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UNIÓN MATEMÁTICA ARGENTINA
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Introduction

Throughout, E, G, and F will be complex Banach spaces, E a subspace of
G. The question which gave rise to the material reviewed here was first posed
by Dineen [D1] in relation to holomorphic completeness and in the context of
more general locally convex spaces. It is the following: when can a continuous
homogeneous polynomial P : E −→ F be extended to P : G −→ F? Several
answers—none complete—have been given for varying hypotheses on the spaces
and the polynomials involved, and several applications have appeared. We attempt
here to unify the existing approaches to the problem, and to point out the common
ingredients in the solutions.

It is clearly not possible in general to extend polynomials to larger spaces, in
fact this is true even of linear functions: the identity c0 −→ c0 cannot be extended
to �∞ −→ c0, for c0 is non-complemented in �∞. When F is the complex field and
P is linear there is of course the Hahn-Banach theorem, but we shall see that in
the non-linear case, there are scalar-valued polynomials which cannot be extended.

The positive results in this matter can be loosely grouped into two main cate-
gories: those providing linear extension morphisms by which all polynomials can
be extended to some larger space, and Hahn-Banach type extensions applicable to
some polynomials and extending those to all larger spaces. We concentrate on the
first type of result in sections 1 and 2, and on the second type in section 3.

We restrict our attention to polynomials over Banach spaces, although many
results have been obtained regarding the extension of holomorphic functions on
Banach or other locally convex spaces ([Bol], [CM], [GGM2], [Kh1], [Kh2], [Mo2],
[Mo3], [MV]). Also, many applications have appeared which we do not go into
here: to holomorphic completeness [D1], to geodesics [DT], polarization constants
[LR], reflexivity of spaces of polynomials [JPZ] [AD], the spectra of algebras of
analytic functions over Banach spaces [ACG1] [AGGM], integral representation
of analytic functions [PZ], and orthogonally additive polynomials ([BLLl], [PgV],
[CLZ]).
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46 IGNACIO ZALDUENDO

In the first section we consider the Aron-Berner extension. We begin with
the Arens product in a commutative Banach algebra, a very specific extension
of a bilinear function, but nevertheless an extension in which some of the main
points of more general extensions already appear, such as lack of symmetry and
the notion of regularity. We then define and study the Aron-Berner extension,
an extension of polynomials from a Banach space to its bidual. In the second
section, we consider extensions from E to G. Here all solutions stem from the
existence of a continuous linear extension morphism for linear forms E′ −→ G′,
a condition obviously stronger than Hahn-Banach, and not satisfied in all cases.
Section 3 is devoted to Hahn-Banach type extensions. We are naturally drawn to
‘linearization’ of polynomials, and thus to preduals of spaces of polynomials. The
space of ‘extendible’ polynomials is considered also.

This survey has been brewing, on and off, for about a decade. It started out
as a talk prepared for the Conference on Polynomials and Holomorphic Functions
on Locally Convex Spaces, in University College Dublin in September of 1994,
and then lay dormant for a couple of years until the Departamento de Análisis
Matemático of the Universidad Complutense de Madrid invited the author to
lecture on these topics in the winter of 1997, thus providing the oportunity for
extensive rewriting. A first version appeared as a preprint [Z3] in the series Pub-
licaciones del Departamento de Análisis Matemático of the Complutense. More
recently, the author has lectured on these matters in a Seminar at the Univer-
sidad de Buenos Aires, and so had the oportunity to add more recent material
—particularly to section 3— and make these notes up to date. It is a pleasure
to thank my colleagues at UCD, UCM, and UBA for their interest and support.
Also, many participants at the Conference in Dublin, and many of those present
at the Madrid and Buenos Aires lectures have helped to mold these notes with
their comments, their questions, and in more than a few cases, their answers. In
this respect, it is a pleasure to acknowledge the contribution of J. M. Ansemil, R.
Aron, F. Bombal, C. Boyd, D. Carando, V. Dimant, S. Dineen, J. A. Jaramillo,
J. G. Llavona, A. Peris, A. Prieto, R. Ryan, S. Lassalle, and A. Tonge.

A word of caution. In writing these notes I have had in mind my students more
than my colleagues. Thus, the result has been more an introduction than a survey.
The experts will find some of their theorems missing, their proofs changed, their
points of view distorted. The choice of material has been personal, and probably
guided by aesthetic sense more than anything else. Also, in many places, the
absence of a reference is not due to my originality, but to my ignorance.

Before going on to the first section of this paper, we succintly present the basic
definitions and notation of the theory of polynomials on Banach spaces. For a
truly comprehensive text, see [D4].

A k-homogeneous polynomial P : E −→ F is a function which can be written as
P (x) = A(x, . . . , x) where A is a k-linear function from E×· · ·×E to F . When A
is symmetric, it can be recovered from the corresponding polynomial P by any of
several polarization formulas. Thus, there is a one-to-one correspondence between
k-homogeneous polynomials and symmetric k-linear functions.
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EXTENDING POLYNOMIALS 47

The ‘uniform’ norm of P can be defined as

‖P‖ = sup{‖P (x)‖ : x ∈ BE}
where BE is the closed unit ball of E. Continuity of P (and of the corresponding
symmetric k-linear function A) is equivalent to finiteness of ‖P‖. The space of
F -valued continuous k-homogeneous polynomials, with the uniform norm, is a
Banach space which we will denote by P (kE, F ), or simply by P (kE) when F is
the scalar field.

We will need to consider several more restricted classes of scalar-valued poly-
nomials, each of which gives rise to a vector subspace of P (kE).

Surely the simplest kind of polynomials over a Banach space are the polyno-
mials of finite type, those which may be written as P (x) =

∑n
i=1 γi(x)k, where

each γi is a continuous linear form over E. Slightly larger is the class of nu-
clear polynomials, made up of those which may be represented (non-uniquely) as
P (x) =

∑∞
i=1 γi(x)k, with

∑∞
i=1 ‖γi‖k < ∞. These form a non-closed vector sub-

space of P (kE) (although they do form a Banach space in the ‘nuclear’ norm, i.e.
the infimum of

∑∞
i=1 ‖γi‖k over all possible representations of P ). The closure of

the space of nuclear (or also of the finite-type polynomials) in the uniform norm is
the space of approximable polynomials. Larger still are the spaces of weakly con-
tinuous polynomials (those which are weakly continuous over all bounded subsets
of E) and weakly sequentially continuous polynomials. We thus have the chain of
vector subspaces of P (kE)

Pf (kE) ⊂ PN (kE) ⊂ PA(kE) ⊂ Pw(kE) ⊂ Pwsc(kE) ⊂ P (kE).

Reverse inclusions sometimes hold, highlighting the interplay between the study
of polynomials and Banach space theory: if E′ has the approximation property
PA(kE) = Pw(kE) [AP], if E has the Dunford-Pettis property Pwsc(kE) = P (kE)
[Ry1], while Pw(kE) = Pwsc(kE) holds if and only if E contains no copy of �1

[FGLl]. Another important class of polynomials is that of integral polynomials:
those which may be represented by a regular Borel measure µ over the unit ball
of E′ (considered with the weak∗ topology) in the following way

P (x) =
∫

BE′
γ(x)kdµ(γ).

Like the nuclear polynomials, these form a Banach space with their own particular
‘integral’ norm (the infimum of the total variations of the representing measures),
but are a non-closed subspace of P (kE) in the uniform norm. We have the inclu-
sions

PN (kE) ⊂ PI(kE) ⊂ Pwsc(kE),
with PN (kE) = PI(kE) when E′ has the Radon-Nikodym property [A] (for exam-
ple, if E is reflexive).

The only trivially extendible scalar-valued polynomials are the finite-type and
the nuclear polynomials. These can be extended to any larger space by simply
using the Hahn-Banach theorem to extend their component linear forms γi. We
shall see that the integral polynomials are also extendible but that there are, in
general, approximable polynomials which cannot be extended.
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48 IGNACIO ZALDUENDO

§1. The Aron-Berner extension

In 1951 R. Arens ([A1], [A2]) found a way of extending the product of a Banach
algebra E to its bidual E′′ in such a way that this bidual became itself a Banach
algebra. We restrict our presentation here to commutative Banach algebras E,
for in the sequel we will be interested in polynomials, and thus in symmetric
multilinear forms.

Suppose then that a, b ∈ E, S, T ∈ E′′, and γ ∈ E′. The elements (aγ) and
Tγ ∈ E′ are defined by setting

(aγ)(b) = γ(ab) and Tγ(a) = T (aγ).

Now, given S and T in the bidual of E, define the product of S and T by

(ST )(γ) = S(Tγ)

for each γ ∈ E′. It is easily seen that this product extends the product in E. Also,
we observe the following two facts which will have analogues in the more general
Aron-Berner extension.

i) The map (S, T ) �→ (ST )(γ) is weak∗-continuous of its first variable: Indeed,
if (Si) ⊂ E′′ is weak∗-converging to S, then (SiT )(γ) = Si(Tγ) −→ S(Tγ) =
(ST )(γ).

ii) All elements of E commute with all elements of E′′: Take a ∈ E and T ∈ E′′.
Then for any γ

(aT )(γ) = a(Tγ) = Tγ(a) = T (aγ)

(Ta)(γ) = T (aγ)

but one checks that aγ is just (aγ).
In general, the map in i) is not continuous of the second variable, and the Arens

product is not commutative. In fact we will see in the next section that these two
properties are equivalent. To see that the product is not commutative, we present
the following example [Z2] (see also [Re]).

Example 1.1.

Let E be the commutative Banach algebra �1(Z) with the convolution product

(ab)j =
∑
i∈Z

aibj−i,

and define the subspace V of E′ = �∞(Z)

V = {γ ∈ E′ : L−(γ) = lim
n→−∞ γn and L+(γ) = lim

n→+∞ γn exist}.
Now use Hahn-Banach to extend L− and L+ to elements S− and S+ of E′′. These
do not commute. To see this, take γ = (. . . ,−1,−1, 0, 1, 1, . . .) ∈ E′ and observe
that

(aγ)n =
∑

k

akγn+k =
∑

k>−n

ak −
∑

k<−n

ak.

Thus
S−

γ (a) = lim
n→−∞(

∑
k>−n

ak −
∑

k<−n

ak) = −
∑

k

ak,
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EXTENDING POLYNOMIALS 49

and S−
γ = (. . . ,−1,−1,−1, . . .). Analogously S+

γ = (. . . , 1, 1, 1, . . .). Now

(S+S−)(γ) = S+(S−
γ ) = −1 �= 1 = S−(S+

γ ) = (S−S+)(γ).

For more on the Arens product, see [IL], [DH], and [GI].
The process applied to the map (a, b) �→ γ(ab) can be carried out on an arbitrary

continuous bilinear function
X × Y −→ Z

as follows: fix z′ ∈ Z ′ and x ∈ X ; then we obtain an element of Y ′. This mapping
is bilinear and continuous, producing Z ′ × X −→ Y ′. If we repeat the process
again we obtain Y ′′ × Z ′ −→ X ′, and when repeated once more,

X ′′ × Y ′′ −→ Z ′′.

Now if instead of considering Banach algebras one takes X = Y = E, a Banach
space, F = C, and A : E × E −→ C a symmetric bilinear form on E, the
construction produces an extension of A to E′′.

The same extension can be defined in other ways. Here are two:
a) Say z1 and z2 are elements of the bidual, and choose nets (xi) and (yi) converging
to z1 and z2 in the weak∗ topology of E′′. Now put

A(z1, z2) = lim
i

lim
j

A(xi, yj).

This definition does not depend on the particular choice of nets, and produces the
same extension as above. Note that A is not, in general, weak∗-continuous in the
second variable, but only in the first.
b) Define the associated symmetric linear map T : E −→ E′ by T (x)(y) = A(x, y).
Its bitranspose T ′′ : E′′ −→ E′′′ corresponds to a continuous bilinear extension of
A

A(z1, z2) = T ′′(z1)(z2).

Similar constructions can be carried out for k-linear forms. Note that in all
cases there is a choice involved in the ordering (of the limits, of z1 and z2). It
turns out that even though A is symmetric, the extended form A need not be
symmetric. In fact one has the following equivalences, with A and T as above.

Proposition 1.2.([DH], [Rp]) The following are equivalent:
i) A is symmetric.
ii) A is separately weak∗-continuous in both variables.
iii) T : E −→ E′ is weakly compact.

Proof. i) implies ii): A(z1, z2) = T ′′(z1)(z2) is always weak∗-continuous in the
first variable, for transpose maps are weak∗ to weak∗-continuous. Thus symmetry
implies weak∗-continuity in the other variable as well.

ii) implies iii): Fix any z1 ∈ E′′. Weak∗-continuity of T ′′(z1)(z2) in the variable
z2 says that T ′′(z1) is actually in the canonical inclusion of E′ in E′′′. Thus
T ′′(E′′) ⊂ E′ and T is weakly compact by Gantmacher’s theorem [HP].

iii) implies i): We denote the canonical inclusion of E in E′′ by JE and that of
E′ in E′′′ by JE′ . First, note that since T is symmetric, T ′ ◦ JE = T . Indeed, for
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50 IGNACIO ZALDUENDO

any x and y in E,

(T ′ ◦ JE)(x)(y) =T ′(JE(x))(y) = (JE(x) ◦ T )(y)

=JE(x)(T (y)) = T (y)(x)

=T (x)(y)

This in turn implies that for any z ∈ E′′, T ′(z) = T ′′(z) ◦ JE : for all x ∈ E, we
have

T ′(z)(x) =(z ◦ T )(x) = (z ◦ T ′ ◦ JE)(x)

=(z ◦ T ′)(JE(x)) = (T ′′(z))(JE(x))

=(T ′′(z) ◦ JE)(x)

Thus, if T is weakly compact we obtain T ′′ = JE′ ◦ T ′: Since T ′′(E′′) ⊂ JE′(E′),
and E separates points of E′, we need only see that for z ∈ E′′ and x ∈ E,
T ′′(z)(JE(x)) = T ′(z)(x). But this is T ′(z) = T ′′(z) ◦ JE . Thus we have,

T ′′(z1)(z2) =(JE′ ◦ T ′)(z1)(z2) = JE′(T ′(z1))(z2)

=z2(T ′(z1)) = (z2 ◦ T ′)(z1)

=T ′′(z2)(z1)

and T ′′ is symmetric.

It is worth noting that elements of E always commute with those of E′′, even
when A is not symmetric. Thus A(x, z) = A(z, x) for any choice of x ∈ E and
z ∈ E′′.

If the equivalent conditions in the proposition hold for all symmetric A, E
is said to be symmetrically regular, and if all (symmetric or otherwise) operators
T : E −→ E′ are weakly compact, E is regular. As Example 1.1 shows, �1(Z) is not
symmetrically regular (and hence not regular). The operator T : �1(Z) −→ �∞(Z)
corresponding to Example 1.1 is given by

T (x)i =
∑

j

sgn(j)xj−i

where the sign of 0 is taken as 0. It is easily seen that T is not weakly compact:
any subsequence of T (en) = (. . . ,−1,−1, 0, 1, 1, . . .) (with 0 in −nth place) which
converges weakly does so to (. . . , 1, 1, 1, . . .), but S−(T (en)) = −1 for all n. So the
image of the unit ball is not weakly sequentially compact.

Another example of such an operator T : �1 −→ �∞ [ACG1] is given by

T (x)i =
∑

jeven;1≤k<j

xjδik +
∑

keven;1≤j<k

xjδik

and yet another [Re] by

T (x)i = (−1)i+1
∑
j≤i

xj +
∑
j>i

(−1)j+1xj .

On the other hand, C(K) spaces are regular [GI], as are all C∗-algebras.
We continue with some results on symmetric regularity, as found in [AGGM].
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Proposition 1.3.E×F is regular if and only if all operators in L(E, E′), L(E, F ′),
L(F, E′), L(F, F ′) are weakly compact.

Proof. Just note that one may write T : E × F −→ E′ × F ′ as

T =
(

R1 R2

R3 R4

)
,

thus T (x, y) = (R1(x) + R2(y), R3(x) + R4(y)).

An immediate consequence is that E is regular if and only if E × E is regular.
Also, if E is non-reflexive, E × E′ is non-regular.

Proposition 1.4.
i) If E × E is symmetrically regular, then E is regular.
ii) E × E is regular if and only if it is symmetrically regular.

Proof. i) Take T : E −→ E′, any continuous operator, and define S : E × E −→
E′ × E′ by

S =
(

0 T0

T 0

)
,

where T0(y)(u) = T (u)(y). Then

S(x, y)(u, v) = (T0(y), T (x))(u, v) = T0(y)(u) + T (x)(v)

= T (u)(y) + T (x)(v) = T (x)(v) + T (u)(y)

= T0(v)(x) + T (u)(y) = (T0(v), T (u))(x, y)

= S(u, v)(x, y)

Thus S is symmetric, and therefore it, and T , are compact.
ii) This is now easy from part i) and the fact that E is regular if and only if

E × E is.

We now define the Aron-Berner extension of a continuous k-homogeneous scalar-
valued polynomial P defined over the Banach space E. We choose to give a degree-
k version of the first definition mentioned above, but note that the second is also
easily adapted to this case. We first extend k-linear forms:

Given z ∈ E′′ and 1 ≤ m ≤ k, define

z : Ls(mE) −→ Ls(m−1E)

by z(A)(x1, . . . , xm−1) = z(Ax1...xm−1). Here Ax1...xm−1 denotes the linear form
obtained from A by fixing m − 1 variables (note that by symmetry it does not
matter where these variables are fixed). The map z is linear, continuous and of
norm ‖z‖. Now, given A ∈ Ls(kE) we may define the extended k-linear form
A ∈ L(kE′′) by

A(z1, . . . , zk) = z1 ◦ · · · ◦ zk(A).

Here we have identified Ls(0E) with the scalar field. The extended mapping A
need not be symmetric. We have in fact k! extensions, one for each choice of
ordering in z1 ◦ · · · ◦ zk. Note however that for x ∈ E we do have z ◦ x = x ◦ z,
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52 IGNACIO ZALDUENDO

and that A is weak∗-continuous in the first variable [Z1]. These properties are
analogous to those of the Arens product.

When E is symmetrically regular, variables in A can be permuted in pairs
even in the extensions of k-linear forms, so that if E is symmetrically regular the
extension of any symmetric k-linear form is itself symmetric.

We define the Aron-Berner extension of P to the bidual E′′ of E by setting

P (z) = A(z, . . . , z),

where A is the unique symmetric continuous k-linear form A : E × · · · × E −→ C
such that P (x) = A(x, . . . , x) for every x ∈ E.

It must be stressed that this extension is quite algebraic in nature. Indeed,
the formal manipulations involved can be carried out with no regard to topology
whatsoever. It is certainly not an extension by continuity, and P need not be
weak∗-continuous (consider the polynomial P (x) =

∑
n x2

n over �2).
However the Aron-Berner extension respects most of the usual classes of contin-

uous polynomials, as we shall see below. Also, a relation with the weak∗-topology
in E′′ is present, though perhaps more subtly than one would expect, as the next
two theorems show.

First, there is the following characterization of the Aron-Berner extension [Z1]
in terms of first-order differentials.

Theorem 1.5.[Z1] If Q ∈ P (kE′′) and P = Q|E, then Q = P if and only if
a) For each x ∈ E, DQ(x) is weak∗-continuous, and
b) For each z ∈ E′′ and (xα) ⊂ E converging weak∗ to z, DQ(z)(xα) → DQ(z)(z).

Condition b) is somewhat odd, but examples show that DP (z) need not be
weak∗-continuous for z ∈ E′′ and that condition a) alone does not guarantee
that Q = P . Indeed, let E = �1(Z) × �1(Z) and P : E −→ C such that
P (a, b) = γ(ab) (with notation as in Example 1.1). Then the Aron-Berner ex-
tension of P is P (S, T ) = 1

2 [ST + TS](γ). However, since (T, S) �→ (TS)(γ) is
not weak∗-continuous in the second variable, choose (Sα) converging weak∗ to
S with (TSα)(γ) �→ (TS)(γ); let z = (S, T ) and zα = (Sα, T ). Then zα → z
weak∗, but DP (z)(zα) �→ DP (z)(z). Also, if Q(S, T ) = (ST )(γ), then DQ(x) is
weak∗-continuous for all x ∈ E, but Q �= P .

One consequence of the above characterization is the linearity of the Aron-
Berner extension mapping P −→ P . Indeed, P +Q|E = P +Q, and for all z ∈ E′′

the differential D(P +Q)(z) = DP (z)+DQ(z) has the same continuity properties
as each summand. The same holds for scalar multiples of P .

Thus, the Aron-Berner extension is a one-to-one linear map

P (kE) −→ P (kE′′)

The continuity of this map is a simple matter, for the norm of the extended
polynomial verifies: ‖P‖ ≤ ‖A‖ = ‖A‖ ≤ kk

k! ‖P‖. However, more can be said.
Davie and Gamelin have proved [DG] the following theorem which shows that in
fact the Aron-Berner map is an isometry onto its image.
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Theorem 1.6.‖P‖ = ‖P‖. In fact, given z ∈ E′′ and a polynomial P , there is a
bounded net (xα) ⊂ E weak∗-converging to z and for which P (xα) → P (z).

Proof. Let A be the symmetric k-linear form associated with P . Fix z in the unit
ball of E′′, and ε > 0. For any natural number N (to be fixed later) choose, using
Goldstine’s theorem, an element x1 in the unit ball of E such that

|A(z, z, . . . , z) − A(x1, z, . . . , z)| <
ε

k
.

Then choose x2 in the unit ball of E such that

|A(z, z, . . . , z) − A(x2, z, . . . , z)| <
ε

k

and |A(x1, x2, z, . . . , z) − A(x1, z, z, . . . , z)| <
ε

k

and go on until one has x1, . . . , xN in the unit ball of E such that whenever
i1 < · · · < ir, then

|A(xi1 , . . . , xir−1 , xir , z, . . . , z)− A(xi1 , . . . , xir−1 , z, z, . . . , z)| <
ε

k
.

We then have, for i1 < · · · < ik, or (considering that A is symmetric) for any k
different indexes i1, . . . , ik

|A(z, . . . , z) − A(xi1 , . . . , xik
)| ≤ |A(z, z, . . . , z) − A(xi1 , z, . . . , z)|

+ |A(xi1 , z, . . . , z) − A(xi1 , xi2 , z, . . . , z)|
+ · · ·
+ |A(xi1 , . . . , xik−1 , z)− A(xi1 , . . . , xik

)| < ε.

Now let x = 1
N

∑N
i=1 xi.

|P (z) − P (x)| =

∣∣∣∣∣A(z, . . . , z) − A

(
1
N

N∑
i1=1

xi1 , . . . ,
1
N

N∑
ik=1

xik

)∣∣∣∣∣
=

∣∣∣∣∣A(z, . . . , z) − 1
Nk

N∑
i1=1

· · ·
N∑

ik=1

A(xi1 , . . . , xik
)

∣∣∣∣∣
≤ 1

Nk

N∑
i1=1

· · ·
N∑

ik=1

|A(z, . . . , z) − A(xi1 , . . . , xik
)|

=
∑
1

+
∑
2

,

where in the first sum we group all terms with no repeated indexes, and in the
second all remaining terms. Since each term with non-repeated indexes is smaller
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than ε, we have∑
1

+
∑
2

≤ε +
∑
2

≤ε + 2‖A‖ 1
Nk

[
number of terms in

∑
2

]

=ε + 2‖A‖ 1
Nk

[Nk − N(N − 1) · · · (N − k + 1)]

=ε + 2‖A‖
(

1 − N

N

N − 1
N

· · · N − k + 1
N

)
but the term on the right can be made small by taking N large; i.e. the larger
the number of indexes i1, . . . , iN that one uses, the smaller the chance of having
repeated indexes in a group of k of them. Thus P (x) can be as close as P (z) as
required.

A polynomial P may in general admit many other norm-preserving extensions
to E′′, but there are a few uniqueness results. For example, 2-homogeneous norm-
attaining polynomials on c0 have unique norm-preserving extension to �∞ [ABC].

In view of the Davie-Gamelin theorem, one can consider the Aron-Berner ex-
tension as an inclusion map

P (kE) −→ P (kE′′).

A few comments on the preservation of the usual classes of polynomials through
the Aron-Berner extension: Clearly finite type, nuclear, and approximable poly-
nomials are preserved. Less clear but nevertheless true is the fact that integral
polynomials over E are mapped into integral polynomials over E′′. We have:

Theorem 1.7.[CZ1] The Aron-Berner extension of an integral polynomial over
E is an integral polynomial over E′′. Furthermore, if E contains no copy of �1,
and µ is a measure representing P , then

P (z) =
∫

BE′
z(γ)kdµ(γ).

Note that this integral makes no sense if E contains a copy of �1, for z need not
be a µ-measurable function over BE′ [H]. Also, an analogue of the Davie-Gamelin
theorem holds: the integral norm of P is the same as that of P . The same holds
for the class of extendible polynomials (which we will present in §3). De Moraes
has proved:

Theorem 1.8.[Mo1] The Aron-Berner extension of a weakly continuous polyno-
mial over E is a weakly continuous polynomial over E′′.
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Another proof of this fact is possible through the characterization of weakly
continuous polynomials as those which are continuous with respect to the semi-
norm

‖x‖K = sup{|γ(x)| : γ ∈ K}
for some compact subset K of E′ [ALRR], [T]. Indeed, it has been shown [AG],
[CDDL] that for any particular K, such polynomials are preserved by the Aron-
Berner extension.

The Aron-Berner extension does not, in general, preserve the class P k
wsc of

weakly sequentially continuous polynomials, as the following example shows.

Example 1.9. Given any Banach space X , consider the 2-homogeneous polyno-

mial X×X ′ −→ C defined by (x, γ) �→ γ(x). It is easily seen that weak sequential
continuity of this polynomial is equivalent to X having the Dunford-Pettis prop-
erty.

Now consider a Banach space E having the Dunford-Pettis property whose
dual E′ does not have it (say (

∑
n �2n

)1, [S]), and consider the weakly sequentially
continuous polynomial

P : E × E′ −→ C, defined by P (x, γ) = γ(x).

The Aron-Berner extension of this polynomial is

P : E′′ × E′′′ −→ C, given by P (z, α) =
α(z) + z(r(α))

2
,

where r : E′′′ −→ E′ is the restriction mapping (i. e., r = J ′
E). Thus if we restrict

P to the subspace E′′ × E′, we obtain the polynomial

Q : E′′ × E′ −→ C given by Q(z, γ) = z(γ).

If P were weakly sequentially continuous, Q would be also, and hence E′ would
have the Dunford-Pettis property, contradicting our assumption.

A positive result in this matter is the following theorem of González and
Gutiérrez (who actually prove a more general result).

Theorem 1.10.[GG] If E′ has the Dunford-Pettis property, then the Aron-Berner
extension preserves weakly sequentially continuous polynomials.

Through the Aron-Berner extension, polynomials defined on E can be evaluated
at points of E′′, and indeed at points of any even dual (E′′, Eiv,...) of E. It is
natural to ask then if evaluations at such points constitute new evaluations or if, for
example, given w ∈ Eiv there is an element z ∈ E′′ which polynomials P ∈ P (kE)
cannot distinguish from w, that is P (z) = P (w) for all such P . Clearly, for k = 1
there is such an element of E′′; it is J ′

E′(w) = w ◦ JE′ , where JE′ is the canonical
inclusion of E′ in its bidual E′′′. The matter for k > 1 is far more interesting, and
has been studied by Aron, Galindo, Garćıa and Maestre, who found the following.

Theorem 1.11.[AGGM] Each evaluation at a point of Eiv is in fact an evaluation
at a point of E′′ if and only if E is symmetrically regular.
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For F -valued polynomials P : E −→ F , the extension process described above
produces an F ′′-valued polynomial P : E′′ −→ F ′′. It can be seen that if P is
weakly compact, then the image of P is in F , although (unlike the linear case)
the converse is not true. However, even in situations in which P is F ′′-valued,
analogues of Theorem 1.5 and Theorem 1.6 hold [C1].

§2. Extension Morphisms from E to G

Several particular cases have been studied ([AB], [DT], [GGMM], [LR], [Z1]) of
situations in which all polynomials defined over a Banach space E are extended
to a certain larger Banach space G. In all these instances there turns out to
be an extension morphism. We present in this section a unified version of the
above mentioned results, and several formulations equivalent to the existence of
an extension morphism for polynomials.

We shall need the following result of Aron and Schottenloher [AS].

Theorem 2.1.Let E and F be arbitrary Banach spaces. Then L(E, F ) is isomor-
phic to a complemented subspace of P (kE, F ).

Proof. Fix e ∈ E and α ∈ E′ a norm-one linear functional such that α(e) = 1.
Define the ‘inclusion’ ρ : L(E, F ) −→ P (kE, F ) by ρ(T ) = T · αk−1 (the product
is point-wise). Also, define the ‘projection’ π : P (kE, F ) −→ L(E, F ) by π(Q) =
DQ(e) − (k − 1)Q(e) · α. Note that DQ(e)(x) = kA(e, . . . , e, x), where A is the
symmetric k-linear operator associated to Q, and that if Q = T · αk−1,

A(e, . . . , e, x) =
1
k

[T (e)α(e) · · ·α(x) + · · · + α(e) · · ·T (e)α(x) + α(e) · · ·α(e)T (x)] .

Thus (π ◦ ρ)(T ) = T . Indeed, for any x ∈ E, we have

π(ρ(T ))(x) = kA(e, . . . , e, x) − (k − 1)T (e)α(x)

= (k − 1)T (e)α(x) + T (x) − (k − 1)T (e)α(x)

= T (x).

The existence of a linear extension mapping P (kE, F ) −→ P (kG, F ) is equiva-
lent to the existence of a linear extension mapping L(E, F ) −→ L(G, F ). We have
the following theorem. The ‘if’ part is a reformulation of results in [GGMM] and
[Ni], the ‘only if’ part is due to A. Peris.

Theorem 2.2.Let E be a subspace of G, and F an arbitrary Banach space. Then
there is an extension morphism s : P (kE, F ) −→ P (kG, F ) if and only if there is
an extension morphism s : L(E, F ) −→ L(G, F )
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Proof. Suppose s exists, and define ρ and π as in Theorem 2.1. Now let s = π◦s◦ρ.
s is continuous, linear, and for T ∈ L(E, F ) and x ∈ E, s(T )(x) = T (x):

s(T )(x) = π(s(ρ(T )))(x)

= D[s(ρ(T ))](e)(x) − (k − 1)s(ρ(T ))(e)α(x)

= D[ρ(T )](e)(x) − (k − 1)ρ(T )(e)α(x)

= T (x),

(the last equality as in Theorem 2.1). Note also that in differentiating, we have
used the fact that e + λx is in E for any λ.

Now suppose that s is given. We want to define s, and proceed as in the
definition of the Aron-Berner extension. Given g ∈ G and 1 ≤ m ≤ k, define

g : Ls(mE, F ) −→ Ls(m−1E, F )

by g(A)(x1, . . . , xm−1) = s(Ax1...xm−1)(g). Here Ax1...xm−1 denotes the linear form
obtained from A by fixing m − 1 variables. Now, given A ∈ Ls(kE, F ) we may
define the extended k-linear function A ∈ L(kG, F ) by

A(g1, . . . , gk) = g1 ◦ · · · ◦ gk(A).

Thus if P is a polynomial in P (kE, F ), and A its associated symmetric k-linear
function, set

s(P )(g) = A(g, . . . , g).
It is now easily checked that s is a linear extension mapping from P (kE, F ) to
P (kG, F ).

Note that the function s cannot be defined (even non-linearly) if s is not linear.
Indeed, a non-linear s would induce a g(A) which would fail to be (m − 1)-linear
in the above definition. Also, note that the constructions s �→ s and s �→ s are not
in general inverse of each other.

The fact that E is a subspace of G and s an extension map makes s an extension
map; however, the construction can be carried through for any continuous linear
map t : L(E, F ) −→ L(G, F ), giving rise to a continuous linear map

t : P (kE, F ) −→ P (kG, F ).

Note however, that t ◦ s need not be t ◦ s. The following example is taken from
[LZ].

Example 2.3. t ◦ s �= t ◦ s:

If X is a Banach space, consider (as in Example 1.9) the 2-homogeneous poly-
nomial P defined over X × X ′ by P (x, x′) = x′(x). Recall that the Aron-Berner
extension of P to X ′′ × X ′′′ is

P (x′′, x′′′) =
1
2
[x′′′(x′′) + x′′(ρ(x′′′))],

where ρ : X ′′′ → X ′ is the restriction (i.e., the transpose of the natural inclusion
JX : X → X ′′). We will use the notation

E = X × X ′ F = X ′′ × X ′ G = X ′′ × X ′′′
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and over these spaces consider the polynomials

P (x, x′) = x′(x) Q(x′′, x′) = x′′(x′)

and morphisms s : E′ → F ′ and t : F ′ → G′ given by s = JX′ ⊕ idX′′ ,t =
idX′′′ ⊕ JX′′ . Also, we denote r = J ′

X′ . We now check that t ◦ s �= t ◦ s.
First, calculate s(P ):

s(P )(xiv, x′′′) = Q(xiv , x′′′) =
1
2
[xiv(x′′′) + x′′′(r(xiv))].

Now calculate t′ ◦ JG:

(t′ ◦ JG)(x′′, x′′′) = t′(JX′′(x′′), JX′′′ (x′′′))

= (JX′′(x′′), J ′
X′′(JX′′′ (x′′′)))

= (JX′′(x′′), x′′′),

so using this we have

(t ◦ s)(P )(x′′, x′′′) = (s(P ) ◦ t′ ◦ JG)(x′′, x′′′)

= s(P )(JX′′(x′′), x′′′)

=
1
2
[JX′′(x′′)(x′′′) + x′′′(r(JX′′ (x′′)))]

= x′′′(x′′).

Then
(t ◦ s)(P )(x′′, x′′′) = (P ◦ (t ◦ s)′ ◦ JG)(x′′, x′′′)

= (P ◦ s′)((t′ ◦ JG)(x′′, x′′′))

= (P ◦ s′)(JX′′ (x′′), x′′′)

= P (r(JX′′ (x′′)), x′′′)

= P (x′′, x′′′)

=
1
2
[x′′′(x′′) + x′′(ρ(x′′′))],

thus t ◦ s = t ◦ s if and only if x′′(ρ(x′′′)) = x′′′(x′′), but this only happens for
reflexive X .

We now provide some examples of situations in which a linear extension map
exists for linear operators, and thus also for polynomials. We begin with the case of
F -valued polynomials in the first three examples, and continue with scalar-valued
polynomials in the rest.

Example 2.4.(E complemented in G):

This is clearly the simplest case for extension. If p : G −→ E is a projector,
any polynomial Q may be extended by setting s(Q) = Q ◦ p. This extension
is a morphism and comes from s : L(E, F ) −→ L(G, F ) (s(T ) = T ◦ p) by the
construction above.

Example 2.5.([Z1]):
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If G = L(L(E, F ), F ), E may be considered contained in G through the inclu-
sion mapping J : E −→ G defined by J(x)(T ) = T (x). In this case one may define
s : L(E, F ) −→ L(G, F ) by s(T )(g) = g(T ).

Example 2.6.

If there is a linear extension map for linear forms σ : E′ −→ G′, and F is
complemented in its bidual (this happens, for example if F is a dual space), one
may define s : L(E, F ) −→ L(G, F ) as follows. First define s0 : L(E, F ) −→
L(G, F ′′) by s0(T )(g)(f ′) = σ(f ′ ◦ T )(g), and then s(T ) = p ◦ s0(T ), where p is
the projection F ′′ −→ F . If σ exists but F is not complemented in F ′′, one may
define an extension morphism P (kE, F ) −→ P (kG, F ′′).

Example 2.7.(the Aron-Berner extension [AB]):

For G = E′′, the Aron-Berner extension comes from the extension morphism
s : E′ −→ E′′′, the canonical inclusion of E′ in its bidual.

Example 2.8.(G in an ‘local’ ultrapower of E [DT], [LR]):

Suppose E ⊂ G and G is finitely represented in E in the following sense: for
each finite-dimensional subspace of G and each ε > 0 there is a isomorphism
T : S −→ T (S) ⊂ E such that T is the identity when restricted to S ∩ E and
‖T ‖‖T−1‖ < 1+ε. In such a situation one can define a linear extension morphism
s : E′ −→ G′ in the following way: Consider the indexing set I = {(S, ε) :
dimS < ∞, ε > 0} ordered by (S1, ε1) ≤ (S2, ε2) ⇔ S1 ⊂ S2 and ε2 ≤ ε1. The

sets Ai = {j ∈ I : j ≥ i} form a filter basis over I. Let U be any ultrafilter
containing this basis. We have, for any i = (S, ε) ∈ I,

Ti : S −→ Ti(S) ⊂ E

such that ‖Ti‖‖T−1
i ‖ < 1 + ε. For each γ ∈ E′, define

γi(g) =

{
γ(Ti(g)), if g ∈ S

0, if g �∈ S.

Although the γi’s are not linear, limU γi(g) is, and we may define

s : E′ −→ G′ by s(γ)(g) = lim
U

γi(g).

s is then a linear extension map, for if x ∈ E, s(γ)(x) = limU γ(Ti(x)) = γ(x).
This induces an extension morphism s : P (kE) −→ P (kG), which is the extension
P �→ P̂ in [LR] and [DT].

We now give more conditions equivalent to the existence of a linear extension
morphism s : E′ −→ G′ (and therefore equivalent to the existence of a linear
extension morphism for polynomials). Other conditions may be found in [CGJ1]
and in [D4, Prop. 6.18]. The implication ii) ⇒ iii) is taken from [D3]. First, some
definitions:
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We say E is finitely complemented in G, if there is a constant c such that for all
finite-dimensional subspaces S of G, there is a projector πS : S −→ E such that
‖πS‖ ≤ c, and πS(x) = x for x ∈ S ∩ E.

If Y is a subspace of X we shall say, following Dineen [D3], that (Y, X) has the
polynomial extension property if for all k ∈ N , each polynomial P ∈ P (kY ) extends
to a polynomial P̃ ∈ P (kX). Note that it is not required that these extensions
define a linear morphism. (E)U denotes the ultrapower of E corresponding to the
ultrafilter U .

Theorem 2.9.Let E be a subspace of G. Then the following are equivalent.
i) There is a linear extension morphism s : E′ −→ G′.
ii) (E × E′, G × E′) has the polynomial extension property.
iii) E′′ is complemented in G′′.
iv) E is finitely complemented in G.
v) There is an ultrafilter U and a continuous linear function T : G −→ (E)U

such that T (x) = x for x ∈ E.

Proof. i) implies ii): Consider E′ × E′′ the dual of E × E′ and G′ × E′′ the dual
of G × E′ in the usual way. Then

E′ × E′′ −→ G′ × E′′ defined by (γ, z) �→ (s(γ), z)

is a linear extension morphism from (E×E′)′ to (G×E′)′. Thus by the preceding
theorem (with F = C) every k-homogeneous polynomial over E ×E′ extends to a
k-homogeneous polynomial over G × E′.

ii) implies iii): Define P ∈ P 2(E × E′) by P (x, γ) = γ(x). There is, by ii), a
polynomial P̃ ∈ P 2(G × E′) which extends P . This polynomial extends by Aron-
Berner to a polynomial P̃ over G′′×E′′′. We consider Q its restriction to G′′×E′.
Now if (b, γ) ∈ G′′ × E′, let

π(b)(γ) = Q(b, γ).

Then π(b) is an element of E′′, and π : G′′ −→ E′′ is continuous and linear. Now
if z ∈ BE′′ and γ ∈ E′, the weak∗-closure of BE × {γ} contains (z, γ). Using the
Davie-Gamelin theorem, construct a net (xα) ⊂ BE weak∗-converging to z and
such that Q(xα, γ) → Q(z, γ). Then

π(z)(γ) = Q(z, γ) = lim
α

Q(xα, γ) = lim
α

γ(xα) = z(γ).

Hence π(z) = z, and π is a projection of G′′ onto E′′.
iii) implies iv): If π : G′′ −→ E′′ is a projector, take c = ‖π‖(1 + ε). For any

finite-dimensional subspace S of G, π(S) is a finite-dimensional subspace of E′′.
By the local reflexivity principle [De] there is a linear operator

T : π(S) −→ (T ◦ π)(S) ⊂ E

such that (1 − ε)‖x‖ ≤ ‖T (x)‖ ≤ (1 + ε)‖x‖ for x ∈ π(S), and if π(x) ∈ E,
T (π(x)) = π(x). Then πS = T ◦π : S −→ πS(S) ⊂ E has norm ‖πS‖ ≤ ‖T ‖‖π‖ ≤
c, and for x ∈ S ∩ E we have πS(x) = T (π(x)) = π(x) = x.
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iv) implies v): Consider the indexing set

I = {S : S is a finite dimensional subspace of G}
ordered by inclusion, let Ai = {j : j ≥ i} and U be an ultrafilter on I containing
the Ai’s. For each i = S ∈ I we have a projector πi : S −→ E of norm not
exceeding c. Define for each g ∈ G

π̂i(g) =

{
πi(g) if g ∈ S

0 if g �∈ S

and let T : G −→ (E)U be defined as T (g) = [(π̂i(g))] (the class of the family
(π̂i(g)) in the ultraproduct (E)U ). T is linear –though the π̂i’s are not– and
‖T (g)‖ = limU ‖π̂i(g)‖ ≤ c‖g‖. Now if x ∈ E, for all i ≥ S = span(x), πi(x) = x,
so T (x) = [(π̂i(x))] = [(x)].

v) implies i): First define σ : E′ −→ (E)′U as σ(γ)([(xi)]) = limU γ(xi). Now
set s = T ′ ◦ σ : E′ −→ G′. This is a linear extension morphism. Indeed, for all
γ ∈ E′ and x ∈ E, we have

s(γ)(x) = (T ′ ◦ σ)(γ)(x) = (σ(γ) ◦ T )(x)

= σ(γ)[(x)] = lim
U

γ(x)

= γ(x).

Some comments are in order. First, in iii) of the theorem we consider the
bitranspose J ′′ of the inclusion J : E −→ G to be the natural inclusion map of E′′

in G′′. This may, in some cases, be misleading. Consider for example the canonical
inclusion JE : E −→ E′′. Then it is easily checked that the inclusion J ′′

E is not the
canonical one JE′′ : E′′ −→ Eiv: indeed, let α ∈ E′′′ be non-zero, but such that
E ⊂ Kerα, and take z ∈ E′′ such that α(z) = 1. Then

JE′′(z)(α) = α(z) = 1 �= 0 = z(J ′
E(α)) = J ′′

E(z)(α).

The fact that JE′′′ and J ′′
E′ produce different extension morphisms

P (kE′′) → P (kEiv)

is related to the evaluation problem considered in [AGGM].
Note ([CGJ1], [Ka]) also that from the point of view of homological algebra,

while complementation of E in G is the splitting of the sequence

0 → E → G → G/E → 0,

the properties in the Theorem are equivalent to the splitting of the dual sequence

0 → (G/E)′ → G′ → E′ → 0.

Note also that one could write a ‘norm sensitive’ version of the theorem, putting
‘s norm preserving’, ‖π‖ = 1, c = 1 + ε for any ε, and ‖T ‖ = 1.

We close this section with an application of the procedure s �→ s of Theorem
2.2. In [DD] Dı́az and Dineen prove that if Banach spaces E, F have isomorphic
duals, and E′ has the Schur property and the approximation property, then P (kE)
and P (kF ) are isomorphic, i.e.: with the above hypotheses, the dual space E′
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determines the space of polynomials P (kE). If s : E′ → F ′ is an isomorphism,
it seems natural to look into the map s : P (kE) → P (kF ). As mentioned after
Theorem 2.2, in general t ◦ s �= t ◦ s. However, in the presence of Arens regularity,
the procedure is sufficiently well-behaved to produce the following result (proved
independently in [CCG] and [LZ]).

Theorem 2.10.If E and F are symmetrically Arens-regular, and E′ and F ′ are
isomorphic (resp. isometric), then for any k, P (kE) and P (kF ) are isomorphic
(resp. isometric).

§3. Hahn-Banach type extensions

We now address the problem of when a continuous k-homogeneous scalar-valued
polynomial P can be extended to any larger Banach space, regardless of whether
other polynomials over the same space can be so extended and whether such
extensions supply linear morphisms or not.

Following Kirwan and Ryan [KR], we shall say P ∈ P (kE) is extendible if it can
be extended to a continuous polynomial over any Banach space G containing E
as a subspace, and denote by Pe(kE) the space of all such polynomials. We start
with some immediate comments on extendible polynomials.

Remark 3.1.

All extendible polynomials are weakly sequentially continuous. Indeed, consider
E a subspace of C(BE′) (the space of continuous functions over the closed unit ball
of E′ with the weak∗ topology), through the mapping x �→ x̂ where x̂(γ) = γ(x). If
P is an extendible polynomial over E, it extends to a polynomial P̃ over C(BE′).
Since C(BE′) has the Dunford-Pettis property, every polynomial defined on it is
weakly sequentially continuous [Ry1] and this forces P to be weakly sequentially
continuous as well.

Remark 3.2.

If P ∈ P (2E) is extendible, and T : E −→ E′ is the symmetric linear operator
associated to P , then T is weakly compact: Call J the inclusion of E in C(BE′)
defined above, and let P̃ be an extension of P . This means that P̃ ◦ J = P , or
equivalently, that there is a symmetric linear operator S : C(BE′) −→ C(BE′)′

such that the following diagram commutes

E
T−−−−→ E′

J

� �J′

C(BE′) −−−−→
S

C(BE′)′

Since C(BE′) is symmetrically regular, S is weakly compact, and since J ′ is weak-
to-weak continuous, T (BE) = J ′(S(J(BE))) is weakly precompact. Thus T is
weakly compact.
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Remark 3.3.

From [KR]: If H is a Hilbert space, and P ∈ P (2H), then P is extendible if
and only if P is nuclear: Suppose first that P is extendible and, much as in the
previous example, consider H contained in �∞(BH′ ). On extending P one obtains
the diagram

H
T−−−−→ H ′

J

� �J′

�∞(BH′) −−−−→
S

�∞(BH′)′

Since �∞(BH′ )′ is an L1-space, S and J ′ are 2-summing, and so J ′ ◦ S is nuclear.
Then T = (J ′ ◦ S) ◦ J is nuclear, and so is P . The other implication is trivial, for
all nuclear polynomials on any space are extendible.

We may now present a few concrete examples of non-extendible scalar-valued
polynomials.

1) P : �2 −→ C, given by P (x) =
∑

k x2
k cannot be extendible, for it is not weakly

sequentially continuous: the unit basis in �2 tends weakly to 0, but P (en) = 1 for
any n (also, P is not nuclear).

2) P : �1(Z) −→ C, given by P (x) =
∑

j

∑
k sgn(j + k)xjxk is not extendible.

This is the polynomial corresponding to the non-weakly compact operator given
in Example 1.1, so it cannot be extendible.

3) P : �2 −→ C, given by P (x) =
∑

k
x2

k

k is not extendible, for it is not nuclear
(and �2 is a Hilbert space). P ∈ PA(�2); thus there are approximable polynomials
which are not extendible.

There are, in general, many non-extendible scalar valued polynomials on a
Banach space. There are some classes of polynomials, however, which are always
extendible. All finite-type and all nuclear polynomials can be extended by simply
applying the Hahn-Banach theorem to their component linear forms. It is also
true that all integral polynomials over a Banach space are extendible [CZ1].

A problem related to the non-extendibility of polynomials and considered by
P. Mazet in [Ma2] is the following: find the smallest constant c such that for any
hyperplane F in G every 2-homogeneous polynomial P on F can be extended to
G with the norm of the extension not exceeding c‖P‖. Clearly c must be larger
than one, for otherwise using a transfinite induction argument every P would be
extendible. Mazet finds the following bounds.

Theorem 3.4. For real spaces, c = 2. For complex spaces, 7
3 ≤ c ≤ 2

√
2.

One way of extending polynomials defined on E to G would be to identify
each with a linear form, and then apply the Hahn-Banach theorem to this linear
form. Thus, we are interested in representing spaces of polynomials as dual spaces:
say S′ is algebraically isomorphic to a subspace PE of P (kE), and that T ′ is
algebraically isomorphic to a subspace PG of P (kG), and that there is an linear
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inyection S −→ T . Then if S is topologically a subspace of T , each P ∈ PE

(considered as a linear form over S) may be extended by Hahn-Banach to P̂ ∈ PG.
In fact, any given polynomial P will be extendible to P̂ ∈ PG if and only if, as a
linear functional on S it is continuous for the topology induced on S by T .

There have been several constructions of preduals of spaces of polynomials,
and indeed, of spaces of holomorphic functions. In fact, the constructions usually
produce more than just preduals. They produce solutions to the following problem:
given a space of scalar-valued functions F(U) on the set U , can one construct a
space F∗(U) and a function e : U −→ F∗(U) of the same type as those of F(U)
factoring all functions of F(U) and identifying each with a continuous linear form
Lf : F∗(U) −→ C? That is,

U
f−−−−→ C

e

� ↗Lf

F∗(U)

One can then identify F(U) algebraically and topologically with the dual of F∗(U),
and indeed, the space of F -valued functions F(U, F ) with the continuous linear
operators L(F∗(U), F ). The existence of such a ‘linearization’ is strictly stronger
than the mere existence of a predual.

Constructions of this type have been obtained for spaces of continuous ho-
mogeneous polynomials by R. Ryan [Ry2] through the use of symmetric tensor
products. In the holomorphic setting, linearizations have been constructed for
holomorphic functions by P. Mazet [Ma1] and J. Mujica and L. Nachbin [MN], for
bounded holomorphic functions by J. Mujica [M2], and for holomorphic functions
of bounded type by P. Galindo, D. Garćıa and M. Maestre [GGM1] and Mujica
[M3] (see also [Boy]). A more abstract approach produces linearizations for a wide
class of function spaces [CZ2].

We restrict our attention here to preduals of spaces of polynomials. Given E,
let us denote by

⊗
s,k E the vector space of symmetric k-fold tensor products

of elements of E. Its algebraic dual (
⊗

s,k E)∗ is the space of all (not necesarily
continuous) k-homogeneous polynomials over E. Furthermore, if E ⊂ G, there is a
linear injection

⊗
s,k E −→⊗

s,k G. By requiring more or less stringent continuity
conditions of the elements of (

⊗
s,k E)∗ one may obtain all classes of polynomials

over E, in fact the following result holds [CZ1].

Proposition 3.5.If Z is any subspace of P (kE) containing the finite type poly-
nomials, Z is (algebraically) isomorphic to (

⊗
s,k E, τ)′, where τ is a Hausdorff

locally convex topology on
⊗

s,k E.

Note that C. Boyd and R. Ryan have proved that not all such subspaces of
P (kE) are dual Banach spaces [BoyR]. We illustrate the proposition above by
presenting a few of the classical polynomial spaces as duals of

⊗
s,k E with the

topologies indicated. We denote a typical element s of
⊗

s,k E as a finite sum
s =

∑
j xk

j , where the xj ’s are elements of E (this representation is not unique).
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a) P (kE) is isometrically the dual of
⊗

s,k E when this space is endowed with the
projective tensor norm [Ry2], ‖s‖ = sup{|∑j Q(xj)| : Q ∈ P (kE) with ‖Q‖ ≤ 1}.

b) PI(kE) is isometrically the dual of
⊗

s,k E, when endowed with the following
norm (equivalent to the injective tensor norm):

‖s‖ = sup{|
∑

j

γ(xj)k| : γ ∈ E′ with ‖γ‖ ≤ 1}.

c) Pw(kE) is algebraically the dual of
⊗

s,k E when endowed with the following
locally convex topology [CZ1]. Consider, for each compact subset K of E′, the
following seminorm on E: ‖x‖K = sup{|γ(x)| : γ ∈ K}, and define the seminorm
pK on

⊗
s,k E by pK(s) = inf{∑j ‖x‖k

K}, where the infimum ranges over all
possible representations of s. If t is the topology induced by all such seminorms,
we obtain an algebraic isomorphism Pw(kE) = (

⊗
s,k E, t)′.

For more on tensor products of Banach spaces see [DF] and [Ry3].
We now review some results of Carando, Dimant, Kirwan, Pérez-Garćıa, Ryan,

and Sevilla regarding the space Pe(kE) of all extendible polynomials over E. As
a set, we have seen that Pe(kE) is contained in the space of weakly sequentially
continuous polynomials, and that it contains the space of integral polynomials,
but not in general the approximable polynomials. Kirwan and Ryan have proved
the following.

Theorem 3.6.Let P be an extendible polynomial. There is then a constant c such
that for any Banach space G containing E, some extension of P to G has norm
not larger than c.

In their proof they construct a Banach space which is an ‘amalgamation’ of all
those which contain E, and extend P to this large space. It is therefore possible
to define a norm on Pe(kE) by setting

‖P‖e = inf{c > 0 : for all G there is an extension of P to G with norm ≤ c}
This norm is larger than the usual norm in P (kE), and is equivalent to it if and
only if every polynomial is extendible. Also, (Pe(kE), ‖ · ‖e) is complete, and a
predual of it is obtained by putting in

⊗
s,k E the norm

‖s‖η = inf{
∑

j

‖gj‖k : s =
∑

j

gk
j , gj ∈ G},

where the G’s range over all Banach spaces containing E as a subspace.
In [C1], Carando takes a different approach to obtain a predual of Pe(kE).

Starting with the inclusion J : E −→ C(BE′) defined in Remark 3.1, he considers⊗
s,k

J :
⊗
s,k

E −→
⊗
s,k

C(BE′),

putting in
⊗

s,k C(BE′) the projective norm, and then considering in
⊗

s,k E the
norm induced by this map.
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Apart from the map J : E → C(BE′), another inclusion which has proved
useful in the study of extendible polynomials is

E → �∞(BE′) given by x �→ (γ(x))γ∈BE′ .

�∞(BE′) has the metric extension property [DF], that is, given a linear map T :
X → �∞(BE′) and Y � X , T admits a norm-preserving extension to Y . The
following results are adapted from [C1] and [CGJ1].

Theorem 3.7.Let P be a scalar-valued k-homogeneous polynomial over E. Then
the following are equivalent:

a) P is extendible.
b) P extends to C(BE′).
b’) For some compact set K, there is a linear operator S : E → C(K), and

Q ∈ P k(C(K)) such that P = Q ◦ S.
c) P extends to �∞(BE′).
c’) For some set I, there is a linear operator S : E → �∞(I), and Q ∈ P k(�∞(I))

such that P = Q ◦ S.

In [CGJ1] the authors study extendibility of bilinear forms, and obtain, among
other results:

Theorem 3.8.Let A ∈ L2(E). Then the following are equivalent.
a) A is extedible.
b) There exists an L∞-space and operators u, v : E → L∞ and B ∈ L2(L∞)

such that A(x, y) = B(u(x), v(y)).
c) There exists a Hilbert space H and two 2-summing operators u, v : E → H

such that A(x, y) =< u(x), v(y) >.

Results similar to those of Theorem 3.6 for vector-valued polynomials can be
found in [C1]. There the following results for a k-homogeneous polynomial P :
E −→ F are obtained.

Theorem 3.9.P is extendible if and only if P extends to �∞(BE′). If F is com-
plemented in its bidual, P is extendible if and only if P extends to C(BE′).

An immediate corollary of b’) above is

Corollary 3.10.If P ∈ P (kE) is extendible, and T : X → E linear, then P ◦ T is
extendible and ‖P ◦ T ‖e ≤ ‖P‖e‖T ‖k.

Thus, any restriction of an extendible polynomial is extendible. Also, if P is
extendible, so is its Aron-Berner extension. By c), and the fact that �∞(BE′) has
the metric extension property, the norm of any extension of P to any space can
be bounded by the norm of any extension of P to �∞(BE′). Thus the ‘extendible’
norm ‖.‖e defined above can also be expressed as

‖P‖e = inf{‖Q‖ : Q ∈ P (k�∞(BE′)) and Q extends P}.
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In [P] Pisier gave a counterexample to a well-known conjecture of Grothendieck
[G] regarding the non-existence of non-nuclear locally convex spaces E and F
such that the injective and projective tensor norms coincide on the tensor product
E
⊗

F . Pisier constructed a Banach space P such that P
⊗

ε P � P
⊗

π P . Thus,
over Pisier’s space all 2-homogeneous polynomials are integral. The situation is
very different for polynomials of degree higher than 2. Indeed, [Pg] has shown that
any infinite-dimensional Banach space admits extendible non-integral polynomials
of any degree higher that 3, and in [CD] Carando and Dimant close the gap by
proving the same for any degree higher than 2. Their construction makes use of
finite-dimensional estimates of Boas [Boa].

Any space of cotype 2 (this includes �p spaces for 1 ≤ p ≤ 2) can be embedded
in Pisier’s space [P]. Thus if E has cotype 2, all extendible 2-homogenesous poly-
nomials over E are integral. Indeed, an extension to Pisier’s space will be integral,
and thus also the original polynomial ([CGJ1], [C2]).

Regarding extendible polynomials on �p spaces, Carando, Dimant and Sevilla
[C2] [CDS] have constructed on all �p spaces with p > 2 extendible polynomials
which are not integral.

Polynomials of degree two and bilinear forms have attracted particular attention
in recent years. In [CGJ2] a homological approach is applied to the problem
of extendibility of bilinear forms from E to G. Considerations of pushout and
pullback diagrams produce the results:

Proposition 3.11.If for all X the sequences

0 → (G/E)′ → X → E → 0 and 0 → G′ → X → G/E → 0

split, then all bilinear forms on E extend to G. If for all X the sequences

0 → E′ → X → G/E → 0 and 0 → (G/E)′ → X → G → 0

split, then all bilinear forms on E extend to G.

Since some of these properties are known when G is an L1-space, the authors
concentrate on these and produce the following:

Theorem 3.12. If G is an L1-space and E ⊂ G, the following are equivalent.
a) All bilinear forms on E extend to G.
b) All exact sequences 0 → E′ → X → G/E → 0 split.
c) All exact sequences 0 → (G/E)′ → X → E → 0 split.
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Miñones 2177 (C1428ATG),
Buenos Aires, Argentina
nacho@utdt.edu

Recibido: 12 de setiembre de 2005
Aceptado: 7 de agosto de 2006

Rev. Un. Mat. Argentina, Vol 46-2


