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SMALL OSCILLATIONS ON R
2 AND LIE THEORY

GABRIELA OVANDO

Abstract. Making use of Lie theory we propose a model for the simple har-
monic oscillator and for the linear inverse pendulum of R

2. In both cases the
phase space are orbits of the coadjoint representation of the Heisenberg Lie
group. These orbits and the Heisenberg Lie algebra are included in a solvable
Lie algebra admitting an ad-invariant metric. The corresponding quadratic
form induces the Hamiltonian and the associated Hamiltonian system is a
Lax equation.

1. Introduction

In classical mechanics a simple harmonic oscillator with one degree of freedom
has a Hamiltonian H of the form

H(p, q) =
1
2
(p2 + q2) (1)

where q is the position and p = q̇ is the canonical momentum. This yields the
following equation of motion

dq
dt = −p

dp
dt = q

(2)

Another possible motion to consider in R
2 is the linear inverse pendulum which

has a Hamiltonian of the form

H(p, q) =
1
2
(p2 − q2) (3)

which induces the equation of motion
dq
dt = p

dp
dt = q

(4)

These equations predict the position and the velocity at any time if initial con-
ditions q(t0), p(t0) = q̇(t0) are known. Both systems correspond to quadratic
Hamiltonians on R

2 given by

H(x) =
1
2
(Ax, x) with x = (q, p) ∈ R

2
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where (, ) denotes the canonical inner product and A is a symmetric transformation
for (, ). For the harmonic oscillator we are taking A as the identity and for the
linear inverse pendulum we have

A =
(

0 1
1 0

)
.

In quantum mechanics a good approach to the harmonic oscillator is through
the Heisenberg Lie algebra. In dimension three this is the Lie algebra generated by
the position operator Q = multiplication by x, the momentum operator P = −i d

dx
and 1 with the only non trivial commutation relation

[Q, P ] = 1

These operators evolve according to the Heisenberg equations
dP

dt
= −Q

dQ

dt
= P

In this work we shall show that the Heisenberg Lie algebra also allows an approach
to the classical harmonic oscillator and to the linear inverse pendulum. To this end
we shall make use of Lie theory, which was proved to be successful when studying
some mechanical systems [A] [Ko2] [Sy]. This gives a general setting so that the
Hamiltonian system is a Lax equation and functions in involution arise from the ad-
invariant ones or with other weaker conditions as in [R1]. This algebraic framework
was used with semisimple Lie algebras and the power of representation theory to
describe for instance generalised Toda lattices. What we need is a Lie algebra with
an ad-invariant metric, a splitting of this Lie algebra into a direct sum as vector
subspaces of two subalgebras and a given function. In the case of semisimple Lie
algebra the Killing form is the natural candidate for the ad-invariant metric.

However there are more Lie algebras admitting an ad-invariant metric. We shall
endow a four dimensional solvable Lie algebra with such metric and we use the
algebraic tools to construct a Hamiltonian system whose phase space are orbits
of the coadjoint action of the Heisenberg Lie group, which is a proper normal
subgroup of the corresponding solvable Lie group. By considering the restriction
to the orbits of the function induced by the quadratic form of the metric, one
constructs a Hamiltonian system which in one of the orbits is equivalent to (2).
Since the function is ad-invariant, the Hamiltonian system takes the form of a Lax
equation and the solution can be computed with help of the Adjoint map. We
show a matrix realization for this system.

A similar procedure can be done for the inverse pendulum. It can be constructed
also from a four dimensional solvable Lie algebra admitting an ad-invariant neutral
metric. A certain splitting of the Lie algebra gives rise to the phase space as orbits
of the coadjoint representation of the Heisenberg Lie algebra. The Hamiltonian
system takes also the form of a Lax equation. But in this case the trajectories are
not bounded.

The solvable Lie algebras we are making use of are the two solvable non abelian
low-dimensional Lie algebras having an ad-invariant metric, which is not definite
(see for instance [B-K] [O1]). In particular the ad-invariant metric in the first case
is of Lorentzian type.
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2. Preliminaries

Let G be a Lie group with Lie algebra g and exponential map exp : g → G. Let
M be a smooth manifold and φ : G × M → M be a smooth action of G on M .
The vector fields on M

X̃(m) =
d

dt |t=0

φ(exp tX, m) m ∈ M, X ∈ g, t ∈ R

will denote the infinitesimal generators of this action. If G ·m = {φ(g, m), g ∈ G}
denotes the G-orbit through m ∈ M its tangent space is the set

Tm(G · m) = {X̃(m) / X ∈ g}.
Here we also make use of the notation g · m = φ(g, m). The following actions

are important in our setting:
- the adjoint action Ad : G×g → g whose infinitesimal generators are X̃ = adX ,

where adX Y = [X, Y ] denotes the Lie bracket of X, Y ∈ g;
- the coadjoint action of G on g∗ is the dual of the adjoint action and it is given

by g → Ad∗(g−1), for g ∈ G, whose infinitesimal generator is X̃ = − ad∗
X .

The coadjoint orbits are examples of symplectic manifolds. Recall that they are
endowed with the Kirillov-Kostant-Souriau symplectic structure given by:

ωβ(X̃, Ỹ ) = −β([X, Y ]), β ∈ G · µ.

Assume now that g has a bi-invariant non-degenerate symmetric bilinear form
〈, 〉 : g × g → R; bi-invariant means that the maps Ad(g) are isometries for all
g ∈ G. Then adX is skew symmetric with respect to 〈, 〉 for any X and 〈, 〉 induces
a diffeomorphism between the adjoint orbit G · X and the coadjoint orbit G · �X

where �X(Y ) = 〈X, Y 〉.
Suppose that the Lie algebra g admits a splitting

g = g+ ⊕ g−

as a direct sum of linear subspaces, where g+, g− are subalgebras of g. Then the
Lie algebra g also splits as g = g⊥+ ⊕ g⊥−, where g⊥± is isomorphic as vector spaces
(via 〈, 〉) to g∗∓. Let G− denotes a subgroup of G with Lie algebra g−. Then the
coadjoint action of G− on g∗− induces an action of G− on g⊥+:

g− · X = πg⊥
+
(Ad(g−)X) g− ∈ G−, X ∈ g⊥+,

where πg⊥
+

denotes the projection of g on g⊥+. Thus the infinitesimal generator
corresponding to X− ∈ g− is

X̃(Y ) = πg⊥
+
([X−, Y ]) Y ∈ g⊥+.

The orbit G− · Y becomes a symplectic manifold with the symplectic structure
given by

ωX(Ũ−, Ṽ−) = 〈X, [U−, V−]〉 for U−, V− ∈ g−, (5)

which is induced by the Kostant-Kirillov-Souriau symplectic form on the coadjoint
orbits in g∗−.
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Recall that the gradient of a function f : g → R at the vector X ∈ g is defined
by

〈∇f(X), Y 〉 = dfX(Y ) Y ∈ g.

Consider the restriction of the function f : g → R to an orbit G− ·X =: M ⊂ g⊥+.
Then the Hamiltonian vector field of H = f|M is given by

XH(Y ) = −πg⊥
+
([∇f−(Y ), Y ]) (6)

where Z± denotes the projection of Z ∈ g with respect to the decomposition
g = g+ ⊕ g−. In fact for Y ∈ g⊥+, V− ∈ g− we have

ωY (Ṽ−, XH) = dHY (Ṽ ) = 〈∇f(Y ), πg⊥
+
([V−, Y ])〉 = 〈∇f−(Y ), [V−, Y ]〉

= 〈Y, [∇f−(Y ), V−]〉 = ωY ( ˜∇f−(Y ), Ṽ ).

Since ω is non degenerate, one gets (6). Therefore the Hamiltonian equation for
x : R → g follows

x′(t) = −πg⊥
+
([∇f−(x), x]). (7)

In particular if f is ad-invariant then 0 = [∇f(Y ), Y ] = [∇f−(Y ), Y ]+[∇f+(Y ), Y ].
Since the metric is ad-invariant it holds [g+, g⊥+] ⊂ g⊥+ and thus equation (7) takes
the form

x′(t) = [∇f+(x), x] = [x,∇f−(x)], (8)
that is, the equation (7) becomes a Lax equation.

If we assume now that the multiplication map G+×G− → G, (g+, g−) → g+g−,
is a diffeomorphism, then the initial value problem{

dx
dt = −[x,∇f+(x)]

x(0) = x0
(9)

can be solved by factorization. In fact if exp t∇f(x0) = g+(t)g−(t), then x(t) =
Ad(g+(t))x0 is the solution of (9).

Remark. If the multiplication map G+ ×G− → G is a bijection onto an open
subset of G, then equation (7) has a local solution in an interval (−ε, ε) for some
ε > 0.

3. The motion of the Harmonic oscillator

Let us now go back to the harmonic oscillator. The phase space in this case is
R

2, which is a symplectic manifold with the canonical structure given by

ω = dq ∧ dp.

This has an associated Poisson structure, which for smooth functions f, g on R
2

is defined by

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
.

Consider the vector space over R generated by the functions H = 1
2 (p2 + q2), q, p,

and 1. Since it is a closed subspace for the bracket {, } then it becomes a solvable
Lie algebra of dimension four. In fact we have the following rules

{q, p} = 1 {H, q} = −p {H, p} = q.
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In order to simplify notations let us rename these elements identifying X3 with
H , X1 with q, X2 with p and X0 with the constant function 1 and set g for the
Lie algebra generated by these vectors with the Lie bracket [, ] derived from the
Poisson structure.

The quadratic form on g which for X = x0X0 + x1X1 + x2X2 + x3X3 is given
by

q(X) =
1
2
(x2

1 + x2
2) + x0x3

induces an ad-invariant metric on g denoted by 〈, 〉.
The restriction of the quadratic form to span{X1, X2} coincides with the canon-

ical one on R
2. In other words, the Lie algebra g is the double extension of

R
2 with the canonical metric by the skew symmetric linear map which acts on

span{X1, X2} as the restriction of ad(X3) to this space (see for instance [M-R] for
the double extension procedure).

Consider the splitting of g into a vector space direct sum g = g+ ⊕ g−, where
g± denote the Lie subalgebras

g− = span{X0, X1, X2}, g+ = span{X3}. (10)

Notice that the ideal g− is isomorphic to the 3-dimensional Heisenberg Lie
algebra we denote by h. The metric induces a decomposition of the Lie algebra g
into a vector subspace direct sum of g⊥+ and g⊥− where

g⊥− = span{X0} g⊥+ = span{X1, X2, X3},
and it also induces linear isomorphisms g∗± 	 g⊥∓. Let G denote a Lie group with
Lie algebra g and let G± ⊂ G be a Lie subgroup whose Lie algebra is g±. The
Lie subgroup G− acts on g⊥+ by the “coadjoint” representation; indeed in terms of
U ∈ g− and V ∈ g⊥+ we have

exp U · V = [x3(V )x2(U) + x1(V )]X1 + [−x3(V )x1(U) + x2(V )]X2 + x3(V )X3.
(11)

Therefore the infinitesimal action of g− on g⊥+ is

ad∗
U V = x3(V )(x2(U)X1 − x1(U)X2) (12)

It is not difficult to see that the orbits are trivial or 2-dimensional if x3(V ) 
= 0
and furthermore U and V belong to the same orbit if and only if x3(U) = x3(V ),
hence the orbits are parametrized by the x3-coordinate; so we denote them by
Mx3 . They are topologically like R

2. In fact Mx3 = G− · V 	 H/Z(H), where H

denotes the Heisenberg Lie group and Z(H) its center.
Let us endow the orbits with the symplectic structure defined as in (5). Com-

puting this explicitly for the orbit M1 we have

ωY (Ũ−, Ṽ−) = x1(U−)x2(V−) − x1(V−)x2(U−) U−, V− ∈ g−,

that is, the coordinates xi, i = 1, 2, are the canonical symplectic coordinates and
one can identify this orbit with R

2, fact which will be reforced in the following.
Let f : g → R be the ad-invariant function given by q(X). The gradient of f

at a point X is
∇f(X) = X.
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The Hamiltonian system of H = f|Mx3
, the restriction of the ad-invariant function

to the orbit, reduces to
dx
dt = [x3X3, x1X1 + x2X2 + x3X3]

x(0) = x0 (13)

where x0 = x0
1X1 + x0

2X2 + x0
3X3.

For x3 ≡ x0
3 ≡ 1 this system is equivalent to (2). Then the trajectories (x1(t) =

q(t), x2(t) = p(t)) are parametrized circles of angular velocity 1. More generally
the trajectories on Mx3 are curves x(t) = x1(t)X1 + x2(t)X2 + x3(t)X3 where

x1(t) = x0
1 cos(x0

3t) + x0
2 sin(x0

3t)
x2(t) = −x0

1 sin(x0
3t) + x0

2 cos(x0
3t)

x3(t) = x0
3

This solution coincides with that computed in the previous section, when we con-
sidered systems on coadjoint orbits. In fact it can be written as

X(t) = Ad(exp tx0
3X3)X0,

and one verifies that the flow at the point X0 ∈ g⊥+ is then

∆t(X0) = (x0
1 cos(x0

3t) + x0
2 sin(x0

3t)X1 + (−x0
1 sin(x0

3t) + x0
2 cos(x0

3t)X2 + x0
3X3))

(14)

System (13) is a Lax pair equation L′ = [M, L] = ML − LM , taking as L and
M the following matrices:

M =




0 x3 0 0
−x3 0 0 0
0 0 0 0
0 0 0 0


 L =




0 x3 0 x1

−x3 0 0 x2

− 1
2x2

1
2x1 0 0

0 0 0 0


 .

4. The inverse pendulum

Consider a linear system of one degree of freedom with Hamiltonian given by:
H(q, p) = 1

2 (p2 − q2), p ∈ R, q ∈ R, which yields the equation of motion

dp
dt = −∂H

∂q = q
dq
dt = ∂H

∂p = p
(15)

The phase space for this system is R
2. Our aim now is to construct a model for

this system in a similar setting as that of the previous section.
As in the case of the Harmonic oscillator let us consider the four dimensional

real Lie algebra g generated by H, q, p and 1 with the Lie bracket induced from
the Poisson bracket on R

2. Rename these elements as above identifying H with
X3, q with X1, p with X2 and 1 with X0. Then we have the following non trivial
Lie bracket relations:

[X3, X1] = X2, [X3, X2] = X1, [X1, X2] = X0.
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The quadratic form on g which for X = x0X0 + x1X1 + x2X2 + x3X3 is given by

q(X) =
1
2
(x2

1 − x2
2) + x0x3

induces an ad-invariant neutral metric on g denoted by 〈, 〉.
The Lie algebra g is the double extension of R

2 by the skew symmetric linear
map with respect to the neutral metric on R

2 which acts on span{X1, X2} as the
restriction of ad(X3) to this space. Notice that this map acts as the map A we
mentioned in our introduction.

Consider the splitting of g into a vector space direct sum g = g+⊕g−, where g±
denote the Lie subalgebras g+ = RX3, g− = span{X0X1, X2}. The Lie subalgebra
g− is isomorphic to the 3-dimensional Heisenberg Lie algebra h. The Lie algebra
g decomposes as a vector space direct sum of g⊥+ and g⊥− where

g⊥− = span{X0} g⊥+ = span{X1, X2, X3}.
If G denotes a Lie group with Lie algebra g, set G− ⊂ G the Lie subgroup with
Lie subalgebra g−. Indeed G− acts on g⊥+ by the coadjoint action which in terms
of U ∈ g− and V ∈ g⊥+ is given by

exp U · V = [x3(V )x2(U) + x1(V )]X1 + [x3(V )x1(U) + x2(V )]X2 + x3(V )X3.
(16)

Hence the action of g− on g⊥+ is

ad∗
U V = x3(V )(x2(U)X1 − x1(U)X2) (17)

It is not difficult to verify that the orbits are 2-dimensional if x3(V ) 
= 0 and in this
case the orbits are topologically like R

2; in fact they are diffeomorphic to H/Z(H).
The orbits can be parametrized by the x3-coordinate since two vectors U, V ∈ g⊥+
belong to the same orbit if x3(U) = x3(V ). So we denote them by Mx3 .

Endow the orbits with the symplectic structure induced from the coadjoint
orbits (5).

Let f : g → R be the ad-invariant function given by q(X). The gradient of f
at a point X is ∇f(X) = X and therefore the Hamiltonian system of H = f|Mx3

,
the restriction of the ad-invariant quadratic function to the orbit, is given by

dx
dt = [x3X3, x1X1 + x2X2 + x3X3]

x(0) = x0 (18)

where x0 = x0
1X1 + x0

2X2 + x0
3X3. Notice that the function H on M1 can be

identified with the Hamiltonian for the linear inverse pendulum on R
2 and the

Hamiltonian system (18) for x0
3 = 1 is equivalent to (15).

The trajectories x(t) = x1(t)X1 + x2(t)X2 + x3(t)X3 are

x1(t) = x0
1 cosh(x0

3t) + x0
2 sinh(x0

3t)
x2(t) = x0

1 sinh(x0
3t) + x0

2 cosh(x0
3t)

x3(t) = x0
3

This solution coincides with that computed when we considered systems on coad-
joint orbits. In fact it can be written as

X(t) = Ad(exp tx0
3X3)X0.
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One can verify that the flow at the point X0 ∈ g⊥+ is then

∆t(X0) = (x0
1 cosh(x0

3t)−x0
2 sinh(x0

3t)X1+(x0
1 sinh(x0

3t)+x0
2 cosh(x0

3t)X2+x0
3X3))

(19)

System (18) is a Lax pair equation L′ = [M, L] = ML − LM , taking as L and
M the following matrices:

M =




0 x3 0 0
x3 0 0 0
0 0 0 0
0 0 0 0


 L =




0 x3 0 x1

x3 0 0 x2

− 1
2x2

1
2x1 0 0

0 0 0 0


 .
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[M-R] Medina, A., Revoy, Ph., Algèbres de Lie et produit scalaire invariant, Ann. Sci.
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