). We also show that the
dodecahedron is a counterexample to a conjecture of Terwilliger.

Section 1: Introduction

For the definitions below, we follow [T1]-[T4] and [B-I].

A symmetric association scheme of class d is a a pair Y = (X, {R;}L,)
consisting of a finite set X and symmetric relations Ry, Ry, ..., Ry on X such that:

i) Ry = A, the diagonal of X x X.

ii) {R;}% , is a partition of X x X.

iii) Given (z,y) € Ry, [{z € X: (z,2) € R;, (2,y) € R;}| depends only on h,i and
j. (This number is denoted by pfb ;)

Let n = |X|. Define the adjacency matrices A; by the formulae:

1 if(zy)eR;
(Ai)ay = { 0 otherwise
We then have Ag = I ( by i) above) and A;4; = Zi:o ijAh (by iii) above), so
they span an algebra A(Y), called the Bose-Mesner algebra.
A symmetric association scheme is P-polynomial (with respect to the order Ry,
Ry, ..., Rg it ¥V i3a;, b;, ¢;; a; # 0 # ¢; with:
AlAi = a,iAi,1 + biAi + CiAi+1 (“the P condition”)
Since the A;’s commute and are symmetric, there is a basis Ey, E1, ..., E4 of A(Y)
consisting of idempotents. By convention, Ey is the matrix with all entries equal to
%. A symmetric association scheme is called @-polynomial (with respect to the order
Eo,El, ey Ed) iff v iEIai, bi, Cisy Qg 7é 0 7& C; with:
El o El = aiEi_l + blEz + ciEi-i-l (“the Q CODditiOl’l”)

where o is Hadamard (entrywise) multiplication.
Also, given a fixed x, we can define diagonal matrices E} by:

{ 1 if (z,y) € R;

(B )y = 0 otherwise

2000 Mathematics Subject Classification. 05E30.
*This research was supported in part by CONICET, FONCyT and SECYT-UNC

11



12 F. LEVSTEIN AND D. PENAZZI

The matrices E} form a basis of a space, which is called the Bose-Mesner dual with
respect to x.

The subconstituent or Terwilliger algebra of Y with respect to x is the algebra
T'(z) generated by the Bose-Mesner algebra and its dual with respect to x.

This algebra has been studied in many papers in recent years: see for example
[Ca], [Co], [Cul],[Cu2], [I-I-Y].

In the case of the platonic solids, because of their symmetries, the Terwilliger
algebras do not depend on the base point x.

®© will denote the (complex) Terwilliger algebra of the dodecahedron.

In the following sections, we will compute 2 explicitely and give its isomorphism
class.

First we will define subalgebras 2,20 ; and Ay of Mao(C), and show that they are
isomorphic to Mg(C'), Ms(C) and M (@) respectively.

Then we will demonstrate that © = A $A; & Ax.

Section 2: The Algebras g, 2A; and Ay
We have that the adjacency table for the dodecahedron can be written as:

X - €T9 T3 T4
T €T Iy Te
I3 . I Ty s
Tg: X1 T9 T10
s T2 T L1l
Te - T2 x7 12
€Tyt 3 Ze6 13
Trg: XT3 L9 T14
Zg: Xy T8 15

ZTi0: T4 Ts5 T16
11+ T Ti2 Tir
T12 ¢ Te Ti11 T18
r13: Ty Ti4 T18
T4t Tg T13 T19
Ti5: T9 Tie L19
Ti6: L0 Ti15 17
Ti7: Ti11 Tie T20
rig: Ti12 T13 T20
T19 ¢ Ti14 X135 X20
T20: Ti7 T1g T19
hence its adjacency matrix is:

A=

coocowo
co~ITR o
clXY¥IR~c O
Lomo oo
oo ooo
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where H, K, « and 3 are:

—oo0oocoo
coor~RrOoO
cooco~O
o~ ococoo
corooo
cCooc oo
cooco~O
coococo~
cor~rooco
coorRr OO
—oo0oo0oo
o oo oo

o = O
o = O

1
0
0
0
0
1

O OO~ = O
O == O OO

and J denotes the matrix with all entries equal to 1. (If the size is not clear, we’ll
write Jyxm)
Following the structure of A;, we will write the 20 by 20 matrices in block form:

Boo Boi Bo2 Bos Boa DBogs
Bio Biyg Bi2 Biz Bia Bis
Byo Bay B2a B2z Bay Bajs
B3y Bsi B3y Bss B3y Bsjs

Byo DBiy Bi2 Bi3z Bya Bys

Bso Bsi Bsa Bss Bsa DBss

s s s s

where the blocks B; ; have size k; x k;, where (ko, k1, k2, ks, ka, ks) = (1,3,6,6,3,1).
We will denote by L; ;(X) the 20 by 20 matrix which has the k; by k; matrix X as
the (i, j)-block, and the other blocks equal to zero.

2.1 Definition: Consider the homomorphism g : Mg(@) — Mao(€) defined by
o((mij)) = >2; jmijLij(Jk,xk;) and let 2, be the image of p.

2.2 Remark:

a) Ay~ M)
by A, C D

2.3 Definition: Let 2 be the subalgebra of Mg(C') generated by H and K.
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2.4 Lemma: g is isomorphic toCSs (the group algebra of Ss).

Proof: Since K can be associated with the permutation (12)(34)(56) and H with
(16)(23)(45) then H?> = K? = I and HK is then associated with (153)(246), hence
(HK)? = I, thus, HKHKHK = I and since H and K are their own inverses, we
get HKH = KHK, (HK)? = KH, and (KH)? = HK. Hence, H and K generate a
group isomorphic to Sz, and thus g is isomorphic to €S (the group algebra of S3).
In fact, g, as a vector space, has basis {I, H, K, HK, KH, HKH}.

2.5 Corollary:
e =V @ span{J} ® span{N}

where N=+2(I—-H—-K+HK+KH—-HKH) andV is a subalgebra isomorphic to

My (©).

Proof: This follows because S5 has 3 irreducible representations: two one-dimensional

1
6

( the trivial one and the sign) and one two-dimensional. The trivial one corresponds
to J, and the sign character to N.

2.6 Observations:
By 2.4) , HN = %(H—I—HK—FK—FHKH—KH) = —N and KN = —N too,
hence, N2 = N. Also, JN = 0.
2.7 Definition: Let 2y be the algebra of matrices spanned by the matrices
Li,j(N) with Z,j == 2, 3
2.8 Remark: Ay ~ My(C), and A; Ay = {0}, thus ™Ay +A; = Ay oA
2.9 Definition: Let U =aV and W =Vg.

2.10 Lemma:
a) dim o2s =3
b) e = U @ spanf{Jsxe}
¢) U and W are two-dimensional irreducible Ag-modules.

Proof: a) Since aK = «, we have that:

aAs = span{a,aH,aK,cHK,aKH,aKHK}
span{a,aH, o, a HK, aH,a HK }
span{a,aH,a HK}

Hence, dim oflg = 3, since a, oH,a HK are linearly independent.

b) We have by 2.5) that a2l = aV + aspan{Jsxe} + aspan{N}. Since aN = 0,
and aJgxe = Jaxg, we have aRlg = aV + span{J3xe}-

Multiplying by J on the right, and using V.J =0, JJ = 6.J, we see that the sum
is direct.

¢) By a) and b), U = oV is irreducible of dimension 2. Similarly with W, using
that HG = 5.

QED
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1 1 0
2.11 Definition: Let G=af={|0 1 1
1 0 1
2.12 Lemma:
WU CV iyWWtCV

1
iii)UU" C span{l — gJ} W)W'W C span{l — 1J} 0)UW C span{G — 2J}

110 0 0O
Proof: i) Sincea= {0 0 1 1 0 0], thenadla=I+K.
0 00011
So: UtU = ValaV =V({I + K)V CV (since V is an ideal).
ii) Similar to i), using that 33t =T + H.
iii)
UU' = aVVal=aVal
- onlGat
C span{ac’,aHao',aHKa'} = span{aa’,aHa'} = span{2I,J — I}

However, as aVa'J = 0, then UU* C span{I,J — I} N J*+ C span{I — $.J}.

iv) similar to iii), using that H8 = 8, 83 =2I, and B K8 =J — I

v) similar to iii) and iv), using now that a2s3 = span{aB,aHB,aHKj3} =
span{af,aHKB}, af = G, and aHK( = 2(J — G).

QED

Section 3: The algebras A, S, £
3.1 Definition: Let 2 be the set of matrices of the form:

0 0 0 0 0 0

0 kl( —f%J) us Uy kQ(G_%J) 0

10 uj V1 Vg w1 0
M=1 ub U3 U4 W 0
0 ks(G'—2J) wh whi ki(I—-3J) 0

0 0 0 0 0 0

where v; € Viw, e Wiu; e Usi=1,...,4

3.2 Proposition: 2l is an algebra of dimension 36.

Proof: The fact that it is an algebra follows from 2.12) . The dimension is clear.
QED

3.3 Definition: Let £ be the algebra generated by {L; ;(X)|X € Ug, i,j =
2,3}.
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3.4 Lemma:

Proof:

i).- Lao(H) € ® because Lo o(H) = E3A1E}.

ii).- Las(H) € ® because Lo 3(H) = (E;A1E}).(E3AL1E;) (since E3AE; =
Lo 3(I)).

i)~ Lso(H) € D because Lso(H) = (EiALE).(EfALES). (since EfAiEf =
Ls»(1)).

iv).- L3 3(K) € ® because L3 3(K) = E; A1 Ej.

v).-L32(K) and Lo 3(K) are in ®, by using in iv) a similar trick as the one used
to go from i) to ii) and iii).

vi).- Since

3 0 J 0 0 0

0 J+2I oH a 0 0

2o |’ Ho' 3I+K H+K 5} 0
=10 at H+K 3I1+H KB J
0 0 3 'K 2I+J 0

0 0 0 J 0 3

we have that L3 3(3] + H) = E;AIE; and L2 (3] + K) = E;A2E3, so they are
both in ®. Since both L3 3(I) and Lo o(I) are in ®, then L3 3(H) and Lo o(K) are
in 3.

Hence, we have that L; ;(X) with X = H or K, i,j = 2,3 are all in ®. Thus any
sum or product of them will be in 3, hence the lemma.

QED

3.5 Definition: Define S =2AaA; o Ax

3.6 Lemma:

£C6

Proof: L; j(v) € A if v € V and 4,5 = 2,3. In 2, we have the matrices L; ;(J)

and in Ay the matrices L; ;(N).
Therefore L; ;(X) € G for all X € ¢ , for i,j = 2,3.
QED

3.7 Lemma:

A1€6

Proof:
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o J 0 0 0 O
J 0 a 0 0 O
0 @ H I 0 0
A = 006 I K 3 0 :M1+L1,2(Oé)+L2,1(0¢t)+L3,4(5)+L4,3(5t)+M2
0o 0 o0 Bt 0 J
O 0 0 0 J 0
where

o J 00 0 O 00 0O O 0O

J 0 0 0 0 O 00 0O O 0O

0O 0 00 0 O 00 H I 00

M=1tog 00000 |00 1 K 00

0O 0 0 0 0 J 00 0O O 0O

0O 0 00 J O 00 0O O 0O

Now, M; € 2, hence, in &.

Ms € G by 3.6) .

Since Ly a(u) € A Vu € U and Ly 2(J) € Ay, we have that Ly 2(X) € & for all
X € U @ span{J}/ However, by 2.10) a), o = U @ span{J}. In particular, « is
generated by elements of U and J, hence, L1 2(a) € 6.

Similar computations show that the other matrices are in &, thus 4; € &.

Section 4: Main Theorems

4.1 Lemma: & is a subalgebra of ®.

Proof:

i) A; CD by 2.2) b).

ii) Ay €D, by 2.5) and 3.4) .

iii) A C D follows from the following items:

iii.a) AN L C D since £LCD.

iii.b) Since L; 2(a) = E3A1E; € ® we have that Ly o(aw) = Ly o(a)La(v) € D
for allv € V (i.e., all av € U)

iii.c) A similar argument applies to , for example, matrices of the form Lo 1 (vat)
or of the form Ly 4(vf3).

iii.d) Ef, E; are in © by definition, and by i), we get that the matrices L1 1 (1 —.J)
and Ly 4(I — %J) are in 9.

ili.e) For the last two generating matrices, we have, by 2.12) v), that UW C
span{G — 2J}, thus, L1 4(G — 2J) = L1 2(u).L24(w) for some u € U, w € W; and
since the two matrices on the right are in ® by iii.b) and iii.c), we have that the
matrix on the left is in 3.

Similarly with Ly1(G" — 2.J).

Hence we have in fact that all of 2 is in ), and so, & C 3.

QED
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18 F. LEVSTEIN AND D. PENAZZI

To prove ® C G, we first need to see that we can reconstruct A; from all these
matrices:

4.2 Theorem:
D=6

Proof: By 4.1) , we only need to see that ® C &:

- First, A; € & by 3.7), hence the Bose-Mesner algebra is included in & since it
is generated by Ajp, since the dodecahedron is P—polynomial.

- E§ and EZ are in A ;.

-~ Ef and Ej are in A2 since Ef = Ly 1(I) and, within 2 we have the matrix
Li,(I - %J)7 and in 2A; we have L 1(J) Hence Ef € A @ 2, and the same is true
with E}.

- B3 and B are in A @ A; @ AUy, since B = Lyo(I) € & (by 3.6) ) and
E; =L33(I) € G.

QED

4.3 Corollary: The (complezx) Terwilliger algebra of the dodecahedron is iso-
morphic to Ms(C) & Ms(C) & M2 (C).

Proof: Since ® = Ao A; @ Ay, and A; ~ Mg) and Ay ~ My(C), the only

thing left to prove is that A ~ Mg(C). Since A C D is the complement of A ; & Ay
and D is semisimple, it follows that 2l is semisimple, so the result follows if we prove
that the center of 2l is 1-dimensional. Consider a matrix M = (B, ;) (written in
block form) which is in the center of 21. In particular, M Lq o(u) = Ly 2(u)M Yu € U,
thus Bio = By = 0. Similarly with all the blocks B;; with i # j. Also, since
As = V @ span{J} ® span{N} is the decomposition into irreducible ideals of the,
group algebra of G3, then the center of V is 1- dimensional. If (C; ;) is any matrix
in 2, since M is in the center we must have: B;;C; ; = C; ;B; ; for all 4, j. It follows
that M is a scalar multiple of a fixed diagonal matrix.

Section 5: Concluding Remarks

5.1 Remark: If M is a T(z)-irreducible module, M is said to be thin if dim
EfM < 1 for all 4, Y is thin with respect to x if each irreducible T'(z)-module is
thin, and Y is thin if it is thin with respect to x for all 2. In [T4], Conjecture 13 of
Terwilliger states that any antipodal (i.e. pg’ 4 = 1) P-polynomial association scheme
must be thin.

We prove here that this conjecture is not true, and the counterexample we offer
is the dodecahedron. The conjecture may still be true for association schemes with
d>5.

The dodecahedron is P-polynomial and antipodal.

If we denote R;(i) = {k|d(i,k) = j}, we can see , by looking at the adjacency table
of the dodecahedron, that Re(1)NR1(7)NR2(5) = {6} while R2(1)NR2(7)NR1(5) = 0,
thus, by theorem 5.1 i) and iii) of [T4], the dodecahedron is not thin.
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More explicitely, one can give a module M with dim E3 M = 2: take

S O

M ={ Hu € Uyw € W,v,0" € V}

d\

o &

(i.e., M corresponds to the third column of the matrices in 2l (see 3.1) )
Hence, E5M = W, which has dimension 2 (see 2.10)).

5.2 Remark: The dodecahedron is the most difficult case of the platonic solids.

In the other cases, much shorter calculations show that they have Terwilliger algebras
isomorphic to:

M>(@) ® M) (The Tetrahedon)
(The Cube)
® M, () (The Octahedron)
® M>() (The Icosahedron).
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