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ON THE COHOMOLOGY RING OF FLAT MANIFOLDS WITH
A SPECIAL STRUCTURE

I.G. DOTTI ∗ AND R.J. MIATELLO ∗

1. Introduction.

A Riemannian manifold is said to be Kähler if the holonomy group is contained
in U(n). It is quaternion Kähler if the holonomy group is contained in Sp(n)Sp(1).
It is known that quaternion Kähler manifolds of dimension ≥ 8 are Einstein, so
the scalar curvature s splits these manifolds according to whether s > 0, s = 0
or s < 0. Ricci flat quaternion Kähler manifolds include hyperkähler manifolds,
that is, those with holonomy group contained in Sp(n). Such a manifold can
be characterized by the existence of a pair of integrable, anticommuting complex
structures, compatible with the Riemannian metric, and parallel with respect to
the Levi-Civita connection (see [Be], for instance).

The simplest model of hyperkähler manifolds is provided by R4n with the stan-
dard flat metric and a pair J,K of orthogonal anticommuting complex structures.
This hyperkähler structure descends to the 4n-torus TΛ := Λ\R4n, for any lattice
Λ in R4n. If MΓ = Γ\R4n is a compact flat manifold such that the holonomy action
of F = Λ\Γ centralizes (resp. normalizes) the algebra generated by J,K, then MΓ

inherits a hyperkähler (resp. quaternion Kähler) structure.
In [DM] (see also [JR] and [BDM]) we described a doubling construction

for Bieberbach groups which allows to give rather simple examples of quaternion
Kähler flat manifolds which admit no Kähler structure.

The purpose of the present paper is to study the real cohomology ring of low
dimensional compact flat manifolds endowed with one of these special structures.
In particular, we will determine the structure of this ring in the case of all 4-
dimensional Kähler flat manifolds and all 8-dimensional compact flat kyperkähler
manifolds. We shall make use of the known classification of space groups in dimen-
sion 4, given in [BBNWZ], and of the classification of flat hyperkähler 8-manifolds
due to L. Whitt ([Wh]). It turns out that the integral holonomy groups of hy-
perkähler 8-manifolds are obtained by doubling the holonomy groups of the Kähler
flat 4-manifolds and as a consequence we will show that the cohomology ring is an
exterior algebra in generators of degree one and two.

In [Sa], [Sa2] and [Sa3], Salamon obtains a family of linear relations among
the Betti numbers of general hyperkähler manifolds (see Remark 4.2). In Section
5 we give several examples (5.1 - 5.3) showing that these relations may not hold
in the quaternion Kähler case.

* Dedicated to the memory of our colleague and friend Angel Larrotonda.
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134 I.G. DOTTI AND R.J. MIATELLO

As a second interesting class we study the hyperkähler manifolds obtained by
doubling (twice) a Hantzsche-Wendt type manifold (see [MR]). This gives, for any
m ≥ 3, a 4n-dimensional compact flat hyperkähler manifold with holonomy group
Zn−1

2 . We will show that the cohomology ring is generated by the F -invariant
forms of degree 2 and 3, giving a procedure to find the relations. In particular we
shall see that this algebra has a complicated structure and, even in the simplest
case (n = 3) is far from being an exterior algebra, as seen in the 8-dimensional
case.

The interest in understanding the structure of the cohomology ring of hy-
perkähler and quaternion Kähler flat manifolds was stimulated by the study of
the Betti numbers of hyperkähler manifolds in the work of Salamon (see [Sa],
[Sa2], [Sa3]) and Verbitsky ([Ve]).

2. Hyperkähler and quaternionic Kaḧler structures on flat manifolds.

We first recall some basic notions on compact flat manifolds (see [Ch] or [Wo]).
A compact connected flat Riemannian manifold has euclidean space Rn as its
universal covering space and a Bieberbach group Γ as fundamental group (i.e. a
discrete cocompact subgroup Γ of I(Rn) which is torsion-free). If v ∈ Rn, let Lv

denote translation by v. By Bieberbach’s first theorem, if Γ is a crystallographic
group then Λ = {v : Lv ∈ Γ} is a lattice in Rn. We will identify the lattice Λ
with the translation lattice {Lv : v ∈ Λ}, a normal and maximal abelian subgroup
of Γ. The quotient F = Λ\Γ is a finite group, the point group (or holonomy group)
of Γ. When Γ is torsion free, the geometric interpretation of Λ\Γ is that of the
holonomy group of the flat Riemannian manifold M .

Let Γ be a Bieberbach group with holonomy group F and translation lattice
Λ ⊂ Rn. Let φ : F → Rn be a 1-cocycle modulo Λ, that is, φ satisfies φ(B1B2) =
B−1

2 φ(B1)+φ(B2), modulo Λ, for each B1, B2 ∈ F . Then φ defines a cohomology
class in H1(F ; Λ\Rn) ' H2(F ; Λ) and one may associate to φ a crystallographic
group with holonomy group F and translation lattice Λ. Furthermore, this group
is torsion-free if and only if the class of φ is a special class (see [Ch]).

Definition 2.1. Let Γ be a Bieberbach group with holonomy group F and trans-
lation lattice Λ ⊂ Rn. Let φ : F → Rn be any 1-cocycle modulo Λ. We let dφΓ
be the subgroup of I(R2n) generated by elements of the form [ B 0

0 B ] L(φ(B),b) and
L(λ,µ), for γ = BLb ∈ Γ and (λ, µ) ∈ Λ⊕ Λ.

We point out that if the holonomy group F of Γ centralizes a complex structure
on Rn, then MΓ is Kähler. We now review a procedure to construct compact flat
manifolds endowed with a Kähler, hyperkähler or quaternionic Kähler structure.
We refer to [DM] for the details. This method will be used in later sections.

Proposition 2.2. Let Γ, φ and dφΓ be as in Definition 2.1. Then
(i) dφΓ is a Bieberbach group with holonomy group F , translation lattice Λ⊕Λ

and dφΓ\R2n is a Kähler compact flat manifold.
(ii) If Γ\Rn has a locally invariant Kähler structure, then dφΓ\R2n is hy-

perkähler. In particular, if φ′ : F → R2n is any 1-cocycle modulo Λ ⊕ Λ, then
dφ′dφΓ\R4n is hyperkähler.
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COHOMOLOGY RING OF FLAT MANIFOLDS 135

Remark 2.3. Benson-Gordon have proved ([BG]) that if N is a simply connected
nilpotent Lie group, Γ is a discrete cocompact subgroup of N , and M = Γ\N has
a Kähler structure (J, g) (with g positive definite) then M is a torus. The above
proposition says that there are plenty of compact flat riemannian Kähler manifolds
other than tori.

Remark 2.4. In general, there are many choices of φ as in Proposition 2.2. In
this paper we shall work with φ the 1-cocycle associated to Γ, as in [BDM]. We
will denote dφΓ by dΓ in this case.

For many Bieberbach groups Γ one can enlarge dΓ into a Bieberbach group
dqΓ in such a way that some element in the holonomy group of dqΓ anticommutes
with the complex structure J2n in R2n. By repeating the procedure twice, one
gets a Bieberbach group such that any element in the holonomy group will ei-
ther commute or anticommute with each one of a pair of anticommuting complex
structures, hence the quotient manifold will be a quaternion Kähler flat manifold
which in general, will not be Kähler.

Definition 2.5. Let Γ be a Bieberbach group with holonomy group F ' Zk
2 ,

with translation lattice Λ and such that b ∈ 1
2Λ for any γ = BLb ∈ Γ. Set

En =
[

I
−I

]
∈ I(R2n). Set dq(Γ, v) = 〈dΓ, EnL(v,0)〉, where v ∈ Rn.

Under rather general conditions, dq(Γ, v) contains dΓ as a normal subgroup of
index 2, and v ∈ Rn can be chosen so that dq(Γ, v) is torsion free, so Mdq(Γ,v) is
a compact flat manifold with holonomy group F × Z2 having as a double cover
the Kähler manifold MdΓ. Furthermore F commutes with J , but En only anti-
commutes with J . If we use this construction twice we get a Bieberbach group
d2

q(Γ, v, u) := dq(dq(Γ, v), u) ⊂ I(R4n) such that the holonomy group normalizes
two anticommuting complex structures, J1, J2, on R4n, hence d2

q(Γ, v, u)\R4n will
be a quaternion Kähler manifold.

In the next results we give conditions on v ∈ Rn that ensure that dq(Γ, v) is
torsion free. We also note that if n is even, Mdq(Γ,v) will always be orientable.
This construction will be used in Section 5.

Theorem 2.6. Let Γ as above. Then
(i) If v ∈ Rn is such that 2v ∈ Λ and satisfies

(B − I)v ∈ Λ for each γ = BLb ∈ Γ,

then dqΓ is a crystallographic group with translation lattice Λ⊕Λ and holo-
nomy group Zk+1

2 . Furthermore, dqΓ is torsion-free if and only if v /∈ Λ and
for each γ = BLb ∈ Γ we have:

(B + I)(φ(B) + v) ∈ Λ \ (B + I)Λ, or (B − I)b /∈ (B − I)Λ.

(ii) If every element in the holonomy group F commutes or anticommutes with a
translation invariant complex structure and v satisfies the conditions in (i),
then dq(Γ, v)\R2n is quaternion Kähler.
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136 I.G. DOTTI AND R.J. MIATELLO

3. Cohomology of Kähler compact flat manifolds of dimension 4.

In the computation of cohomology, in this and in later sections, we will make
much use of the following result of H.Hiller ([Hi]):

Theorem 3.1. Let Γ be a Bieberbach group and MΓ = Γ\Rn. If K is a field such
that the characteristic of K does not divide |F |, then the cohomology ring of MΓ

with coefficients in K is given by

H∗(MΓ, K) ' (
∧∗

(Λ⊗K))F .

Let Γ be a 4-dimensional Bieberbach group with holonomy group F . It is not
hard to see that in order for M = Γ\R4 to be Kähler, it is necessary and sufficient
that F commutes with a complex structure J on R4. Using the classification of
compact flat manifolds of dimension 4 in [BBNWZ] we see that those groups Γi

with non trivial holonomy group which have such property have cyclic holonomy
groups F of order 2, 3, 4 or 6, and have the form Γi = 〈γi,Λi〉, with γi = σiLbi ,
1 ≤ i ≤ 7 as follows:

F ' Z2 : σ1 =

2664
1

1
−1

−1

3775, σ2 =

2664
1 1

1
−1

−1

3775, b1 = b2 = e1
2

F ' Z4 : σ3 =

2664
1

1
0 −1
1 0

3775 , σ4 =

2664
1 0 0 1
0 1 0 1
0 0 0 −1
0 0 1 0

3775 , b3 = b4 = e1
4

F ' Z3 : σ5 =

2664
1 0 0 0
0 1 0 0
0 0 −1 −1
0 0 1 0

3775, σ6 =

2664
1 0 0 0
0 1 −1 0
0 0 −1 −1
0 0 1 0

3775 , b5 = b6 = e1
3

F ' Z6 : σ7 =

2664
1

1
0 −1
1 1

3775 , b7 = e1
6

.

We note that in the case of the torus T 4, the cohomology ring is an exterior
algebra generated by elements of order 1, and the Poincaré polynomial is p(t) =
(t + 1)4. For general flat Kähler 4-manifolds we have:

Theorem 3.2. If MΓ is a 4-dimensional Kähler flat manifold which is not a torus,
the cohomology ring is an exterior algebra in {e1, e2, η1, η2} where the ei (i = 1, 2)
have degree 1 and the ηj (j = 1, 2) have degree 2. Furthermore, in all cases one
has β0 = β4 = 1, β1 = β2 = β3 = 2 and the Poincaré polynomial is given by
p(t) = (t2 + 1)(t + 1)2, 1 ≤ i ≤ 7.
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COHOMOLOGY RING OF FLAT MANIFOLDS 137

Proof. To determine the real cohomology rings of the Kähler flat manifolds of
dimension 4, we need to compute the F -invariants in each degree, for each Bieber-
bach group Γi in the family considered above.

We shall carry out this computation only in the case of the group Γ6. The other
cases are similar and their verification will be left to the reader.

It is easy to see that in degree 1, the fixed space is spanned by the elements
e1, e2.

Assume now that η =
∑

1≤i<j≤4 aijei ∧ ej satisfies σ6η = η. Now

σ6η = a12e1 ∧ e2 + a13e1 ∧ (−e2 − e3 + e4) + a14e1 ∧ (−e3) +
a23e2 ∧ (−e3 + e4) + a24e2 ∧ (−e3) + a34(−e2 + e4) ∧ (−e3).

Now, σ6η = η implies a12 = a12 − a13 and a13 = −a13 − a14, thus a13 = a14 = 0.
Also, it follows that a23 = −a23 − a24 + a34 and a24 = a23, thus 3a23 = a34, hence
the σ6-fixed space in degree 2 is spanned by the invariant 2-forms e1 ∧ e2 and
e2 ∧ e3 + e2 ∧ e4 + 3e3 ∧ e4 = (e2 + 3e3) ∧ (e3 + e4), as asserted.

We now turn into degree 3. Let

η = ae1 ∧ e2 ∧ e3 + be1 ∧ e2 ∧ e4 + ce1 ∧ e3 ∧ e4 + de2 ∧ e3 ∧ e4

with a, b, c, d ∈ R. Now

σ6η = (−a− b + c)e1 ∧ e2 ∧ e3 + ae1 ∧ e2 ∧ e4 + ce1 ∧ e3 ∧ e4 + de2 ∧ e3 ∧ e4.

Thus σ6η = η implies a = b, c = 3a. Thus we get that the space of F -
invariants in degree 3 is generated by the 3-forms e2 ∧ e3 ∧ e4 (a = 1, d = 0) and
e1 ∧ e2 ∧ (e3 + e4) + 3e1 ∧ e3 ∧ (e3 + e4) = e1 ∧ η6. This completes the verification
for Γ6.

In the remaining cases the invariants are computed similarly. We now give a
table that lists the F -invariants in each degree, for each group.

Degree 1 2 3 4
Γ1,3,5,7 e1 e1 ∧ e2 e1 ∧ e3 ∧ e4 e

e2 e3 ∧ e4 e2 ∧ e3 ∧ e4

Γ2 e1 e1 ∧ e2 e1 ∧ e3 ∧ e4 e

e2 e3 ∧ (−e1 + 2e4) e2 ∧ e3 ∧ (−e1 + 2e4)

Γ4 e1 e1 ∧ e2 e1 ∧ η4 e

e2 (e1 + e2 − 2e3) ∧ (−e3 + e4) := η4 e2 ∧ η4

Γ6 e1 e1 ∧ e2 e2 ∧ e3 ∧ e4 e

e2 (e2 + 3e3) ∧ (e3 + e4) := η6 e1 ∧ η6

Here e = e1 ∧ e2 ∧ e3 ∧ e4.
The assertions on the Betti numbers and on the structure of the ring follow

immediately from the information in the table, thus the theorem follows.
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138 I.G. DOTTI AND R.J. MIATELLO

4. The cohomology ring of hyperkähler flat 8-manifolds.

By doubling the 4-dimensional Bieberbach groups listed in the previous section
we obtain a family of 8-dimensional hyperkähler flat manifolds. In [Wh] L. Whitt
gives a full classification of such manifolds, showing there are 12 diffeomorphism
classes. This classificaton shows in particular, that the holonomy representations of
all such manifolds are obtained by doubling the holonomies of Kähler 4-manifolds.
The goal of this section will be to determine the cohomology ring of this family.
We first need to recall Whitt’s classification. For simplicity of notation we shall

set

X =
[

1 0
1 0

]
, J =

[
0 −1
1 0

]
, L =

[
0 1
0 1

]
,

D =
[

0 −1
1 1

]
, N =

[
0 −1
1 −1

]
, E =

[
1 0
1 1

]
.

Furthermore, let Eij be the 2×2 matrix with 1 in the (i, j) place and 0 otherwise.

According to [Wh], Theorem 4.3, the holonomy group of Γ is cyclic with generator
given by σ0 = I, or by one of the following:

F ' Z2 : σ1 =

»
I4 0
0 −I4

–
, σ2 =

24 I4 0 L
0 L

0 −I4

35, σ3 =

24 I4 0 E
0 X

0 −I4

35 ,

σ4 =

24 I4 L E21

L E12

0 −I4

35,

F ' Z4 : σ5 =

24 I4

J
J

35, σ6 =

2664
I4 0 L

0 L

J
J

3775 , σ7 =

2664
I4 L E12

L 0

J
J

3775 ,

F ' Z3 : σ8 =

2664
I4 0 L

0 L

N
N

3775 , σ9 =

2664
I4 L E22

L 0

N
N

3775 , σ10 =

24 I4

N
N

35,

F ' Z6 : σ11 =

24 I4

D
D

35 .

We take b1 = b2 = b3 = b4 = e1
2 , b5 = b6 = b7 = e1

4 , b8 = b9 = b10 = e1
3 and

b11 = e1
6 .

The next theorem gives the cohomology rings over R of the hyperkähler mani-
folds Γi\R8, where Γi = 〈γi,Λi〉 with γi = σiLbi

,1 ≤ i ≤ 11, and Γi is one of the
8-dimensional Bieberbach groups listed above.

Theorem 4.1. Let MΓ be an 8-dimensional hyperkähler manifold that is not a
torus, where Γ = Γi, 1 ≤ i ≤ 11, is one of the Bieberbach groups given above.
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COHOMOLOGY RING OF FLAT MANIFOLDS 139

Then the cohomology ring is an exterior algebra with generators ei, ηj given as
follows:

If 1 ≤ i ≤ 4 : {ei : 1 ≤ i ≤ 4, deg ei = 1, ηj : 1 ≤ j ≤ 6; deg ηj = 2}.
If 5 ≤ i ≤ 11 : {ei : 1 ≤ i ≤ 4, deg ei = 1, ηj : 1 ≤ j ≤ 4; deg ηj = 2}.

The Poincaré polynomials of MΓi
are respectively given by

p(t) =
{

(t + 1)4(t4 + 6 t2 + 1), for 1 ≤ i ≤ 4,
(t + 1)4(t4 + 4 t2 + 1), for 5 ≤ i ≤ 11.

Proof. In this case we will not proceed as in Theorem 3.1, but, instead, we will
diagonalize the induced holonomy action of F on C8.

In the case when Γ = Γ1, clearly the F -invariants are an exterior algebra gen-
erated by the elements of the form ei, 1 ≤ i ≤ 4 and ei ∧ ej with 5 ≤ i < j ≤ 8. If
Γ = Γ2, the answer is the same, with the same generators of degree 1; as elements
of degree two we have to take fi ∧ fj , 5 ≤ i < j ≤ 8, where fj = ej for j = 5, 7
and f6 = e6 + 1

2e1, f8 = e8 + 1
2e3. The cases of Γ3 and Γ4 are identical to that of

Γ2.
In the next case, when F ' Z4, the holonomy action can be diagonalized over

C in a suitable basis so that σfj = fj for 1 ≤ j ≤ 4, and σfj = ifj (resp. −ifj),
for i = 5, 7 (resp. for i = 6, 8). Thus the algebra of complex F -invariants is an
exterior algebra with generators fj , 1 ≤ j ≤ 4, and exterior products of the form
fi ∧ fj where i = 5, 7, j = 6, 8. Furthermore we have that f6 = f̄5 and f8 = f̄7.

We now determine the real F -invariants in degree two. We have, over C, that
the generators are f5 ∧ f̄5, f7 ∧ f̄7, f5 ∧ f̄7 and f7 ∧ f̄5.

If we set f5 = g5 + ih5, f7 = g7 + ih7, with g5, g7, h5, h7 real forms, we see that

f5 ∧ f̄5 = −2ig5 ∧ h5,

f7 ∧ f̄7 = −2ig7 ∧ h7,

f5 ∧ f̄7 = (g5 ∧ g7 + h5 ∧ h7) + i(h5 ∧ g7 − g5 ∧ h7),
f7 ∧ f̄5 = −(g5 ∧ g7 + h5 ∧ h7) + i(h5 ∧ g7 − g5 ∧ h7)

Thus, we get that the real cohomology of MΓ3 in degree two is spanned by

g5 ∧ h5, g7 ∧ h7, g5 ∧ g7 + h5 ∧ h7 and h5 ∧ g7 − g5 ∧ h7.

Similarly, if F ' Z3, the holonomy action can be diagonalized over C in a basis
fj , such that σfj = fj for 1 ≤ j ≤ 4, and σfj = ωfj (resp. ω̄fj), for i = 5, 7
(resp. for i = 6, 8). Here ω is a primitive root of 1 of order 3. Furthermore, again
f6 = f̄5 and f8 = f̄7.

Thus, in this case, the algebra of F -invariants is an exterior algebra with gen-
erators fj , 1 ≤ j ≤ 4, and exterior products of degree two fi ∧ fj where i = 5, 7,
j = 6, 8. The real invariants are obtained in the same way as in the case F ' Z4.

The situation when F ' Z6 is entirely similar except that we must take ω to
be a primitive root of 1 of order 6.
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140 I.G. DOTTI AND R.J. MIATELLO

Using the above information we see that the Betti numbers of the manifolds
MΓi

, 1 ≤ i ≤ 4, are as follows:

β1 = 4, β2 =
(

4
2

)
+

(
4
2

)
= 12, β3 = 28, β4 =

(
4
2

)2

+ 2 = 38.

whereas, for 5 ≤ i ≤ 11:

β1 = 4, β2 =
(

4
2

)
+

(
4
1

)
= 10, β3 = 4 + 42 = 20, β4 = 2 +

(
4
2

)
4 = 26.

As a verification, we note that in both cases we have that
∑8

i=0(−1)iβi = 0 (as it
should).

One finally easily checks that the corresponding Poincaré polynomials are re-
spectively given by (t+1)4(t4 +6t2 +1) and (t+1)4(t4 +6t2 +1), as asserted.

Remark 4.2. (i) In the case when MΓ is the torus T 8, we have Γ = Z8, and the
cohomology ring is just the exterior algebra

∧∗ Rn; we have βi =
(
n
i

)
for 0 ≤ i ≤ 8.

(ii) We note that all Poincaré polynomials are divisible by (t + 1)4, a fact valid
for all hyperkähler manifolds ([Sa]). This fails to be true in the quaternionic
Kähler case (see Example 5.2).

In [Sa] Salamon obtains a general identity for the Betti numbers of a 4m-
dimensional hyperkähler manifold. This identity reads, for n = 4, 8, 12:

4β1 + β2 = 22 (n = 4) (1)

25β1 + β3 + β4 = 46 + 10β2 (n = 8) (2)

48β1 + 16β3 + β6 = 70 + 30β2 + 6β4 (n = 12) (3)

In the next section, we shall give examples showing these identities need not hold
in the quaternionic Kähler case.

5. Quaternionic Kähler manifolds

The purpose of this section is to compute the cohomology ring of some quater-
nionic Kähler flat manifolds which are not hyperkähler. These examples will reveal
several new features.

Example 5.1. We first look at a simple 4-dimensional manifold with holonomy
group Z2.

Let Γ = 〈EL e1
2

,Λ〉 where E =
[
I2

−I2

]
and Λ is the canonical lattice. Note

that Γ is essentially the double of the Klein bottle group.
Consider the two anticommuting complex structures in R4 given by

J1 =
[
J

J

]
, J2 =

[
0 I2

−I2 0

]
. (4)

It is easy to verify that EJ1 = J1E, EJ2 = −J2E, thus it follows that MΓ is
quaternionic Kähler.

Rev. Un. Mat. Argentina, Vol 46-2
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Relative to the Betti numbers we have β0 = β4 = 1, β1 = β3 = 2, β2 = 2, since
the F -fixed vectors in degree 2 are e1∧ e2, e3∧ e4. Again, the algebra of invariants
is an exterior algebra with generators of degree one and two: e1, e2, e3 ∧ e4.

Thus we see that 4β1 +β2 = 10 6= 22, so Salamon’s identity (1) does not always
hold in the 4-dimensional quaternionic Kähler case.

Furthermore the Poincaré polynomial is

p(t) = 1 + 2t + 2t2 + 2t3 + t4 = (t + 1)2(t2 + 1).

Thus we see that p(t) is not divisible by (t + 1)4, but only by (t + 1)2. Note that
this should be the case, since MΓ is Kähler (the complex structure J1 descends).
Note also that the torus T 4 is a hyperkähler covering of MΓ. It has Poincaré
polynomial (t + 1)4.

Example 5.2. We now look at the cohomology ring for a quaternionic Kähler
8-manifold with holonomy group Z4 × Z2. Let Γ = 〈AL e2

2
, CL e1

2
,Λ〉 where Λ is

the canonical lattice and

C =

 I4

J
J

, A =


I2

−I2

−I2

I2

 .

Consider the two anticommuting complex structures on R8 given by

J1 =


J

−J
J

−J

 , J2 =


0 I2 0 0
−I2 0 0 0
0 0 0 −I2

0 0 I2 0

 . (5)

Recall that as usual, J =
[
0 −1
1 0

]
.

Here, note that C commutes with both J1, J2 and A commutes with J1 and
anticommutes with J2. Thus MΓ is a quaternion Kähler manifold. It is also Kähler
since J1 descends.

It is easy to see that, in degree 1, the F -invariants are generated by e1, e2 and
in degree 2, by e1 ∧ e2, e3 ∧ e4, e5 ∧ e6, e7 ∧ e8. Thus β1 = 2, β2 = 4.

In degrees 3 and 4 we find that∧3
(R8)F = span{e1 ∧ e3 ∧ e4, e2 ∧ e3 ∧ e4, e1 ∧ e5 ∧ e6, e2 ∧ e5 ∧ e6,

e1 ∧ e7 ∧ e8, e2 ∧ e7 ∧ e8, e3 ∧ e5 ∧ e7, e3 ∧ e5 ∧ e8,

e4 ∧ e5 ∧ e7, e4 ∧ e6 ∧ e8}.∧4
(R8)F = span{e1 ∧ e2 ∧ e3 ∧ e4, e1 ∧ e2 ∧ e5 ∧ e6, e1 ∧ e2 ∧ e7 ∧ e8,

e1 ∧ e3 ∧ e5 ∧ e7, e1 ∧ e3 ∧ e6 ∧ e8, e1 ∧ e4 ∧ e6 ∧ e8,

e1 ∧ e4 ∧ e5 ∧ e7, e5 ∧ e6 ∧ e7 ∧ e8, e3 ∧ e4 ∧ e7 ∧ e8,

e3 ∧ e4 ∧ e5 ∧ e6, e2 ∧ e3 ∧ e6 ∧ e8, e2 ∧ e4 ∧ e5 ∧ e7,

e2 ∧ e3 ∧ e5 ∧ e7, e2 ∧ e4 ∧ e6 ∧ e8}.
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The Poincaré polynomial is given by:

p(t) = 1+2t+4t2+10t3+14t4+10t5+4t6+2t7+t8 = (t+1)2(t6+3t4+4t3+3t2+1).

We see that this cannot be the polynomial of a hyperkähler manifold, since the
odd Betti numbers are not a multiple of 4 and p(t) is not divisible by (t + 1)4.

Note also that Salamon’s identity (2) is not satisfied. Indeed

25β1 + β3 + β4 = 25.2 + 10 + 14 = 74 6= 46 + 10β2 = 46 + 10.4 = 86. (6)

Example 5.3. We now look at a quaternionic square double of the Klein bottle.
As shown in [DM], there are several such manifolds non diffeomorphic to each
other. Since they all have the same holonomy representation it will suffice to
consider only one example of this type. Let Γ = 〈EL e1

2
, A′′L e2

2
, B′′L e3

2
, Λ〉 where

Λ is the canonical lattice and

E =


E1

E1

E1

E1

, A′′ =


I2

−I2

−I2

I2

, B′′ =
[
I4

−I4

]
. Let

J1, J2 be the following anticommuting complex structures on R8:

J1 =


J

J
−J

−J

 , J2 =
[

0 I4

−I4 0

]
. (7)

Here, as usual, J =
[
0 −1
1 0

]
and E1 =

[
1 0
0 −1

]
.

In this case, each of the elements in the holonomy group, either commutes or
anticommutes with J1, J2 but neither of these complex structures descends; MΓ is
a quaternion Kähler manifold.

It is easy to see that, in degree 1, the F -invariants are generated by e1 and in
degree 2, this space is zero.

In degrees 3 and 4 we find that∧3
(Rn)F = span{e2 ∧ e3 ∧ e4, e2 ∧ e5 ∧ e6, e2 ∧ e7 ∧ e8, e3 ∧ e5 ∧ e7,

e3 ∧ e6 ∧ e8, e4 ∧ e5 ∧ e8, e4 ∧ e6 ∧ e7}.∧4
(Rn)F = span{e1 ∧ e2 ∧ e3 ∧ e4, e1 ∧ e2 ∧ e5 ∧ e6, e1 ∧ e2 ∧ e7 ∧ e8,

e1 ∧ e3 ∧ e5 ∧ e7, e1 ∧ e3 ∧ e6 ∧ e8, e1 ∧ e4 ∧ e5 ∧ e8,

e1 ∧ e4 ∧ e6 ∧ e7, e5 ∧ e6 ∧ e7 ∧ e8, e3 ∧ e4 ∧ e7 ∧ e8,

e3 ∧ e4 ∧ e5 ∧ e6, e2 ∧ e4 ∧ e6 ∧ e8, e2 ∧ e4 ∧ e5 ∧ e7,

e2 ∧ e3 ∧ e6 ∧ e7, e2 ∧ e3 ∧ e5 ∧ e8}
The Poincaré polynomial is given by:

p(t) = 1 + t + 7t3 + 14t4 + 7t5 + t7 + t8 = (t + 1)4(t4 − 4t3 + 6t2 − 3t + 1).
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We see that this cannot be the polynomial of a hyperkähler manifold, since the odd
Betti numbers are odd and they should be a multiple of 4. Actually MΓ cannot
even have a Kähler structure since odd Betti numbers are odd and β2 = 0.

On the other hand, we observe that the Poincaré polynomial is divisible by
(t + 1)4 and Salamon’s identity (2) is satisfied. Indeed

25β1 + β3 + β4 = 25 + 7 + 14 = 46 = 46 + 10β2. (8)

By inspection, we see that in this (non hyperkähler) case, the algebra of invariants
is not an exterior algebra. The invariants in degree 1 and 3 do not suffice to
generate the invariants in degree 4 unless we include the action of the star operator.

6. Doubling Hantzsche-Wendt groups.

In this section we shall compute the cohomology ring of M6 = dΓ\R6, and
M12 = d2Γ\R12 where Γ is the classical Hantzsche-Wendt Bieberbach group in
dimension 3 (see [Wo]). We shall see that the cohomology ring of M12 is far from
having the structure of an exterior algebra in this case.

Let Γ = {ALa, BLb, Lei : 1 ≤ i ≤ 3}, where A =

 −1
−1

1

 B = 1
−1

−1

 a = e3
2 , b = e1+e2

2 .

It turns out that Γ\R3 is the only 3-dimensional compact flat manifold with β1 =
0. It is called the Hantzsche-Wendt manifold ([Wo]). The Poincaré polynomial is
given by p(t) = 1 + t3 and the holonomy group is Z2

2. We shall next study the
cohomology ring of MdΓ and Md2Γ.

Theorem 6.1. The cohomology ring
∧∗ (R6)F of MdΓ is a graded algebra of

dimension 16 generated by the elements of degree 2 : {ηi : 1 ≤ i ≤ 3} and of
degree 3: {δj : 1 ≤ j ≤ 8} subject to the relations η2

i = ηiδj = δi.δj = 0.
The Poincaré polynomial of MdΓ is given by

p(t) = 1 + 3t2 + 8t3 + 3t4 + t6 = (1 + t)2(t4 − 2t3 + 6t2 − 2t + 1).

Proof. The generators of the holonomy group F of dΓ are

A′ =

−1
−1

1
−1

−1
1

 B′ =

 1
−1

−1
1
−1

−1


The holonomy action on the exterior algebra diagonalizes in the canonical basis

with eigenvalues ±1. Clearly there are no vectors fixed by both A′, B′. Thus
β1(MdΓ) = 0. On the other hand, the fixed vectors in degree d > 1 are:∧2(R6)F = span{e2 ∧ e5, e3 ∧ e6, e1 ∧ e4}, thus β2 = 3.∧3(R6)F = span{ei ∧ ej ∧ ek : exactly one of i, j, k is 1 or 4 and one is 3 or 6}.
That is:
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∧3(R6)F = span{e1 ∧ e3 ∧ e2, e1 ∧ e3 ∧ e5, e1 ∧ e6 ∧ e2, e1 ∧ e6 ∧ e5, e4 ∧ e3 ∧
e2, e4 ∧ e3 ∧ e5, e4 ∧ e6 ∧ e2, e4 ∧ e6 ∧ e5}. Hence β3 = 8.∧4(R6)F =

∧2(R6)F ∧
∧2(R6)F = span{e2 ∧ e5 ∧ e3 ∧ e6, e2 ∧ e5 ∧ e1 ∧ e4, e3 ∧

e6 ∧ e1 ∧ e4}. Thus β4 = 3.∧5(R6)F = 0,
∧6(R6)F = R e1 ∧ e2 ∧ e3 ∧ e4 ∧ e5 ∧ e6.

The remaining assertions in the theorem follow immediately from the above
description of the F -invariants.

We now look at the case of d2Γ. By Proposition 2.2, M12
d2Γ = d2Γ\R12 is a

12-dimensional hyperkähler manifold with holonomy group F = Z2
2.

Theorem 6.2. The even cohomology ring
∧ev(M12)F is an exterior algebra gen-

erated by η1, . . . , η18 ∈
∧2 (R12)F i.e., the R-algebra generated by {ηi : 1 ≤ i ≤ 18}

subject to the relations η2
i = 0, ηiηj = ηjηi. The full cohomology ring

∧∗(R12)F is
generated by elements of degree two {ηi : 1 ≤ i ≤ 18} and degree 3 {δj : 1 ≤ i ≤
64}, subject to the relations:

η2
i = 0, ηiηj = ηjηi, δ2

i = 0, δiδj = −δjδi, ηkδm = δmηk

and furthermore ηkδm may (or may not) be equal to zero. This vanishing can be
explicitly given in terms of k,m (but is complicated).

Proof. The holonomy group is generated by:

A′′ =
[

A′

A′

]
B′′ =

[
B′

B′

]
Again, we need to compute the F -invariants in

∧∗(R12). Clearly, we have no fixed
vectors of degree one, hence β1 = 0. Now consider the three complementary sets:

S1 = {e3, e6, e9, e12} = set of basis vectors fixed by A′′,

S2 = {e1, e4, e7, e10} = set of basis vectors fixed by B′′,

S3 = {e2, e5, e8, e11} = basis vectors fixed by neither of A′′, B′′.

In degree 2, we note that ei ∧ ej is F -invariant if and only if ei, ej lie both in
one of S1, S2 or S3. Thus

∧2(R12)F = span{ei ∧ ej : {ei, ej} ⊂ Sk, k = 1, 2, 3}
has dimension 3

(
4
2

)
= 18.

Similarly, we see that the fixed vectors in higher degrees can be expressed in
terms of the sets Si:∧3(R12)F = span{ei ∧ ej ∧ ek : exactly one of ei, ej , ek lies in S1, one in S2 and
one in S3}. Thus β3 =

(
4
1

)3
= 64.∧4(R12)F = span{ei ∧ ej ∧ ek ∧ em : an even number of the ei, ej , ek, em lie in

each one of S1, S2, S3}. Thus, β4 = 3
(
4
4

)
+ 3

(
4
2

)2
= 3 + 108 = 111.∧5(R12)F = span{ei ∧ ej ∧ ek ∧ em ∧ eh : an odd number of the e′is lie in each

one of S1, S2, S3}. Hence β5 = 3
(
4
3

)(
4
1

)2
= 3× 64 = 192.
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∧6(R12)F = span{ei ∧ ej ∧ ek ∧ em ∧ eh ∧ em : an even number of the e′is lie in
each Si, i = 1, 2, 3}. Hence β6 = 6

(
4
2

)
+

(
4
2

)3
= 36 + 216 = 252.

Thus, the Poincaré polynomial p(t) is given by:

1 + 18t2 + 64t3 + 111t4 + 192t5 + 252t6 + 192t7 + 111t8 + 64t9 + 18t10 + t12

= (t + 1)4(t8 − 4t7 + 28t6 − 28t5 + 10t4 − 28t3 + 28t2 − 4t + 1).

As a verification, note that Salamon’s identity (3) holds:

48.0 + 16.64 + 252 = 1024 + 252 = 1276
70 + 30.18 + 6.111 = 70 + 540 + 666 = 1276.

We now look at the cohomology ring. By the description of the invariants it is
clear that

∧2(R12)F generates
∧2k(R12)F for any 0 < k ≤ 6, while it is not hard

to check that
∧2k+1(R12)F can be generated by

∧2(R12)F and
∧3(R12)F . The

relations in the statement can also be easily verified.
Thus, the cohomology ring is generated as an algebra by

∧2(R12)F and
∧3(R12)F ,

as claimed.

Remark 6.3. There is a natural generalization of the previous example. It is
known that for any n odd, there exists a large family of n-dimensional Bieberbach
groups with holonomy group Zn−1

2 , and such that the corresponding flat manifold
MΓ is a rational homology sphere, i.e. all Betti numbers except β0, βn are equal to
zero (see [MR]). These manifolds generalize the classical 3-dimensional Hantzsche-
Wendt manifold ([Wo]) and are called HW -manifolds, for short. The argument
in the proof of Theorem 6.1 can be adapted to any odd dimension n and gives a
similar result on the cohomology ring of Md2Γ, for any HW -group Γ.

Indeed, for any n odd, one shows that the cohomology ring of any HW -manifold∧ev(R4n)F is generated by
∧2(R4n)F . Actually, it is an exterior algebra generated

by {ηi : 1 ≤ i ≤ 6n}, subject to the relations η2
i = 0, ηiηj = ηjηi, i 6= j.

The full cohomology ring
∧

(R4n)F is generated by
∧2(R4n)F and

∧3(R4n)F .
It has generators {ηi : 1 ≤ i ≤ 6n} of degree 2, and {δj : 1 ≤ j ≤ 4n} of degree 3.
They satisfy the following relations

η2
i = 0, ηiηj = ηjηi, δ2

j = 0, δjδi = −δiδj , ηiδi = δjηi.

Furthermore, we note that there are more relations, linking ηiδj with ηkδm, for
different i, j, k,m.

The basis {ei}4n
i=1 is split into n complementary sets S1, S2, . . . , Sn, with Si =

{ei, ei+3, ei+6, ei+9}, and where Si is the fixed set of B′′
i , for i = 1, . . . n.

By arguing as in the case n = 3 we see that∧2(R4n)F = span{er∧es : both er, es lie in the same set Si}. Hence we obtain
β2 = n

(
4
2

)
= 6n.

Similarly∧2k(R4n)F = span{er1 ∧ . . . ∧ er2k
: an even number of erj ’s lie in each Si} for

each i.
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∧2k+1(R4n)F = span{er1 ∧ ... ∧ er2k+1 : an odd number of eij
’s lie in each Si}

for each i.

We note that this implies in particular that βi = 0, for i odd, i < n.

Let us illustrate the previous discussion by computing the cohomology for n = 5.

Clearly we have β0 = 1, β1 = 0. Furthermore∧2(R20)F ' span{er ∧ es : both er, es lie in one of the Si 1 ≤ i ≤ 5}. Thus
β2 = 5

(
4
2

)
= 30.∧3(R20)F ' span{er1 ∧ er2 ∧ er3 such that each Si (1 ≤ i ≤ 5) contains one of

the erj
}. That is, β3 = 0.

Similarly:
β4 = 5

(
4
4

)
+

(
5
2

)(
4
2

)2
= 365,

β5 =
(
4
1

)5
= 1024,

β6 = 20
(
4
4

)(
4
2

)
+

(
5
3

)(
4
2

)3
= 2280,

β7 =
(
5
1

)(
4
3

)(
4
1

)4
= 20× 256 = 5120,

β8 =
(
5
2

)(
4
4

)(
4
4

)
+ 5

(
4
2

)3(4
4

)
+

(
5
4

)(
4
2

)4
= = 10 + 5× 216 + 30× 216 = 7570,

β9 =
(
5
2

)(
4
3

)2(4
1

)3
= 10240,

β10 =
(
5
2

)
3×

(
4
2

)
+

(
5
1

)(
4
4

)(
4
3

)(
4
2

)3
+

(
4
2

)5
= 10×18+20×216+36×216 = 122276.

Therefore, we finally obtain:

p(t) = 1 + t20 + 30(t2 + t18) + 365(t4 + t16) + 1024(t5 + t15) + 2280(t6 + t14) +
5120(t7 + t13) + 7570(t8 + t12) + 10240(t9 + t11) + 12276t10.
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