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THE TERWILLIGER ALGEBRA OF THE DODECAHEDRON

F. LEVSTEIN AND D. PENAZZI∗

Abstract. In this paper, we consider the platonic solids as association schemes.

All of them are P− and Q−polynomial, except for the dodecahedron, which is
not Q−polynomial. We compute explicitely the Terwilliger algebra associated to

it, and show it is isomorphic to M6(|C)⊕M6(|C)⊕M2(|C). We also show that the

dodecahedron is a counterexample to a conjecture of Terwilliger.

Section 1: Introduction
For the definitions below, we follow [T1]-[T4] and [B-I].
A symmetric association scheme of class d is a a pair Y = (X, {Ri}d

i=0)
consisting of a finite set X and symmetric relations R0, R1, . . . , Rd on X such that:

i) R0 = ∆, the diagonal of X ×X.
ii) {Ri}d

i=0 is a partition of X ×X.
iii) Given (x, y) ∈ Rh, |{z ∈ X : (x, z) ∈ Ri, (z, y) ∈ Rj}| depends only on h, i and

j. (This number is denoted by ph
i,j).

Let n = |X|. Define the adjacency matrices Ai by the formulae:

(Ai)x,y =
{

1 if (x, y) ∈ Ri

0 otherwise

We then have A0 = I ( by i) above) and AiAj =
∑d

h=0 ph
i,jAh (by iii) above), so

they span an algebra A(Y ), called the Bose-Mesner algebra.
A symmetric association scheme is P -polynomial (with respect to the order R0,

R1, . . ., Rd iff ∀ i∃ai, bi, ci; ai 6= 0 6= ci with:

A1Ai = aiAi−1 + biAi + ciAi+1 (“the P condition′′)

Since the Ai’s commute and are symmetric, there is a basis E0, E1, . . . , Ed of A(Y )
consisting of idempotents. By convention, E0 is the matrix with all entries equal to
1
n . A symmetric association scheme is called Q-polynomial (with respect to the order
E0, E1, . . . , Ed) iff ∀ i∃ai, bi, ci; ai 6= 0 6= ci with:

E1 ◦ Ei = aiEi−1 + biEi + ciEi+1 (“the Q condition′′)

where ◦ is Hadamard (entrywise) multiplication.
Also, given a fixed x, we can define diagonal matrices E∗

i by:

(E∗
i )yy =

{
1 if (x, y) ∈ Ri

0 otherwise
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12 F. LEVSTEIN AND D. PENAZZI

The matrices E∗
i form a basis of a space, which is called the Bose-Mesner dual with

respect to x.
The subconstituent or Terwilliger algebra of Y with respect to x is the algebra

T (x) generated by the Bose-Mesner algebra and its dual with respect to x.
This algebra has been studied in many papers in recent years: see for example

[Ca], [Co], [Cu1],[Cu2], [I-I-Y].
In the case of the platonic solids, because of their symmetries, the Terwilliger

algebras do not depend on the base point x.
D will denote the (complex) Terwilliger algebra of the dodecahedron.
In the following sections, we will compute D explicitely and give its isomorphism

class.
First we will define subalgebras A,AJ and AN of M20(|C), and show that they are

isomorphic to M6(|C),M6(|C) and M2(|C) respectively.
Then we will demonstrate that D = A⊕AJ ⊕AN .

Section 2: The Algebras A6, AJ and AN

We have that the adjacency table for the dodecahedron can be written as:

x1 : x2 x3 x4

x2 : x1 x5 x6

x3 : x1 x7 x8

x4 : x1 x9 x10

x5 : x2 x10 x11

x6 : x2 x7 x12

x7 : x3 x6 x13

x8 : x3 x9 x14

x9 : x4 x8 x15

x10 : x4 x5 x16

x11 : x5 x12 x17

x12 : x6 x11 x18

x13 : x7 x14 x18

x14 : x8 x13 x19

x15 : x9 x16 x19

x16 : x10 x15 x17

x17 : x11 x16 x20

x18 : x12 x13 x20

x19 : x14 x15 x20

x20 : x17 x18 x19

hence its adjacency matrix is:

A1 =


0 J 0 0 0 0
J 0 α 0 0 0
0 αt H I 0 0
0 0 I K β 0
0 0 0 βt 0 J
0 0 0 0 J 0


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where H,K,α and β are:

H =


0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0

 K =


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0



α =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

 β =


1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
1 0 0


and J denotes the matrix with all entries equal to 1. (If the size is not clear, we’ll

write Jn×m)
Following the structure of A1, we will write the 20 by 20 matrices in block form:

M =



B0,0 B0,1 B0,2 B0,3 B0,4 B0,5

B1,0 B1,1 B1,2 B1,3 B1,4 B1,5

B2,0 B2,1 B2,2 B2,3 B2,4 B2,5

B3,0 B3,1 B3,2 B3,3 B3,4 B3,5

B4,0 B4,1 B4,2 B4,3 B4,4 B4,5

B5,0 B5,1 B5,2 B5,3 B5,4 B5,5


where the blocks Bi,j have size ki×kj , where (k0, k1, k2, k3, k4, k5) = (1, 3, 6, 6, 3, 1).

We will denote by Li,j(X) the 20 by 20 matrix which has the ki by kj matrix X as
the (i, j)-block, and the other blocks equal to zero.

2.1 Definition: Consider the homomorphism % : M6(|C) 7→ M20(|C) defined by
%((mi,j)) =

∑
i,j mi,jLi,j(Jki×kj

) and let AJ be the image of %.

2.2 Remark:

a) AJ ' M6(|C)
b) AJ ⊆ D

2.3 Definition: Let A6 be the subalgebra of M6(|C) generated by H and K.
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14 F. LEVSTEIN AND D. PENAZZI

2.4 Lemma: A6 is isomorphic to |CS3 (the group algebra of S3).

Proof: Since K can be associated with the permutation (12)(34)(56) and H with
(16)(23)(45) then H2 = K2 = I and HK is then associated with (153)(246), hence
(HK)3 = I, thus, HKHKHK = I and since H and K are their own inverses, we
get HKH = KHK, (HK)2 = KH, and (KH)2 = HK. Hence, H and K generate a
group isomorphic to S3, and thus A6 is isomorphic to |CS3 (the group algebra of S3).
In fact, A6, as a vector space, has basis {I,H, K,HK, KH, HKH}.

2.5 Corollary:
A6 = V ⊕ span{J} ⊕ span{N}

where N = 1
6 (I −H −K + HK + KH −HKH) and V is a subalgebra isomorphic to

M2(|C).

Proof: This follows because S3 has 3 irreducible representations: two one-dimensional
( the trivial one and the sign) and one two-dimensional. The trivial one corresponds
to J , and the sign character to N .

2.6 Observations:
By 2.4) , HN = 1

6 (H − I −HK + K + HKH −KH) = −N and KN = −N too,
hence, N2 = N . Also, JN = 0.

2.7 Definition: Let AN be the algebra of matrices spanned by the matrices
Li,j(N) with i, j = 2, 3

2.8 Remark: AN ' M2(|C), and AJAN = {0}, thus AN + AJ = AN ⊕AJ .

2.9 Definition: Let U = αV and W = V β.

2.10 Lemma:
a) dim αA6 = 3
b) αA6 = U ⊕ span{J3×6}
c) U and W are two-dimensional irreducible A6-modules.

Proof: a) Since αK = α, we have that:

αA6 = span{α, αH, αK, αHK,αKH, αKHK}
= span{α, αH, α, αHK, αH, αHK}
= span{α, αH, αHK}

Hence, dim αA6 = 3, since α, αH,αHK are linearly independent.
b) We have by 2.5) that αA6 = αV + αspan{J6×6}+ αspan{N}. Since αN = 0,

and αJ6×6 = J3×6, we have αA6 = αV + span{J3×6}.
Multiplying by J on the right, and using V J = 0, JJ = 6J , we see that the sum

is direct.
c) By a) and b), U = αV is irreducible of dimension 2. Similarly with W , using

that Hβ = β.
QED
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2.11 Definition: Let G = αβ =

1 1 0
0 1 1
1 0 1


2.12 Lemma:

i)U tU ⊆ V ii)WW t ⊆ V

iii)UU t ⊆ span{I − 1
3
J} iv)W tW ⊆ span{I − 1

3J} v)UW ⊆ span{G− 2
3J}

Proof: i) Since α =

1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1

, then αtα = I + K.

So: U tU = V αtαV = V (I + K)V ⊆ V (since V is an ideal).
ii) Similar to i), using that ββt = I + H.
iii)

UU t = αV V αt = αV αt

⊆ αA6α
t

⊆ span{ααt, αHαt, αHKαt} = span{ααt, αHαt} = span{2I, J − I}
However, as αV αtJ = 0, then UU t ⊆ span{I, J − I} ∩ J⊥ ⊆ span{I − 1

3J}.
iv) similar to iii), using that Hβ = β, βtβ = 2I, and βtKβ = J − I
v) similar to iii) and iv), using now that αA6β = span{αβ, αHβ, αHKβ} =

span{αβ, αHKβ}, αβ = G, and αHKβ = 2(J −G).
QED

Section 3: The algebras A,S,L

3.1 Definition: Let A be the set of matrices of the form:

M =


0 0 0 0 0 0
0 k1(I − 1

3J) u3 u4 k2(G− 2
3J) 0

0 ut
1 v1 v2 w1 0

0 ut
2 v3 v4 w2 0

0 k3(Gt − 2
3J) wt

3 wt
4 k4(I − 1

3J) 0
0 0 0 0 0 0


where vi ∈ V ;wi ∈ W ;ui ∈ U ; i = 1, . . . , 4

3.2 Proposition: A is an algebra of dimension 36.

Proof: The fact that it is an algebra follows from 2.12) . The dimension is clear.
QED

3.3 Definition: Let L be the algebra generated by {Li,j(X)|X ∈ A6, i, j =
2, 3}.
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16 F. LEVSTEIN AND D. PENAZZI

3.4 Lemma:

L ⊆ D

Proof:

i).- L2,2(H) ∈ D because L2,2(H) = E∗
3A1E

∗
3 .

ii).- L2,3(H) ∈ D because L2,3(H) = (E∗
3A1E

∗
3 ).(E∗

3A1E
∗
4 ) (since E∗

3A1E
∗
4 =

L2,3(I)).
iii).- L3,2(H) ∈ D because L3,2(H) = (E∗

3A1E
∗
3 ).(E∗

4A1E
∗
3 ). (since E∗

4A1E
∗
3 =

L3,2(I)).
iv).- L3,3(K) ∈ D because L3,3(K) = E∗

4A1E
∗
4 .

v).-L3,2(K) and L2,3(K) are in D, by using in iv) a similar trick as the one used
to go from i) to ii) and iii).

vi).- Since

A2
1 =


3 0 J 0 0 0
0 J + 2I αH α 0 0
J Hαt 3I + K H + K β 0
0 αt H + K 3I + H Kβ J
0 0 βt btK 2I + J 0
0 0 0 J 0 3


we have that L3,3(3I + H) = E∗

4A2
1E

∗
4 and L2,2(3I + K) = E∗

3A2
1E

∗
3 , so they are

both in D. Since both L3,3(I) and L2,2(I) are in D, then L3,3(H) and L2,2(K) are
in D.

Hence, we have that Li,j(X) with X = H or K, i, j = 2, 3 are all in D. Thus any
sum or product of them will be in D, hence the lemma.

QED

3.5 Definition: Define S = A⊕AJ ⊕AN

3.6 Lemma:

L ⊆ S

Proof: Li,j(v) ∈ A if v ∈ V and i, j = 2, 3. In AJ we have the matrices Li,j(J)

and in AN the matrices Li,j(N).
Therefore Li,j(X) ∈ S for all X ∈ A6 , for i, j = 2, 3.
QED

3.7 Lemma:

A1 ∈ S

Proof:

Rev. Un. Mat. Argentina, Vol 45-2
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A1 =


0 J 0 0 0 0
J 0 α 0 0 0
0 αt H I 0 0
0 0 I K β 0
0 0 0 βt 0 J
0 0 0 0 J 0

 = M1 +L1,2(α)+L2,1(αt)+L3,4(β)+L4,3(βt)+M2

where

M1 =


0 J 0 0 0 0
J 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 J
0 0 0 0 J 0

 , M2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 H I 0 0
0 0 I K 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Now, M1 ∈ AJ , hence, in S.
M2 ∈ S by 3.6) .
Since L1,2(u) ∈ A ∀u ∈ U and L1,2(J) ∈ AJ , we have that L1,2(X) ∈ S for all

X ∈ U ⊕ span{J}/ However, by 2.10) a), αA6 = U ⊕ span{J}. In particular, α is
generated by elements of U and J , hence, L1,2(α) ∈ S.

Similar computations show that the other matrices are in S, thus A1 ∈ S.

Section 4: Main Theorems

4.1 Lemma: S is a subalgebra of D.

Proof:

i) AJ ⊆ D by 2.2) b).
ii) AN ⊆ D, by 2.5) and 3.4) .
iii) A ⊆ D follows from the following items:
iii.a) A ∩L ⊆ D since L ⊆ D.
iii.b) Since L1,2(α) = E∗

2A1E
∗
3 ∈ D we have that L1,2(αv) = L1,2(α)L2,2(v) ∈ D

for all v ∈ V (i.e., all αv ∈ U)
iii.c) A similar argument applies to , for example, matrices of the form L2,1(vαt)

or of the form L2,4(vβ).
iii.d) E∗

1 , E∗
4 are in D by definition, and by i), we get that the matrices L1,1(I− 1

3J)
and L4,4(I − 1

3J) are in D.
iii.e) For the last two generating matrices, we have, by 2.12) v), that UW ⊆

span{G − 2
3J}, thus, L1,4(G − 2

3J) = L1,2(u).L2,4(w) for some u ∈ U , w ∈ W ; and
since the two matrices on the right are in D by iii.b) and iii.c), we have that the
matrix on the left is in D.

Similarly with L4,1(Gt − 2
3J).

Hence we have in fact that all of A is in D, and so, S ⊆ D.
QED
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To prove D ⊆ S, we first need to see that we can reconstruct A1 from all these
matrices:

4.2 Theorem:
D = S

Proof: By 4.1) , we only need to see that D ⊆ S:
.- First, A1 ∈ S by 3.7), hence the Bose-Mesner algebra is included in S since it

is generated by A1, since the dodecahedron is P−polynomial.
.- E∗

0 and E∗
5 are in AJ .

.- E∗
1 and E∗

4 are in A⊕AJ since E∗
1 = L1,1(I) and, within A we have the matrix

L1,1(I − 1
3J), and in AJ we have L1,1(J) Hence E∗

1 ∈ A ⊕AJ and the same is true
with E∗

4 .
.- E∗

2 and E∗
3 are in A ⊕ AJ ⊕ AN , since E∗

2 = L2,2(I) ∈ S (by 3.6) ) and
E∗

3 = L3,3(I) ∈ S.
QED

4.3 Corollary: The (complex) Terwilliger algebra of the dodecahedron is iso-
morphic to M6(|C)⊕M6(|C)⊕M2(|C).

Proof: Since D = A ⊕ AJ ⊕ AN , and AJ ∼ M6(|C) and AN ∼ M2(|C), the only
thing left to prove is that A ∼ M6(|C). Since A ⊆ D is the complement of AJ ⊕AN

and D is semisimple, it follows that A is semisimple, so the result follows if we prove
that the center of A is 1-dimensional. Consider a matrix M = (Bi,j) (written in
block form) which is in the center of A. In particular, ML1,2(u) = L1,2(u)M ∀u ∈ U ,
thus B1,2 = B2,1 = 0. Similarly with all the blocks Bi,j with i 6= j. Also, since
A6 = V ⊕ span{J} ⊕ span{N} is the decomposition into irreducible ideals of the,
group algebra of S3, then the center of V is 1- dimensional. If (Ci,j) is any matrix
in A, since M is in the center we must have: Bi,iCi,j = Ci,jBj,j for all i, j. It follows
that M is a scalar multiple of a fixed diagonal matrix.

Section 5: Concluding Remarks

5.1 Remark: If M is a T (x)-irreducible module, M is said to be thin if dim
E∗

i M ≤ 1 for all i, Y is thin with respect to x if each irreducible T (x)-module is
thin, and Y is thin if it is thin with respect to x for all x. In [T4], Conjecture 13 of
Terwilliger states that any antipodal (i.e. p0

d,d = 1) P -polynomial association scheme
must be thin.

We prove here that this conjecture is not true, and the counterexample we offer
is the dodecahedron. The conjecture may still be true for association schemes with
d > 5.

The dodecahedron is P -polynomial and antipodal.
If we denote Rj(i) = {k|d(i, k) = j}, we can see , by looking at the adjacency table

of the dodecahedron, that R2(1)∩R1(7)∩R2(5) = {6} while R2(1)∩R2(7)∩R1(5) = ∅,
thus, by theorem 5.1 i) and iii) of [T4], the dodecahedron is not thin.
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More explicitely, one can give a module M with dim E∗
2M = 2: take

M = {


0
u
v
v′

wt

0

}|u ∈ U,w ∈ W, v, v′ ∈ V }

(i.e., M corresponds to the third column of the matrices in A (see 3.1) )
Hence, E∗

2M = W , which has dimension 2 (see 2.10)).

5.2 Remark: The dodecahedron is the most difficult case of the platonic solids.
In the other cases, much shorter calculations show that they have Terwilliger algebras
isomorphic to:

M2(|C)⊕M1(|C) (The Tetrahedon)
M4(|C)⊕M2(|C) (The Cube)
M3(|C)⊕M1(|C)⊕M1(|C) (The Octahedron)
M4(|C)⊕M2(|C)⊕M2(|C) (The Icosahedron).
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