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GEOMETRIC APPROACH TO NON-HOLONOMIC PROBLEMS
SATISFYING HAMILTON’S PRINCIPLE

OSVALDO M. MORESCHI∗AND GUSTAVO CASTELLANO∗

Abstract. The dynamical equations of motion are derived from Hamilton’s
principle for systems which are subject to general non-holonomic constraints.
This derivation generalizes results obtained in previous works which either
only deal with the linear case or make use of D’Alembert’s or Chetaev’s
conditions.

1. Introduction

1.1. Statement of the problem. The Lagrangian formulation of mechanical
systems has shown to be very useful in the presence of holonomic constraints.
When this kind of constraints is involved, one may attempt to reduce the number
of generalized coordinates, in order to deal with an effective Lagrangian with a
lesser number of degrees of freedom.

In some occasions, a decrease in the number of generalized coordinates may
not be convenient. As shown in many textbooks, through the use of Lagrange
multiplier techniques, a system of equations of motion may be obtained for the
holonomic case from an increased Lagrangian [Lan70, Mor00].

The case of a Lagrangian mechanical system subjected to non-holonomic con-
straints is much more subtle. General non-holonomic constraints have largely been
discussed in articles [dLdD96, LM95] and textbooks [AKN93, Gol80, Lan70, LL76,
NF72, Par62, Ros77, Run66], though only a restricted variety of cases has been
considered in them. Very often works only deal with linear constraints; in other
occasions they assume Chetaev’s condition [CIdLdD04] or D’Alembert’s one. It
is probably worthwhile to remark that it is unfortunate that the above mentioned
conditions are often referred to as principles, since this use might mislead the
reader to consider them as some kind of fundamental law of nature; and the fact
is that some systems do not satisfy these conditions, as shown in the example of
section 3.

Instead, Hamilton’s principle, also known as the principle of least action, is
so fundamental that any physical theoretical framework can be based on it; for
example classical mechanics, general relativity, the electroweak standard model,
and quantum chromodynamics.

For many decades physicists knew the correct equations of motion for mechan-
ical systems with general non-holonomic constraints; however, it is remarkable
that no derivation of these equations from Hamilton’s principle has been found
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in the literature. It has even been indicated that this derivation is not possible
[Run66][SC70].

The equations of motion for systems subject to general non-holonomic con-
straints are derived in this work, starting from Hamilton’s principle. This deriva-
tion makes use only of variational tools. The notation followed here has deliber-
ately been chosen as close as possible to that of physics textbooks.

In this work we deal with a mechanical system, described by the Lagrangian

L(q1, ..., qr, q̇1, ..., q̇r, t)

subject to the s, with s < r, general non-holonomic constraints

Φp(q1, ..., qr, q̇1, ..., q̇r, t) = 0, 1 ≤ p ≤ s; (1)

which by assumption are considered independent. By independent it is meant that
the Jacobian matrix

(
∂Φi

∂q̇j

)
has rank s.

1.2. Previous works. The subject of the derivation of the equations of motion
for a mechanical system under the restriction of non-holonomic constraints has
been studied for a long time. Derivations have normally been restricted to a
subvariety of cases, and they usually use ad-hoc methods. For example in [Run66],
in which the linear case is treated, the author recognizes: “... equation (5.10) is
here accepted because of its empirical success. For the moment it should simply
be regarded as a result which is known to be correct.”

In particular, in relation to the question whether it is possible to derive the
equations of motion from Hamilton’s principle, Rund writes [Run66]: “... there
exists a voluminous and rather confusing literature on the subject ...”. And his
answer to the question is that “the principle of Hamilton (as defined in the present
context) is applicable to a dynamical system subject to constraints if and only if
these constraints are holonomic.” We will show in this article that his answer
is not correct; we present a derivation from Hamilton’s principle in the case of
non-holonomic constraints.

One of the references Rund might had had in mind was probably the textbook
by Pars [Par62], which treats the non-holonomic linear problem in section 8.16 and
states: “We may be tempted to expect that a theorem analogous to Hamilton’s
principle may hold in the class κ′ of curves satisfying the equations of constraints,
i.e. we may expect

∫ θ̄

θ Ldt to be stationary (the end-points in space and time being
fixed) in the class κ′. It comes as something of a shock to discover that this is not
true.” In fact, this assertion is misleading. For Pars, the class κ′ represents the set
of trajectories that satisfy the constraints. So his assertion implies his expectancy
that the variations involved in Hamilton’s principle must be in the class κ′; but
this is what characterizes the so called ‘Lagrange problem’; and it is known that
it does not describe mechanical systems with non-holonomic constraints.

There are recent articles in which the nonholonomic dynamics is studied. In
particular in [CdLdDM03] it is stated that: “In the nonlinear case, there does
not seem to exist a general consensus concerning the correct principle to adopt.
The most widely used model is based on Chetaev’s principle, which will also be
adopted in the present paper.”
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The correct equations of motion for mechanical systems with nonholonomic
constraints have been known for many years. However the techniques involved
in the justifications for them has varied. For example, it is attributed to Appell
[App11] [Ray72] the deduction of the equations of motion from a generalization of
Gauss’s principle of least constraints.

We think it is worthwhile to point out that the source of some confussion in the
problem of determination of equations of motion for mechanical systems subject
to constraints, is that the method of subjecting the variations to the constraints,
in the holonomic case, does work and allows us to obtain the correct equations of
motion. This has induced the community [NF72] to think that the same method
should be applied to the nonholonomic case. But it is known that this does
not work. In what follows we show that allowing for general variations is the
correct technique to derive the equations of motion for both cases, holonomic and
nonholonomic.

We can see that the derivation of the equations of motion for nonholonomic
dynamics has been an open problem and our contribution intends to settle this
issue.

2. Non-holonomic constraints

2.1. The Lagrange multipliers in the case of functions. Before treating the
problem of the variational principle of Lagrangian mechanics in the presence of
non-holonomic constraints, it is convenient to recall the use of Lagrange multipliers
when applied to the case of extreme of functions.

Let us consider the case in which one would like to find a critical point of a
function �(x1, ..., xn) subject to the conditions

f1(x1, ..., xn) = 0, (2)

and
f2(x1, ..., xn) = 0. (3)

Thinking of the variables xi as coordinates of the space R
n, we know that the

gradients of functions are orthogonal to the surfaces on which these functions are
constant. Therefore, the previous conditions imply that for any vector v tangent
to the surfaces determined by (2) and (3), one must have

〈∇f1, v〉 = 0, (4)

and
〈∇f2, v〉 = 0; (5)

where∇ represents the gradient operator and 〈 , 〉 denotes the natural contraction∗

between 1-forms and vectors [KN63]. Also, at a point p in which � has a critical
point, one should have

〈∇�, v〉 = 0. (6)

∗It is customary [KN63] to use the notation 〈df, v〉 to denote (4), where df is the exterior
differentiation of f . However, we prefer to use the notation of the gradient, namely 〈∇f, v〉 =
v(f), since it is more common in the physics literature.
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Then if ∇f1 �= 0 and ∇f2 �= 0 at p, the set of vectors v compatible with the
constraints, i.e., satisfying (4) and (5), form an (n−2)-dimensional subspace of the
tangent space at p. All vectors in this subspace must also satisfy (6). Therefore,
one infers that there must exist constants λ1 and λ2 such that

∇� = λ1∇f1 + λ2∇f2, (7)

since otherwise the vectors satisfying (6) would lie outside of the (n−2)-dimensional
subspace generated by the conditions (4) and (5). The constants λ1 and λ2 are
called the Lagrange multipliers of the problem.

The original problem is then transformed to find the solutions of (7) subject to
(2) and (3).

For more constraints, this procedure generalizes in the obvious way.

2.2. The functional case. An interesting question is to see whether the ideas
recalled above have an extension to the case of functionals.

In the study of Hamilton’s principle, the analog to equation (6) is given by

δ


 t2∫

t1

Ldt


 =

t2∫
t1

r∑
i=1

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi dt = 0, (8)

where the displaced trajectory {q̃i(t)} is given in terms of the variations δqi by
q̃i(t) = qi(t) + δqi(t) and which are subject to the boundary conditions

δqi(t1) = δqi(t2) = 0. (9)

In equation (8) the analog of the vector v introduced in (4)-(6) is determined
by the ‘components’ δqi, that is

v(t)←→ {δqi(t)} ; (10)

while the analog of the covector ∇� is determined by

∇L←→
{

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)}
, (11)

where it is noted that ∇L is minus the Lagrangian derivative [L] as defined in
[AKN93]; while v is a vector in the tangent space Tq(t)(M) of the configuration
space M [AKN93]. Finally, the natural product between the covector and vector
is determined by the integration,

〈∇L, v〉 ≡
t2∫

t1

∇L · v(t) dt =

t2∫
t1

r∑
i=1

[
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
δqi dt, (12)

where the operator · is used to denote summation over the components of the
covector ∇L and those of the vector v.

The product 〈 , 〉 denotes the natural contraction between one forms and tangent
vectors of the set of paths Ω [AKN93] that have a definite initial point at t1 and
final point at t2 in M . If ω is a path in the space Ω, then a vector in the tangent
space of Ω at the point ω consists of a smooth vector field v on M along the path
ω such that v(t1) = 0 and v(t2) = 0. Such a vector v(t) is called a variation
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vector field [AKN93]; while the set {v(t)} can be considered as the components of
a vector in the tangent space of the infinite dimensional manifold Ω.

Then, defining the action S as

S(ω) =
∫

ω

Ldt =
∫ t2

t1

L(ω̇(t), ω(t), t)dt, (13)

and using the above notation, one has from Hamilton’s principle that

δS = 〈∇L, v〉 = 0. (14)

From now on we will continue using the standard notation δq(t) to denote the
variations, instead of the more abstract v notation.

Due to the existence of the constraints (1) it is clear that the variations δqi(t), for
each individual generalized coordinate qi, can not be taken as linearly independent.
In fact, let us assume that the trajectory (q1(t), ..., qr(t)) satisfies the s constraints
(1). Then a variation of the constraints will give

r∑
i=1

∂Φp

∂qi
δqi +

r∑
i=1

∂Φp

∂q̇i
δq̇i = 0 with p = 1, ..., s. (15)

In order to obtain an expression that can be compared with (8) or (14), it is
convenient to integrate this expression with respect to time, in the interval [t1, t2],
from which one obtains∫ t2

t1

(
r∑

i=1

∂Φp

∂qi
δqi +

r∑
i=1

∂Φp

∂q̇i
δq̇i

)
dt =

∫ t2

t1

r∑
i=1

[
∂Φp

∂qi
− d

dt

(
∂Φp

∂q̇i

)]
δqi dt = 0.

(16)
Therefore, using the above notation one has

〈∇Φp, δq〉 = 0. (17)

These s equations are the analog to (4) and (5) in the previous section.
Following the logic as used in the case of functions, but now extended to infinite

dimensional spaces, one deduces by analogy† that there must exist scalars ηp(t)
such that

∇L +
s∑

p=1

ηp(t)∇Φp = 0. (18)

This equation is the analog to equation (7); and we still may call the functions
ηp(t) Lagrange multipliers.

Therefore, one has 〈
∇L +

s∑
p=1

ηp(t)∇Φp , δq

〉
= 0; (19)

†We will formalize this assertion in a future paper.
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or explicitly
t2∫

t1

r∑
i=1

([
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
+

s∑
p=1

ηp(t)
[
∂Φp

∂qi
− d

dt

(
∂Φp

∂q̇i

)])
δqi dt = 0. (20)

It is important to note that one can obtain a different expression involving the
constraints by multiplying equations (15) by ηp(t) and integrating with respect to
time; namely

∫ t2

t1

ηp

(
r∑

i=1

∂Φp

∂qi
δqi +

r∑
i=1

∂Φp

∂q̇i
δq̇i

)
dt =

∫ t2

t1

r∑
i=1

(
ηp

[
∂Φp

∂qi
− d

dt

(
∂Φp

∂q̇i

)]
− η̇p

∂Φp

∂q̇i

)
δqi dt = 0. (21)

Therefore, instead of (20), one could use

t2∫
t1

r∑
i=1

([
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
+

s∑
p=1

η̇p
∂Φp

∂q̇i

)
δqi dt = 0. (22)

Equations (20) and (22) are not completely equivalent; there are singular cases
in which (20) can not be applied, but equation (22) has no problem. These cases
are the ones that show critical points; namely cases in which ∇Φp = 0, for some
p. However, since a basic assumption of the problem is that the Jacobian of the
system of equations (1) has rank s, it is clear that equation (22) will not have any
difficulties, even in the case of critical points. Therefore, equation (22) must be
used.

It is very easy to think of cases in which this problem arises; as a simple example
of a critical point, let us consider the single constraint Φ1 = q̇1 − v1(t). Then one
can easily see that although ∇Φ1 = 0, the corresponding Jacobian has rank 1.

Defining λp = η̇p one can express (22) as

t2∫
t1

r∑
i=1

([
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
+

s∑
p=1

λp
∂Φp

∂q̇i

)
δqi dt = 0. (23)

Any critical case can be thought of as the limiting case of a family of constraints
which are not critical. It is clear that expression (23) has no difficulty in this limit,
so that it can be used even in a critical case.

The rest of the analysis is the usual one; that is, let us choose the s functions
λp(t) in such a way that the equations[

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
+

s∑
p=1

λp(t)
∂Φp

∂q̇i
= 0, for i = 1, ..., s, (24)

are satisfied. These constitute a system of s equations for the s unknown functions
λp(t).
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In this way one is left with the equation
t2∫

t1

r∑
i=s+1

([
∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
+

s∑
p=1

λp
∂Φp

∂q̇i

)
δqi dt = 0. (25)

From the assumption that the constraints are independent, one deduces that in
principle it is possible to express s of its arguments in terms of the rest. So, if it is
necessary, one could make a coordinate transformation to express the constraints
in terms of

q̇j = vj(q1, ..., qr, q̇s+1, ..., q̇r, t) for j = 1, ..., s, (26)

which constitute s differential equations for the s functions qj with j = 1, ..., s,
assuming that qi(t) with i = s + 1, ..., r are given arbitrarily.

Therefore, in (25) one can take the variations δqi(t) (i = s + 1, ..., r) indepen-
dently, which means that one must satisfy[

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)]
+

s∑
p=1

λp
∂Φp

∂q̇i
= 0, for i = s + 1, ..., r. (27)

From all this, one deduces that the functions (q1(t), ..., qr(t)), which satisfy
Hamilton’s principle under the constraints, must satisfy the set of equations

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
+

s∑
p=1

λp
∂Φp

∂q̇i
= 0, i = 1, ..., r;

Φp(q1, ..., qr, q̇1, ..., q̇r, t) = 0, p = 1, ..., s;

(28)

for the total set of functions

q1(t), ..., qr(t) ; λ1(t), ..., λs(t). (29)

It should be clear from this presentation that the particular case of holonomic
constraints must be treated from equation (20), since in this case, the assumption
that the Jacobian, with respect to the arguments qi, has rank s, makes (20) a
non-singular expression. Explictly one would have

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
+

s∑
p=1

λp
∂Φp

∂qi
= 0, i = 1, ..., r;

Φp(q1, ..., qr, t) = 0, p = 1, ..., s;

(30)

for the set of unknowns

q1(t), ..., qr(t) ; λ1(t), ..., λs(t). (31)

3. The classical problem of the rolling ball on a turntable

3.1. Example where Chetaev’s condition fails. Consider a rigid ball of mass
m and radius a rolling on a uniformly rotating table with no sliding, as shown in
figure 1. Here �X denotes the position of the center of the ball. We will choose
a Cartesian coordinate system whose z-axis will be perpendicular to the plane of
the table and its upwards positive direction is characterized by the unit vector k̂.
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The ball is assumed to be spherical and to have uniform mass density, so that its
moment of inertia around an axis through its center of mass is I = 2ma2/5.

The degrees of freedom in this problem can be described in terms of the infini-
tesimal movements. Let us denote with δ �X an arbitrary small motion of the center
of the ball, and with δ�ϕ an arbitrary small rotation of it. Then the corresponding
velocities are �V = �̇X and �ω = �̇ϕ.

The contact condition in terms of the coordinate �X of the center of the ball,
the angular velocity �Ω of the rotating table (pointing upward) and that of the ball
�ω may be written as

�Φ = �V + �ω × (−ak̂)− �Ω× �X = 0 , (32)

where the symbol “×” represents the vector product.
This constraint gives us an example in which the Chetaev’s condition:∑

i

∂Φp

∂q̇i
δqi = 0 for p = 1, 2, 3 , (33)

does not hold.

Figure 1. Ball rolling on a turntable.

3.2. Newtonian approach. The Newtonian equations of motion are:

m �̈X = �F (34)

and
d �J

dt
= �X × �F +

d�S

dt
= �Xc × �F , (35)

where �F is the total force acting on the ball, due to the contact with the table,
�J is the total angular momentum, �S is the intrinsic angular momentum and �Xc
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denotes the point of contact between the ball and the turntable. It is easy to see
that

�Xc − �X = −ak̂; (36)

therefore, the equation of the intrinsic angular momentum is

d�S

dt
= −ak̂ × �F , (37)

where it is important to recall that in the case of an homogeneous sphere one has

�S = I�ω. (38)

Taking the time derivative of the constraint (32) one obtains

�̈X = �̇V = �Ω× �V + �̇ω × ak̂; (39)

while from the angular momentum equation (37) one obtains

I�̇ω = −ak̂ ×m
(
�Ω× �V + �̇ω × ak̂

)
. (40)

Now let us note that k̂ ×
(
�Ω× �V

)
= −Ω�V , and k̂ ×

(
�̇ω × k̂

)
= �̇ω, so that(

I + ma2
)
�̇ω = amΩ�V . (41)

Substituting into (39) and using the value of I it is obtained

�̇V =
2
7
�Ω× �V ; (42)

or equivalently
d( �X − �Xo)

dt
=

2
7
�Ω×

(
�X − �Xo

)
(43)

whose solution describes a circular motion and �Xo is a fixed point.
It should be observed that k̂ · �̇ω = 0 and so k̂ · �ω is constant and undetermined.

3.3. Lagrangian approach. The Lagrangian corresponding to this system is

L =
1
2
m �̇X

2

+
1
2
I �̇ϕ

2
. (44)

In order to obtain the equations of motion, it should be first noted that

∂L

∂Xi
= 0 and

∂L

∂ϕi
= 0 , (45)

whereas
d

dt

(
∂L

∂Ẋi

)
= mẌi and

d

dt

(
∂L

∂ϕ̇i

)
= Iϕ̈i . (46)

Applying equations (28) to this system, one deduces

m �̈X = �λ (47)

I �̈ϕ = −ak̂ × �λ , (48)
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where in this case the λp in equation (28) actually are the components of a vector
�λ. Multiplying this last equation by ak̂, and taking into account that k̂ is normal
to �λ, one has

Iak̂ × �̈ϕ = a2�λ . (49)
Substituting this identity in (47), and making use of the constraint equation (32)
to replace ak̂ × �̈ϕ, the following differential equation is obtained

ma2 �̈X = −I �̈X + I�Ω× �̇X , (50)

which is equivalent to the Newtonian equation (42) deduced above and therefore
shares the same space of solutions.

4. Final comments

The equations of motion (28) are frequently mentioned in the literature; how-
ever, either they were not deduced from Hamilton’s principle or their deduction
did not consider the general case. For example equation (12) in the first chapter
of reference [AKN93] is deduced assuming Chetaev’s condition, although they do
not refer to it.

In references [dLdD96, LM95, Gol80, Lan70, LL76, NF72, Par62, Ros77, Run66]
the non-holonomic conditions are restricted to linear expressions in the velocities.

To our knowledge, ours is the first derivation of the equations of motion from
Hamilton’s principle for the general non-holonomic case.
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