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A QUALITATIVE UNCERTAINTY PRINCIPLE FOR
COMPLETELY SOLVABLE LIE GROUPS.

B. BOUALI

ABSTRACT. In this paper, we study a qualitative uncertainty principle for
completely solvable Lie groups.

1. INTRODUCTION

Let G be a connected, simply connected, and completely solvable Lie group,
with Lie algebra G. Let G* be the dual of G. The equivalence classes of irreducible
unitary representations G of G is parameterized by the coadjoint orbits G*/G via
the Kirillov bijective map

K:G— GG

We recall that if (V,, p) € Gandle K (p), then there exists an analytic subgroup
H of G and a unitary character £ of H, such that the induced representation p is
equivalent to I nd%f . Moreover the push forward of a Plancherel measure in G is
a measure equivalent to a Lebesguian measure on convenient set of representatives
in G* for G.

Let f in L'(R") and set f its Fourier transform, let A; = {z € R": f(z) # 0}
and By = {z € R": f(x) # 0}. By Bénédicks theorem [1, Theorem 2], if A(Af) <
oo and A(By) < oo then f = 0 a.e. Here, A denote Lebesgue measure on R™. That
is, for R™ the qualitative uncertainty principle holds.

In this note we prove that a completely solvable Lie group has the qualitative
uncertainty principle. In [4] we showed the theorem for nilpotent Lie groups, by
induction on the dimension of G. To prove the theorem we apply induction, for
this, we need an explicit description of the dual space G of G as well as an explicit
description of Plancherel measure on G. For our approach we use a result of B.N.
Currey [3], which is a generalization of a result of L. Pukanszky. Let G be a locally
compact group. Denote a fixed Haar measure on G by m and the corresponding
Plancherel measure on G by L

Let A = {z € G: f(x) #0} and By = {7 € G: f(r) # 0},

Definition 1.1. G has the qualitative uncertainty principle if m(Ay) < oo and
u(By) < oo, then f =0 m-a.e.
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Remark 1.1. The group (R™,+ ) has the qualitative uncertainty principle [1, The-
orem 2].

2. PRELIMINARIES

Let G be a connected, simply connected, and completely solvable Lie group,
with the Lie algebra G. Let G* be its dual. Since G is completely solvable, there
exists a chain of ideals of G

0)=G,CcG C..CG,=¢G

such that the dimension of G; is j, for all j < n. We fix an ordered basis B =
{X1,Xs,..,X,,} of G such that G; is spanned by the vectors X1,..,X;,1 < j < n.
Let B* = {X7}, X3,.., X} be the dual basis of B. We fix a Lebesgue measure dX
on G and a right invariant Haar measure m on G such that m(expX) = Jg(X)dX

where
1— efadX

Ja(X) = |d€t(W)|

Let § be the modular function such that for all g € G, m(gg’) = §(g)m(g’). Let
O be a co-adjoint orbit in G* and I € O. The bilinear form B;: (X,Y) — I([X,Y])
defines a skew-symmetric and nondegenerate bilinear form on G/G'. Since the map
X — X.I induces an isomorphism between G/G' and the tangent space of O at [,
the bilinear form B; defines a nondegenerate 2-form w; on this tangent space. If
2k is the dimension of O we note that

Bo = (2k)* ()" tw; Awy A Awy (k times)

is a canonical measure on O. Lemma 3.2.2 in [2] says that there exists a nonzero
rational function v on G* such that

W(g.l) =d(g) 'w(l),g€ G,leG"

and there exists a unique measure m,, on G* /G such that

[ owwwia= [ ([ swasowan,©

for all Borel function ¢ on G*. B.N. Currey [3,] gave an explicit description of the
measure m, with the help of the coadjoint orbits. We recall the theorem proved
by B.N. Currey which is a essential tool to prove our main theorem.

Theorem 2.1. Let G be a connected, simply connected and completely solvable Lie
group. There exists a Zariski open subset U in G*, a subset J = {j1 < ja < ... <
Jor} of {1,2,..,n}, a subset M = {jp;, < Jry < .. < jp,t of J, for each j € M
a real valued rational function q;, non vanishing on U, and real analytic functions
Pj in the variables wq,wa, .., wak, l1,la, .., Iy such that the following hold.

(1) If a denotes the number of elements of M, for each € € {1,—1}*, the set
Us={lcU]| signofq,, (I)=en,1<m<a}

is a mon empty open subset in G*.
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(2) Define V.C R?** by V = [[ R,, where R, =]0,00[ if j, € M and R, = R
otherwise. Let € € {1,—1}2, for v € V, define ev € R?* by (ev); = v if
Jj=17Jr, € M and (ev); = v; otherwise. Then for eachl € U, the mapping
v —> ZjeJPj(ev,l)X;f is a diffeomorphism of V with the coadjoint orbit
of l.

(3) Define Wp as the subspace spanned by the vectors {X} | i & J} and Wy
the subspace spanned by the vectors { X} |i € M} Then the set

W={le WpoWn)NU || ¢()|=1,j € M}

is a cross-section for the coadjoint orbits in U. for each j € M the rational
function g; is of the form q;(1) = 1;+p;(l1,l2,..,1;_1), where p; is a rational
function.
(4) For each 1l € U, let €(l) € {1,—1}* such that | € Uyy. Then the mapping
Ph:.V x W — U, defined by P(v,l) = >, Pj(e(l)v,1)X}, is a diffeomor-
phism.

If the subset M is empty, then W = Wp N U and the coordinates for W are
obtained by identifying Wp with R"~2*, which is the parametrization of G in the
nilpotent case. If M is not empty and a the number of elements in M. From [3],
for each € € {1, —1}* U, is a non empty Zariski open subset and U = U U, (disjoint
union). Set W, = W N U.. from [3] we have:

We={le Wp@®Wyn)NU| foreach j=j,, € M,l; =¢€m—pj(l1,.....[j—1)}
p; is a rational nonsingular function on U.

Let € € {—1, 1} From [3], there is a Zariski open subset A. of Wp and a rational
function p.: Ac — Wy such that W, is the graph of p.. From [3], the projection
of U, into Wp parallel to W; defines a diffeomorphism of Wp with A..

Summarizing: let G be connected, simply connected and completely solvable Lie
group. Let {X}, X3, ..., X} be a Jordan-Holder basis of G*. Then, there is a finite
family of disjoint open subsets U, of G* and there is a subspace Wp of G* such
that for each €, the orbits in U, are parameterized by a Zariski open subset A, of
Wp. The union of this open sets determines an open dense subset of G*/G whose
complement has Plancherel measure zero.

3. THE ax + b GROUP.
Consider the group
We use the notation

G{(S ?)|a>0,beR}
a b

(a,b) = 0 1 > . Matrix multiplication is:

(a1,b1)(a2,b2) = (a1a2,a1bs + b1)
and the inverse is
(a, b)) = (a7, —ba™).
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The Lie algebra G of G is the set of matrices

o~{(2 1)eser)

We choose as ordered base B,

1 0 0 1
(30 amar= (0 1)

We have [X,Y] =Y. Thus the group is not nilpotent.
Let {X*,Y*} the dual basis of G*. Let l = aX* + fY™* € G. The orbits of G in

G* are:

the upper half plane 8 > 0, the lower half plan § < 0 and the points («, 0).

Here, J = {j1,72} = {1,2} and M = {ja} C J, so that V = RV =]0, +oo[xR.
Wp = (0) and W)y is spanned by the vector X7 . The Zariski open sets U, and
U_ are the half planes of G* and U = Uy UU_. Since there are two orbits, the set

W={eWynU: |q,(1)|=1,j2 € M}

has exactly two points. We have W, = W NU; and W_ = W NU_. The Zariski
open set A or A_ of Wp, reduces to a point.

4. FOURIER TRANSFORM.

We must consider two cases(see [5]):

(1)

All the orbits in general position are saturated with respect to G,,_1. That
is, for each | € G*, G' C G,_1. Then, we may and will choose a basis of G

Bw, = {X1(1), X2(1), ..., Xn_1(1), X }.

where the last vector of the basis does not depend on I. We apply the
previous setting to G,,_1 := exp(Gn_1). Let J; = J\ {n,j1} the index set
for G,,_1, then M; is a subset of Ji, let a; denote the number elements
of M;. For each €1 € {—1,1}%, the set U, is nonempty open subset of
n—1- Let Wp, = Wp ® RX7 and then Wy, is the subspace spanned by
X7,j € My. We apply the inductive hypothesis to G,_1, hence, there is
a Zariski open subset A, C Wp, and a rational function p¢, : A, — Wp,
such that W, is the graph of p.,. Let A, denote the projection of A, on
1. From [5,lemma 3.2], the measure duy on W, in terms of the measure
dpon We and dX7, is duy = dp x dX )
If some orbit G-I in general position is not saturated with respect to G,,_1,
we can still obtain a basis of G such that the last vector of the basis does not
dependonl, X,, € G' and X; € gj.j for certain j with {; =1 | G;. In this case
since G! = G»-1, we have Wp = Wp, +RX,,. Moreover A, = A, +RX,,*.
The Plancherel measure can be written as du(l) = duy x dX .

5. THE MAIN THEOREM.

Theorem 5.1. Let G be a Fonnected, simply connected, completely solvable Lie
group with the unitary dual G, and let f be integrable function on G (f € LY(QG)).
If m(Ay) < oo and pu(By) < oo then f =0 almost every where.
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Proof 5.1. We proceed by induction on the dimension n of G. The result is true
if the dimension of G is one, since G = R (see [1,theorem2]). Assume that the
result is true for all completely solvable Lie groups of dimension n — 1. Suppose
that m(Ay), n(By) are finite. From [4, lemma 1.6], m1(Ay¢) is finite. To conclude,
it remains to show that pwi(Byt) is finite. We can assume that By is contained in
We (It suffices to take By as the finite union of By N W, ). We consider tho cases

(1) We suppose that G' C G,,_1 for alll € W,. That is, all the orbits in general
position are saturated with respect to G,_1. For ¢ € G*, let ¢¢ be the
restriction of ¢ to Gn_1, then my = Indgn717r¢ is irreducible. From [6,
proposition 2.5] we have:

(&) (&)
/g Indg, — mg,dAgs_ (do) = /g%d)\g*(@ (1)

*
n—1

0

where dAg- is the Lebesgue measure on G* and dAg= | is the Lebesgue

measure on G':_,. From the formula (1) and the definition of X,, we
conclude that the map ¢ — ¢g is an isomorphism which respect to the
measures dAg=_ and dAg-, then

i1 (Bpe) = u(By) < oo.
By induction hypothesis ft = 0 almost everywhere on G,_1 for almost
everywhere t € R, which implies that f = 0 almost everywhere on G by
using the theorem of Fubini.

(2) Some orbit G -1 is not satured with respect to G,_1. That is, G' ¢ Gn_1
for some l € W.. For ¢g € G)_,, we choose an extension ¢ defined by
#(X,) = 0. From this we have

®
indgn,—17T¢0 ~ / 7T¢0+sx;«1d8.
R
Hence
n(Bp) = [ (B < .

Then for almost everywhere t € R, pui(Byt) is finite. By inductive hypothe-
sis ft = 0 almost everywhere on G,,_1 for almost everywhere t in R, which
implies that f = 0 almost everywhere on G by Fubini’s theorem.

Remark 5.1. The ax + b group has the qualitative uncertainty principle.
Question 5.1. Do the exponential solvable Lie groups have the qualitative uncer-

tainty principle ?
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