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Abstract. The purpose of this note is to give a fast introduction to some

problems of homological and geometrical nature related to finitely dimensional
representations of finitely generated, and especially, finitely dimensional alge-

bras over a field. Some of these results can also be extended to the situation

where the field is not algebraically closed, and some of the results can even be
extended to the situation where one is considering algebras over a commuta-

tive artin ring. For the results which hold true in the most general situation

the proofs become most elegant since they depend on using length arguments
only and thereby forgetting about the nature of a field altogether.

1. Introduction and notation

Let K = K be an algebraically closed field and let Λ a finitely generated asso-
ciative K-algebra with 1.

Examples:
1. Λ = K, the field itself which is the simplest example of a K-algebra.
2. Λ = K[X], the polynomial algebra in one variable over the field K.
3. Λ = K〈X,Y 〉, the free algebra in two non-commuting variables over the field

K.
4. Λ = K[X1, X2, ..., Xn], the polynomial algebra in n commuting variables over

the field K.
5. Λ = Md(K), the algebra of d× d-matrices over the field K.
6. For a K-vector space V , Λ = EndK(V ) is the algebra of K-linear endomor-

phisms of V where addition is the usual addition of K-linear homomorphisms and
the multiplication is given by composition of K-linear homomorphisms.

7. For a K-vector space V and f1, f2, ..., fn elements of EndK(V ), one lets
Λ = K〈f1, f2, ...., fn〉 be the subalgebra of EndK(V ) generated by the elements
f1, f2, ..., fn.

8. For a K-vector space V and a subspace V1 ⊆ V , one can look at the algebra
Λ = EndK(V ;V1) = {f ∈ EndK(V ) | f(V1) ⊆ V1}. By choosing a complement V ′1
to V1 in V and decomposing V as V ′1 ⊕ V1 as a K-vector space, one can identify
this algebra Λ with the matrix algebra

{
(
f 0
h g

)
| f ∈ EndK(V ′1), g ∈ EndK(V1) and h ∈ HomK(V ′1 , V1)}.
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22 SVERRE O. SMALØ

In this matrix algebra the addition is induced from the usual addition of K-linear
homomorphisms and the multiplication is induced from the composition of K-linear
homomorphisms.

9. Now, this last example can be extended to more than one subspace.
So let V be a K-vector space and Vi subspaces for i = 1, 2, ..., n; then Λ =
End(V ;V1, V2, ..., Vn) is defined as the subalgebra {f : V → V | f(Vi) ⊆ Vi for
i = 1, 2, ..., n} of EndK(V ). However, it is not so easy in general to describe this
algebra as an algebra of matrices.

10. If one in example 9 has a K-vector space V and subspaces V1 ⊂ V2 ⊂ ... ⊂
Vn = V and the dimension of the K-vector spaces are given by dimVi = i, then
this algebra can be identified with the algebra of lower triangular matrices over K.
This identification can be obtained by choosing a basis for V by starting with a
basis for V1 and then successively extending a basis from Vi to Vi+1 until one has
a basis for the whole space V .

Finitely generated K-algebras can also be given by generators and relations over
the ground field K. This way one obtains the algebra as a quotient of a finitely
generated free algebra K〈X1, X2, ..., Xn〉 over the ground field K by an ideal I.

11. Λ = K〈X,Y 〉/〈XY − Y X〉 which is isomorphic to K[X,Y ], the polynomial
algebra in two variables over the field K.

12. Λ = K〈X,Y 〉/〈X2, XY + Y X, Y 2〉 which is isomorphic to
∧

(X,Y ), the
exterior algebra in two variables over the field K.

13. Λ = K〈X,Y 〉/〈XY − Y X + 1〉 = A1(K) which is called the first Weil
algebra over the field K. This K-algebra is isomorphic to the K-subalgebra of the
endomorphism algebra of the K-vector space K[T ] generated by the two K-linear
endomorphisms where one is given as multiplication by T , and the other one is
derivation with respect to T .

Another way of giving an algebra is to start with a vector space over K with
a basis {vi}i∈I , and then give a multiplication table for the base elements, and
then extend the multiplication by bilinearity to all elements of the K-vector space
V . Let (V, {vi}i∈I) be a K-vector space with a basis. A multiplication table is
then given as vivj =

∑
k∈I a

k
i,jvk with the elements aki,j ∈ K where for each pair

of indices i, j the set {k | aki,j 6= 0} is finite. For this to become an associative
K-algebra with 1, severe restrictions on the aki,j , the structure constants, have to
be imposed.

14. Let V be a K-vector space with vi where i runs through the nonnegative
integers, as a basis. Define a multiplication on the base elements by vivj = vi+j and
extend this multiplication by bilinearity to all elements of V . This makes V into
an associative K-algebra with v0 as the identity element. By identifying vi with
Xi one gets an isomorphism between the K-algebra V and K[X], the polynomial
algebra in one variable over the field K.

15. Another source of this form of K-algebras is the group algebras. Let G be a
group written multiplicatively. Let V be the K-vector space of all maps f from G
to K such that G \ f−1(0) is finite. Then for each g in G one has the map fg given
by fg(h) = 1 for h = g and zero for h 6= g. The collection of all these maps as g
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LECTURES ON ALGEBRAS 23

runs through G becomes a basis for V . One can then form the multiplication table
fgfh = fgh which makes V into a K-algebra with fe as the unit element, where
e is the identity element of the group G. Usually one writes an element of V as∑
g∈G agg where ag are elements of K and each fg is substituted with g, and only

a finite number of the elements ag as g runs through G are nonzero. The notation
used for the group algebra is often KG or K[G].

16. Another important source of examples of algebras where the multiplication
is given by a multiplication table for a basis, is the path algebra of a quiver.

A quiver Q is an oriented graph. Here one lets Q0 denote the set of vertices, and
one lets Q1 denote the set of oriented edges. The oriented edges are also often called
arrows as the name indicates and one usually represents a quiver by a collection of
vertices and arrows drawn in the plain.

Example:

1 α−→ 2
β−→ 3

Now one can look at the set of all oriented paths in this oriented graph including
the paths of length zero at each vertex, and use them as a basis for an algebra. By
concatenating paths one makes a multiplication table for these base elements and
in this way one obtains the path algebra.

For the example of the quiver above, this will be a six dimensional algebra, with
basis e1, e2, e3, α, β and βα. Here e1, e2 and e3 represent the paths of length zero
at the vertices 1, 2 and 3 respectively. One has to make a convention about how
to represent a path and here one is using the convention that an oriented path is
ordered from right to left. The multiplication table for this algebra is rather long,
but for the convenience of the reader the complete table is included.

e1 · e1 = e1, e1 · e2 = 0, e1 · e3 = 0, e1 · α = 0, e1 · β = 0, e1 · βα = 0,

e2 · e1 = 0, e2 · e2 = e2, e2 · e3 = 0, e2 · α = α, e2 · β = 0, e2 · βα = 0,

e3 · e1 = 0, e3 · e2 = 0, e3 · e3 = e3, e3 · α = 0, e3 · β = β, e3 · βα = βα,

α · e1 = α, α · e2 = 0, α · e3 = 0, α · α = 0, α · β = 0, α · βα = 0,

β · e1 = 0, β · e2 = β, β · e3 = 0, β · α = βα, β · β = 0, β · βα = 0,

βα · e1 = βα, βα · e2 = 0, βα · e3 = 0, βα · α = 0, βα · β = 0, βα · βα = 0.

Here e1 + e2 + e3 is the identity element.
For this simple example, the path algebra is isomorphic to the K-algebra of

lower three by three matrices over K. To see this let eij be the matrix with 1 in
place ij and zero otherwise. Then an isomorphism can be given by sending e1 in
the path algebra to the matrix e11, e2 in the path algebra to the matrix e22, e3 in
the path algebra to the matrix e33, α in the path algebra to the matrix e21, β in
the path algebra to the matrix e32 and βα in the path algebra to the matrix e31.
An easy calculation now shows that this is a K-algebra isomorphism from the path
algebra of this quiver to the algebra of lower three by three matrices over K.

An important problem which often appears in representation theory is to deter-
mine whether two algebras are isomorphic or not isomorphic. This can sometimes
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24 SVERRE O. SMALØ

be decided by giving an explicit algebra isomorphism between them, but some-
times one can still prove that two algebras have to be isomorphic without ever in
principle being able to give such an isomorphism explicitly.

Example. The algebra C[X]/〈1 +X + X2

2! + X3

3! + X4

4! + X5

5! 〉 is isomorphic to the
algebra C×C×C×C×C. However, finding an explicit isomorphism requires that
one can find the zeros of the polynomial 1+X+ X2

2! + X3

3! + X4

4! + X5

5! . However, this
is one of the degree five complex polynomials where the zeros cannot be expressed
with the help of radicals of the coefficients. By calculating the difference between
this polynomial and its derivative one obtains the following: 1 + X + X2

2! + X3

3! +
X4

4! + X5

5! − (1 + X + X2

2! + X3

3! + X4

4! + X5

5! )′ = X5

5! . Therefore the polynomial
1 + X + X2

2! + X3

3! + X4

4! + X5

5! and its derivative have no common factors. This
implies that the polynomial 1+X+ X2

2! + X3

3! + X4

4! + X5

5! has no multiple roots, and
therefore by the Chinese remainder theorem there is an isomorphism between the
algebra C[X]/〈1 +X + X2

2! + X3

3! + X4

4! + X5

5! 〉 and the algebra C×C×C×C×C,
as claimed.

2. Representations

If an algebra Λ is given, one way or another, one wants to get as much infor-
mation about the algebra as possible. Some of this information can be obtained
by considering the algebra homomorphisms from Λ to other better understood al-
gebras. For example knowing all algebra homomorphisms from Λ to Md(K), the
ring of d× d-matrices over K, gives a lot of information.

Examples: 1. Λ = K. There is only one K-algebra homomorphism φ : Λ →
Md(K) for each d, and that is given by φ(λ) = λId where Id is the d × d-identity
matrix.

2. Λ = K[X]. A K-algebra homomorphism from K[X] to Md(K) is completely
determined by the image of X, and any matrix in Md(K) can be the image of
X. And hence, {φ : K[X] → Md(K) | φ a K-algebra homomorphism } can be
identified with Md(K).

3. Λ = K〈X,Y 〉. A K-algebra homomorphism φ : K〈X,Y 〉 → Md(K) is
completely determined by its value at X and Y , and any two matrices A and B in
Md(K) can be such an image. Hence the set of K-algebra homomorphisms can be
identified with Md(K)×Md(K).

4. Λ = K[X,Y ]. Now a K-algebra homomorphism is completely determined by
the images A and B of X and Y respectively, and in addition these two matrices A
and B have to commute. Hence the set of K-algebra homomorphism from K[X,Y ]
to Md(K) can be identified with the set {(A,B) ∈Md(K)×Md(K) | AB = BA}.

For d = 1 this gives all ordered pairs of matrices since any pair of 1× 1-matrices
commutes. And for d = 2 this gives the set of ordered pairs of 2× 2-matrices

{(A,B) =
((

a11 a12

a21 a22

)
,

(
b11 b12

b21 b22

))
|
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(
a11 a12

a21 a22

)(
b11 b12

b21 b22

)
−
(
b11 b12

b21 b22

)(
a11 a12

a21 a22

)
=
(

0 0
0 0

)
}.

By multiplying out the left hand side of this equation one obtains the following
four polynomial equations in 8 unknowns:

a11b11 + a12b21 − b11a11 − b12a21 = 0,

a11b12 + a12b22 − b11a12 − b12a22 = 0,

a21b11 + a22b21 − b21a11 − b22a21 = 0,

a21b12 + a22b22 − b21a12 − b22a22 = 0.
These four polynomial equations in the 8 unknowns aij and bij , i, j ∈ {1, 2} are
expressing exactly that the two matrices A and B are commuting.

Here the first and the fourth equation becomes the same, so the system consisting
of these four equations is redundant.

For a general d for this example one gets d2 quadratic equations in 2d2 unknowns,
and one obtains a bijection between the set of K-algebra homomorphisms from
K[X1, X2] to Md(K) and the set of zeros of these polynomial equations, i.e. the set
of K-algebra homomorphisms is in a bijection with a subvariety of the set of pairs
of matrices defined as the set of common zeros of all these quadratic polynomials.

5. Λ = Md(K). Let G be an invertible d× d-matrix and define φG : Md(K)→
Md(K) by φG(H) = GHG−1. Then φG is a K-algebra homomorphism, and by
Skolem-Noether’s theorem all K-algebra homomorphisms from Md(K) to Md(K)
are given in this way. Since φG ◦ φG−1 = IMd(K) they are all isomorphisms.

Letting Gld(K) denote the group of invertible d× d-matrices, one gets a group
homomorphism from Gld(K), the group of invertible d×d-matrices, onto the group
of K-algebra automorphisms of Md(K). The kernel of this group homomorphism
is the set of invertible matrices commuting with all invertible matrices. This is the
set of nonzero scalar matrices. Hence the group of K-algebra automorphisms of
Md(K) is naturally isomorphic to Gld(K)/K∗.

13. Λ = K〈X,Y 〉/〈XY − Y X + 1〉. A K-algebra homomorphism φ from
K〈X,Y 〉/〈XY − Y X + 1〉 to Md(K) is completely determined by the values φ(X)
and φ(Y ) of X and Y respectively, and in addition these two matrices φ(X) and
φ(Y ) have to satisfy the equation

φ(X)φ(Y )− φ(Y )φ(X) + Id = 0

where Id is the d×d-identity matrix. However, the trace of the matrix φ(X)φ(Y )−
φ(Y )φ(X) is zero; and therefore the trace of the d × d-identity matrix has to be
zero. For this to be the case one has to have that the characteristic of the field K
divides d. So if the characteristic of K does not divide d there are no K-algebra
homomorphisms from Λ to Md(K). On the other hand, if the characteristic of the
field K divides d, then an easy calculation will show that there always exists such
K-algebra homomorphisms from Λ to Md(K).
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26 SVERRE O. SMALØ

3. Geometry and group actions

In this section the action of the group Gld(K) on the varieties of representations
will be introduced, and some facts about this action will be given.

For Λ a finitely generated K-algebra and a fixed natural number d, let repd Λ =
{f : Λ→Md(K) | f a K-algebra homomorphism }.

Examples:
1. Λ = K. One has that repd(Λ) consists of one element, the K-algebra homo-

morphism sending λ to λId where Id is the d× d-identity matrix.
2. Λ = K[X]. One has that repdK[X] ' Md(K) where the map from the

right to the left is given by evaluation, i.e. a matrix A is sent to the K-algebra
homomorphism which takes the value f(A) on a given polynomial f .

3. Λ = K〈X,Y 〉. One has that repdK〈X,Y 〉 ' Md(K) ×Md(K) where the
map from the right to the left takes a pair of matrices (A,B) to the K-algebra
homomorphism sending a given polynomial f in two non commuting variables to
the matrix f(A,B).

4. Λ = K[X,Y ]. One has that repdK[X,Y ] ' {(A,B) ∈ Md(K) ×Md(K) |
AB = BA}, where again the map from right to left is given by sending a polyno-
mial f to the matrix obtained by evaluating the polynomial f in two commuting
variables in the pair of matrices (A,B) obtaining f(A,B).

13. Λ = K〈X,Y 〉/〈XY − Y X + 1〉. If K = C then repd Λ is empty. In general
one has that repd Λ is nonempty if and only the characteristic of the field K divides
the number d.

5. Λ = Md(K). One has that repdMd(K) ' Gld(K)/K∗ where the map from
right to left is given by sending a coset AK∗ of an invertible matrix A to the
K-algebra homomorphism given by sending a matrix B to the matric ABA−1.

Since composition of two K-algebra homomorphisms is again a K-algebra ho-
momorphism, one can let Gld(K)/K∗ act on repd(Λ) just by composition with the
corresponding automorphism on Md(K). Ψ : Gld(K)/K∗ × repd(Λ) → repd(Λ) is
given by Ψ(AK∗, f) = φA◦f where φA(B) = ABA−1 where A is any representative
from the coset AK∗.

Often one suppresses K∗ and one is speaking about an action of Gld(K) on
repd Λ.

Now let Λ be a finitely generated K-algebra. Then one has that Λ is isomorphic
to K〈X1, X2, ...., Xn〉/I for an ideal I in the free algebra K〈X1, X2, ..., Xn〉. Using
such an isomorphism as an identification, an element f of repd Λ is completely deter-
mined by the values on the elements X1, X2, ..., Xn where one denotes the residues
of the variables X1, X2, ..., Xn also with the symbol X1, X2, ..., Xn respectively.
Therefore the n-tuple (f(X1), f(X2), ..., f(Xn)) ∈Md(K)×Md(K)× ....×Md(K)
can be identified with f . In the Examples 2, 3, 4 and 13, n has been 1, 2, 2 and 2
respectively. In Examples 2 and 3, one obtained the whole space of matrices and
the whole space of ordered pairs of matrices as possible values respectively, while
in example 4 one obtained that the set of possible ordered pairs of matrices were
given as the common zeros of d2 quadratic polynomials in 2d2 variables. While in
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Example 13 with K = C one obtained the empty set, which is also the common
zeros of a set of polynomials.

In general, the possible n-tuples in Md(K)n which represent K-algebra homo-
morphisms are given by polynomial equations. These can be described in the
following way: For each α ∈ I, α(A1, A2, ..., An) = 0 gives a set of polynomial
equations on the nd2 entries in the matrices A1, A2, ..., An. Next taking all these
equations as α runs through the ideal I, gives (usually) an infinite collection of poly-
nomial equations on the entries in the matrices A1, A2, ..., An, and these equations
determine an affine variety which is in bijection with repd Λ. Hence

repd Λ ' {(A1, A2, ..., An) ∈Md(K)n | α(A1, A2, ..., An) = 0,∀α ∈ I},

which shows that repd Λ can be thought of as a subvariety of the affine space
Md(K)n. Furthermore, if one uses the identification between repd Λ and the set
of n-tuples of matrices satisfying all the polynomial equations above, where an
f ∈ repd Λ is identified with the n-tuple of matrices (f(X1), f(X2), ..., f(Xn)),
then for each A ∈ Gld(K) the n-tuple corresponding to the K-algebra homomor-
phism φA◦f is the n-tuple (Af(X1)A−1, Af(X2)A−1, ..., Af(Xn)A−1). This shows
that the subvariety of n-tuples of matrices representing the set of K-algebra homo-
morphisms from Λ to Md(K) is closed with respect to conjugation with matrices
from Gld(K). In fact it shows that repd Λ with the given action of Gld(K) and the
set of matrices representing the K-algebra homomorphisms with the action from
Gld(K) by conjugation are isomorphic as Gld(G)-sets.

For each m ∈ repd Λ there is associated a d-dimensional Λ-module Mm. This
module is Kd as a K-vector space, and for each λ ∈ Λ and v ∈ Mm = Kd the
multiplication of λ with v is given as λv = m(λ)v where the multiplication on the
right side is regular matrix multiplication when each element of Kd is considered
as a d× 1-matrix.

Two elements m and m′ in repd Λ represent isomorphic Λ-modules Mm and
Mm′ if and only if m and m′ belong to the same orbit under the action of Gld(K)
on repd Λ. Hence, one obtains a bijection between the set of isomorphism classes
of Λ-modules of dimension d as K-vector spaces and the set of Gld(K)-orbits in
repd Λ.

Here are some facts about the set of Gld(K) orbits in repd Λ for a K-algebra Λ
generated by n elements.

1. For each m in repd Λ the orbit Gld(K)m is open in its Zariski closure
Gld(K)m = {m′ ∈ repd Λ | p(m′) = 0 whenever p is a polynomial in nd2 vari-
ables such that p(Gld(K)m) = 0}.

2. For each m in repd Λ the closure of the orbit of m, Gld(K)m, is a union of
orbits.

3. The dimension of the complement of an orbit in its closure is less than
the dimension of the orbit, i.e. dim(Gld(K)m \ Gld(K)m) < dim Gld(K)m. The
following formula for the dimension hold: dim Gld(K)m = d2 − dim EndΛ(Mm).
Here dimension is referring to the Krull-dimension of the varieties.
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Now one looks at isomorphism classes of Λ-modules having dimension d as K-
vector spaces, and denotes each of them also by a simple letter M . For two isomor-
phism classes M and N , one says that M degenerates to N if the orbit in repd Λ
corresponding to N is contained in the closure of the orbit of the isomorphism class
corresponding to M . One writes this by M ≤deg N . Because of statement 3 above,
this becomes a partial order on the set of isomorphism classes of Λ-modules having
dimension d as K-vector spaces.

Example:
2. Λ = K[X] and d = 2. Then rep2K[X] consists of all 2 by 2 matrices over K.

The orbits under the Gl2(K)-action are basically determined by the eigenvalues of
the matrices. Most of the orbits can be parameterized by {{α, β} | α ∈ K, β ∈
K, α 6= β} where the correspondence is given in a one-to-two fashion by taking

the orbit of the matrix
(
α 0
0 β

)
which has dimension 4 − 2 = 2 according to the

above formula. These orbits are closed.

Then to each α in K there are two orbits, the orbit of the matrix
(
α 0
0 α

)
,

which consists of a single element and is hence of dimension 0 = 4 − 4, and the

orbit of the matrix
(
α 1
0 α

)
. This orbit is of dimension 4− 2 = 2, and its closure

contains in addition to the orbit itself, the orbit (one single element) of
(
α 0
0 α

)
.

If one wants to look at higher dimensions than two for this example, one can list
the eigenvalues of the matrix, and since conjugate matrices have the same eigenval-
ues, all matrices in an orbit have the same eigenvalues counted with multiplicities.
The eigenvalues together with their multiplicity will therefore parameterize the
orbits in a certain combinatorial way.

To do this, one first has to look at the situation where there is only one eigen-
value. Letting α ∈ K, one then has the set repdK[X]α which is the subset of repd Λ
consisting of matrices having α as the sole eigenvalue. Then the orbits in repd Λα

will correspond to partitions of d, d1 ≥ d2 ≥ .... ≥ dd ≥ 0 where
∑d
i=1 di = d.

Each di corresponds to a Jordan normal form of a matrix of size di with eigenvalue
α, and the partition d1 ≥ d2 ≥ ... ≥ dd then corresponds to the representation of
dimension d with Jordan blocks of size di with eigenvalue α along the diagonal. Or
equivalently, this corresponds to the direct sum of representations of dimension di
given by a Jordan normal form of size di with eigenvalue α. Then a K[X]-module
corresponding to the partition d1 ≥ d2 ≥ ... ≥ dd degenerates to the K[X]-module
corresponding to the partition d′1 ≥ d′2 ≥ ... ≥ d′d if and only if

∑t
i=1 di ≥

∑t
i=1 d

′
i

for all t.
Now this information can be put together by first sorting by eigenvalues and

their multiplicities, and then using the order given by partitions for each eigenvalue
individually, to get a complete picture of the degeneration order in repdK[X] for
any d as the example with d = 2 illustrates.
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4. Degeneration and exact sequences

As one shall see in this section, there is a close relationship between exact se-
quences and degenerations. The starting point for this relationship is the following
old result which is included in order to illustrate some of the techniques used to
obtain degenerations.

Proposition 4.1. Given a finitely generated K-algebra Λ and an exact sequence
0 → N ′ → M → N → 0 of Λ-modules which are finitely dimensional as K-vector
spaces, then M ≤deg N ⊕N ′.

Proof. Let Λ = K〈X1, X2, ..., Xn〉/I be a presentation of the finitely generated
K-algebra. Assume the dimension of M as a K-vector space is d which is then the
same as the dimension of N ′ ⊕N as a K-vector space. Produce a basis for M by
first choosing a basis for N ′, and then extend this basis to a basis for the whole
of M . This produces a complement V of N ′ in M such that M = N ′ ⊕ V as a
K-vector space. Then identify the part of the basis for M coming from V with a
basis for N through the map from M to N given in the exact sequence. Since N ′

is closed with respect to multiplication with each elements from Λ one gets that

φM (λ) =
(
φN ′(λ) 0
αλ βλ

)
for each λ in Λ. Further, βλ induces a Λ-module structure

on V which by the identification of the basis in V with a basis of N makes V equal
to N as a Λ-module. Hence βλ = φN (λ) so the matrix representing multiplication

with each λ in Λ is with respect to this basis given as φM (λ) =
(
φN ′(λ) 0
αλ φN (λ)

)
for some K-linear homomorphism αλ : V → N ′. Therefore the n-tuple of matrices
representing the module M is

(φM (X1), φM (X2), ..., φM (Xn)) =((
φN ′(X1) 0
αX1 φN (X1)

)
,

(
φN ′(X2) 0
αX2 φN (X2)

)
, ...,

(
φN ′(Xn) 0
αXn

φN (Xn)

))
.

Now let t 6= 0 be an element of K and compose φMwith the inner automorphism

determined by the matrix
(
t−1Id′ 0

0 Id′′

)
where d′ is the dimension of N ′ as a

K-vector space and d′′ is the dimension of V as a K-vector space. From this one
can see that the part of the line (a point if all αXi

are zero)((
φN ′(X1) 0
tαX1 φN (X1)

)
,

(
φN ′(X2) 0
tαX2 φN (X2)

)
, ...,

(
φN ′(Xn) 0
tαXn

φN (Xn)

))
when t 6= 0 is in the orbit corresponding to M . Any polynomial that vanishes on
this part of the line will also have to vanish on the n-tuple of matrices corresponding
to t = 0. Therefore the tuple of matrices corresponding to t = 0 in repd Λ is
in the closure of the orbit corresponding to M . However, the tuple of matrices
corresponding to the value t = 0 is((

φN ′(X1) 0
0 φN (X1)

)
,

(
φN ′(X2) 0

0 φN (X2)

)
, ...,

(
φN ′(Xn) 0

0 φN (Xn)

))
,
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which represent the K-algebra homomorphism corresponding to the direct sum of
the two Λ-modules N ′ and N . �

This result was the starting point for the degeneration theory of modules and
goes back to M. Artin in the 60’ties.

As a corollary of this result one obtains the following.

Corollary 4.2. Let Λ be a finitely generated K-algebra and M a Λ-module in
repd Λ. Then the module M is semisimple if the orbit of M in repd Λ is closed.

Proof. Assume that the orbit of M in repd Λ is closed. Then for each Λ-submodule
N of M , the module N ⊕M/N is in the closure of the orbit of M by Artin’s result.
By assumption the orbit of M is its own closure. Therefore M has to be isomorphic
to N ⊕M/N . However, this forces N to be a direct summand of M and hence M
is semisimple since each submodule of M is then a direct summand. �

Later on, one will see that the result of this corollary can be extended to give
a complete characterization of the closed orbits in repd Λ for a finitely generated
K-algebra Λ since the closed orbits in repd Λ are exactly the orbits of semisimple
Λ-modules which has dimension d as K-vector spaces.

However, not all degenerations can be obtained in this way since there are ex-
amples where an indecomposable Λ-module degenerates properly into another in-
decomposable Λ-module, while each degeneration M ≤deg N coming from a short
exact sequence with all terms being non-zero as above, have the property that N
have to be a decomposable Λ-module.

Proposition 4.3. Let Λ be a finitely generated K-algebra. If there exists an exact
sequence 0 → A → A ⊕M → N → 0 of Λ-modules with A, M and N finitely
dimensional as K-modules, then dimM = dimN and M ≤deg N .

This result was obtained by Chr. Riedtmann and could be used directly to give
examples where an indecomposable Λ-module was degenerating properly into some
other indecomposable Λ-module.

An outline of the proof of this proposition will be postponed. Instead a couple
of examples are given in order to show how this result can be applied to obtain
degenerations.

The first application is an example originally coming from representations of
algebra given by a quiver which is illustrating that an indecomposable Λ-module
can degenerate properly into another indecomposable Λ-module.

Example: Consider the K-subalgebra Λ of the K-algebra of lower 3×3-matrices
over the field K given as the set of matrices

Λ = {

a 0 0
b c 0
d e c

 | a, b, c, d, e ∈ K}.
Rev. Un. Mat. Argentina, Vol 48-2
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Then the left ideal I generated by the matrix

0 0 0
1 0 0
0 1 0

 in Λ is as a left Λ-module

projective and is isomorphic to P2 = Λ

0 0 0
0 1 0
0 0 1

. Furthermore, one has that

Λ = P1 ⊕ P2 = Λ

1 0 0
0 0 0
0 0 0

⊕ Λ

0 0 0
0 1 0
0 0 1

 .

Now one has the non split exact sequence

0→ I → Λ→ Λ/I → 0

with Λ = P1⊕P2 which by identifying I and P2 through an Λ-isomorphism between
them gives an exact sequence

0→ P2 → P1 ⊕ P2 → Λ/I → 0.

This is showing that P1 ≤deg Λ/I. It is not hard to show that both P1 and Λ/I
are indecomposable Λ-modules. Furthermore, since I is in the radical of Λ, Λ/I is
not a projective Λ-module, and therefore P1 and Λ/I can not be isomorphic as left
Λ-modules.

Here is another example where one can use the result of Riedtmann to prove
that any finitely dimensional Λ-module degenerates to a semisimple Λ-module.

Let Λ be a finitely generated K-algebra, and let M be a Λ-module which is
finitely dimensional as a K-vector space. Let A = radM⊕rad2M⊕ ....⊕radn−1M
where radiM denotes the i-th power of the radical of the Λ-module M and
radnM = 0. Consider now the exact sequence

0→ A
f→ A⊕M →

M/ radM ⊕ radM/ rad2M ⊕ ...⊕ radn−1M/ radnM → 0

where the left hand Λ-homomorphism f is induced from the inclusions radiM ⊂
radi−1M for i = 1, 2, ... , n−1. This shows that M degenerates into a semisimple
Λ-module having the same composition factors as M counted with multiplicities.

One could also have seen this last result by an inductive argument using just
exact sequences as in the result of M. Artin.

Proof. Here is an indication of a proof of Riedtmann’s result in Proposition 4.3
Consider an exact sequence

0→ A

“
f
g

”
→ A⊕M → N → 0,

where f : A→ A and g : A→M are Λ-homomorphisms. Next consider for each λ
in K the exact sequence

0→ A

“
f−λIA
g

”
→ A⊕M → Nλ → 0
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of Λ-modules where IA is the identity on A and Nλ is the cokernel of the Λ-
homomorphism

(
f−λIA
g

)
. Now

(
f−λIA
g

)
is a split monomorphism for almost all λ

in K which is a consequence of the fact that f − λIA is an isomorphism for all λ
not an eigenvalue of f . Next choose a subspace of A⊕M of the same dimension as
M and which only meets a finite number of the subspaces

(
f−λIA
g

)
A nontrivially,

including the case with λ = 0. Now for each λ in K where the intersection of(
f−λIA
g

)
A and V is trivial, one obtains an induces Λ-module structure on V by

projecting A⊕M onto V along
(
f−λIA
g

)
A. For each of these admissible values of

λ which is not an eigenvalue of f one obtains an induced Λ-module structure on
V isomorphic to M , while for the value λ = 0 one obtains an induced Λ-module
structure isomorphic to N . This shows that M ≤deg N . �

The converse of Riedtmann’s result also holds as has been proved by G. Zwara.
For a proof of this statement given in the next proposition, the reader is referred
to the paper [Z2].

Proposition 4.4. Let Λ be a finitely generated K-algebra and M and N in repd Λ
with M ≤deg N . Then there exists an exact sequence 0 → A → A ⊕M → N → 0
of Λ-modules where A is finitely dimensional as a K-module.

These two results give a complete algebraical description of degeneration, and
hence one can take these as the starting point generalizing the notion of degener-
ation also to the situations where one is not working over an algebraically closed
field, or even to the situations considering just a finitely generated K-algebra over
a commutative artin ring K, and where one is using lengths instead of dimensions.
So from now on, unless otherwise stated, K will be a commutative artin ring, Λ
will be a finitely generated algebra over K, and the dimension as a K-vector space
will be substituted by the length as a K-module and denoted by `K or just ` if
there can be no confusion. One can also loosely introduce the set repd Λ as the set
of Λ-modules of length d considered as K-modules.

In this note the version of the exact sequence

0→ A→ A⊕M → N → 0

has been given, but there exists such a sequence if and only if there exists a sequence

0→ N → B ⊕M → B → 0.

So one can choose to work with either side as one desires.

5. Virtual degenerations

In this section the notion of degeneration is generalized. Since the Krull-Remark-
Schmidt-theorem holds for finite length modules, one has uniqueness in decompo-
sitions of such a module into indecomposable summands up to isomorphism. How-
ever, as one will soon see, this decomposition does not behave nicely with respect to
degenerations. This is because one cannot cancel common direct summands from
modules M and N when M ≤deg N , and obtain a degeneration of the remaining
complements. Here is an interesting example that demonstrates this.
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Consider Λq = K〈X,Y 〉/〈X2, Y 2, XY + qY X〉 where K is an algebraically
closed field and q a non-zero element of K. Λq is then a self injective local K-
algebra of dimension four. Then look at rep4 Λ = {(A,B) ∈ M4(K)2 | A2 = B2 =
AB + qBA = 0}. The regular representation ΛΛ itself belongs to rep4 Λq and the
dimension of its orbit under the action of Gl4(K) is given as 42−dimK EndΛq (Λq) =
42− 4 = 12. Next consider, for each 0 6= (a, b) ∈ K2, the 2-dimensional Λq-module
Ma,b = Λq/〈aX + bY 〉 where also the residue of X and Y in Λq are denoted by X
and Y respectively. Now Ma,b is isomorphic to Ma′,b′ if and only if the determinant
of the matrix

(
a b
a′ b′

)
is zero. Further, if the determinant of the matrix

(
a b
a′ b′

)
is

non-zero, the dimension of the endomorphism ring of Ma,b ⊕Ma′,b′ is 6. Hence,
the orbit of each of these Λq-modules Ma,b ⊕Ma′b′ when the determinant of the
matrix

(
a b
a′ b′

)
is nonzero, has dimension 16 − 6 = 10. This together with the two

parameters (a, b) and (a′, b′) shows that all these orbits make up a geometric object
of dimension 12. Therefore not all orbits of these Λq-modules Ma,b ⊕Ma′,b′ can
be in the closure of the orbit corresponding to Λq

Λq since this orbit is also, as
calculated above, of dimension 12. However, for each 0 6= (a, b) ∈ K2 there is an
exact sequence

0→Ma,b → Λq ⊕ S → Λq/ soc Λq → 0

where S is the simple Λq-module and soc Λq denotes the socle of Λq which is also
isomorphic to S. Therefore one has that Λq ⊕ S ≤deg Ma,b ⊕ (Λq/ soc Λq). Now
since each Ma′,b′ is annihilated by soc Λq and in addition is cyclic, there is an exact
sequence

0→ S → Λq/ soc Λq →Ma′,b′ → 0.

By transitivity of degenerations one gets that Λq ⊕ S ≤deg Ma,b ⊕Ma′,b′ ⊕ S for
all choices for 0 6= (a, b) and 0 6= (a′, b′). So even if one does not have Λq ≤deg
Ma,b ⊕Ma′,b′ one obtains a degeneration by adding the same direct summand to
both sides. This shows that in the degeneration order, one cannot in general cancel
common direct summands.

This example was first considered for this purpose by J. Carlson where he used
the case q = −1.

Let again Λ be a finitely generated K-algebra with K an algebraically closed
field. One says that a Λ-module M in repd Λ virtually degenerates to a Λ-module
N in repd Λ if there exists a finitely dimensional Λ-module B such that M ⊕ B
degenerates to N ⊕B.

By Zwara’s result, this is the same as saying that there exact an sequence 0→
A→ A⊕B⊕M → B⊕N → 0 of Λ-modules where A and B are finitely dimensional
as K-vector spaces.

Again, using the characterization of virtual degenerations given by short exact
sequences, one can extend the notion of virtual degeneration to situations where
one is working over a finitely generated algebra Λ over a commutative artin ring
K instead of working with finitely generated algebras over an algebraically closed
field.

Rev. Un. Mat. Argentina, Vol 48-2



i
i

i
i

i
i

i
i

34 SVERRE O. SMALØ

Proposition 5.1. Let Λ be a finitely generated K-algebra. If the Λ-module M
virtually degenerates to the Λ-module N , i.e. there is an exact sequence of Λ-
modules

0→ A→ A⊕B ⊕M → B ⊕N → 0
which are of finite length as K-modules, then `(HomΛ(M,X)) ≤ `(HomΛ(N,X))
for each Λ-module X which has finite length as a K-module.

Proof. Consider an exact sequence

0→ A→ A⊕B ⊕M → B ⊕N → 0

as in the proposition, and let X be a Λ-module which has finite length as a K-
module. Then apply the functor HomΛ( , X) to this sequence and obtaining the
exact sequence

0→ HomΛ(B ⊕N,X)→ HomΛ(A⊕B ⊕M,X)→ HomΛ(A,X)

of K-modules. Then counting lengths as K-modules, one obtains the inequality:

`(HomΛ(B ⊕N,X)) + `(HomΛ(A,X)) ≥ `(HomΛ(A⊕B ⊕M,X)).

Now by subtracting `(HomΛ(A ⊕ B,X)) from both sides of this inequality one
obtains the desired result `(HomΛ(M,X)) ≤ `(HomΛ(N,X)) for each Λ-modules
X which has finite length as a K-module. �

One can also obtain this result from geometric considerations in the case one is
working over an algebraically closed field.

In light of this result one introduces another relation on repd Λ, called the hom
order, which also turns out to be a partial order on the set repd Λ by a result of M.
Auslander.

For two Λ-modules M and N in repd Λ one says that M ≤hom N if
`(HomΛ(X,M)) ≤ `(HomΛ(X,N)) for all Λ-modules X of finite length as K-
modules.

As already mentioned, this order is called the hom order. This order is also
symmetric in the sense that `(HomΛ(X,M)) ≤ `(HomΛ(X,N)) for all Λ-modules
X of finite length as K-modules if and only if `(HomΛ(M,Y )) ≤ `(HomΛ(N,Y ))
for all Λ-module Y of finite length as K-modules.

¿From the propositions above one then has the following implications: M ≤deg
N =⇒M ≤vdeg N =⇒M ≤hom N . By the example of J. Carlson one knows that
the first implication is not an equivalence in general. So far no one has come up
with an example showing that the last implication is not an equivalence, and hence
it is an open problem if the second implication is in fact an equivalence.

Recall that a finitely generated K-algebra Λ with K a commutative artin ring
is called an artin algebra if Λ as a K-module has finite length. Such an artin
algebra is said to be of finite representation type if there are only a finite number
of isomorphism classes of indecomposable Λ-modules. The algebra in the example
of J. Carlson is artinian, but it is not of finite representation type. One can see
that directly. However, that the Λqs above are not of finite representation type
can also be deduced from the next result stating that for artin algebras of finite
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representation type the degeneration order, the virtual degeneration order and the
hom order all agree. This was first proved by G. Zwara. For general background
on representation theory of artin algebras see [ARS].

Theorem 5.2. If Λ is an artin K-algebra of finite representation type, and M and
N are two Λ-modules of the same length as K-modules, then the three following
statements are equivalent:

1. M ≤deg N
2. M ≤vdeg N
3. M ≤hom N

Proof. A complete proof of this is based on the study of the finitely presented
functors on the category of finitely generated Λ-modules and hence belongs to
the Auslander-Reiten theory for artin algebras. Here only a sketch will be given.
That statement 1 implies statement 2 is obvious, and that statement 2 implies
statement 3 has already been proven, so the only part left which has to be proved
is that statement 3 implies statement 1 when Λ is an artin K-algebra of finite
representation type.

So, assume there are two Λ-modules M and N of the same length as K-modules
such that M ≤hom N . If M is isomorphic to N there is nothing to prove. Hence
one can assume that M and N are not isomorphic modules. Then one can consider
the contravariant functors HomΛ( , N) and HomΛ( ,M) on the category of finitely
generated Λ-modules. Since Λ is of finite representation type, these functors are of
finite length and hence artinian. Next consider the category mod mod Λ of finitely
presented contravariant functors on the category of finitely generated Λ-modules.
For each F in mod mod Λ one lets [F ] denote the element associated with the functor
F in the Grothendieck group of mod mod Λ . Since Λ is of finite representation type,
there is a finitely presented functor G such that [G] = [HomΛ( , N)]−[HomΛ( ,M)].
Now a fact which will be proven in the next lemma is that for a pair of nonzero
Λ-modules N and M of the same length as K-modules, with no common nonzero
direct summand and with M ≤hom N , there is always a direct summand N ′ of
N such that `(HomΛ(N ′,M)) < `(HomΛ(N ′, N)). Using this fact and that the
functor HomΛ( , N) is artinian, one can now prove that the functor HomΛ( , N)
has a subfunctor H with the same composition factors as HomΛ( ,M) counted
with multiplicity, i.e. [H] = [HomΛ( ,M)]. To see this, consider all subfunctors
F of HomΛ( , N) such that `F (X) ≥ `HomΛ(X,M) for all Λ-modules X of finite
length as K-module. This set is nonempty since HomΛ( , N) is a member, and
hence this set has a minimal element. Let H be one of these minimal elements.
Choose a minimal projective presentation of the functor H which has projective
dimension one since it is a submodule of a projective functor, 0 → HomΛ( , A) →
HomΛ( , B)→ H → 0. If [H] 6= [HomΛ( ,M)], one obtains thatM⊕B ≤hom A with
M ⊕B 6' A. But then, by first cancelling common direct summands one gets from
the fact which is proved in the next lemma, that there exists an indecomposable
summand A′ of A where one has that `HomΛ(A′, A) > `HomΛ(A′,M⊕B). Hence,
since HomΛ( , B) is contained in the radical of the functor HomΛ( , A), the image
H ′ of the subfunctor rad HomΛ( , A′) ⊕ HomΛ( , A′′) of HomΛ( , A) in H when
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A = A′ ⊕ A′′, also have the property that `H ′(X) ≥ `HomΛ(X,M) for all Λ-
modules X of finite length as an K-module. This contradicts the minimality of H
and completes the proof of the claim that HomΛ( , N) has a subfunctor H such
that [H] = [HomΛ( ,M)].

Now since the global dimension of the category of finitely presented functors
is at most two, one takes a minimal projective resolution of HomΛ( , N)/H and
obtains an exact sequence

0→ HomΛ( , X)→ HomΛ( , Y )→ HomΛ( , N ′′)→ HomΛ( , N)/H → 0

with N ′′ a direct summand of N and

[Hom Λ( , N)/F ] = [HomΛ( , N)]− [HomΛ( ,M)].

Hence one gets that

[HomΛ( , X)] + [HomΛ( , N ′′)]− [HomΛ( , Y )]

= [HomΛ( , N)]− [HomΛ( ,M)],

or equivalently,

[HomΛ( , X)] + [HomΛ( , N ′′)] + [HomΛ( ,M)]

= [HomΛ( , Y )] + [HomΛ( , N)].

The representatives of the projective functors [HomΛ( , A)] with A running through
a fixed set of representatives of the isomorphism classes of the finitely generated
indecomposable Λ-modules is a basis for the Grothendieck group of the finitely
presented functors. This group is a free abelian group. From this one obtains that

X ⊕N ′′ ⊕M ' Y ⊕N.

Now since one can assume thatN andM have no common nonzero direct summand,
M is isomorphic to a direct summand of Y , and X = X ′⊕X ′′ with N ' X ′′⊕N ′′,
and hence also Y ' M ⊕ X ′. Therefore adding a copy of X ′′ to Y and to N ′′

with the identity homomorphism between these copies of X ′′ one obtains the exact
sequence 0→ X → X ⊕M → N → 0 showing that M ≤deg N . �

Here is the statement, including a proof, of the proper inequality in the length
of homomorphism spaces which was used in the proof of the theorem above. This
result is due to K. Bongatz.

Lemma 5.3. Let Λ be an finitely generated K-algebra and M and N two nonzero
Λ-modules in repd Λ such that M ≤h omN and such that M and N have no nonzero
common direct summand. Then there exist an indecomposable summand N ′ of N
such that `(HomΛ(N ′,M)) < `(HomΛ(N ′, N)).

Proof. Let f1, f2, ..., fn be a generating set for the finite length K-module
HomΛ(M,N) and consider the exact sequence

M
(f1,f2,...,fn)tr

−→ Nn −→ C −→ 0
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where C is the cokernel of the given map induced by the fi, i = 1, 2, ..., n. Now
apply HomΛ( ,M) and HomΛ( , N) to this sequence and obtain the sequences

0→ HomΛ(C,N)→ HomΛ(Nn, N)
HomΛ((f1,f2,...,fn)tr,N)−→ HomΛ(M,N)

and

0→ HomΛ(C,M)→ HomΛ(Nn,M)
HomΛ((f1,f2,...,fn)tr,M)−→ HomΛ(M,M)

The K-homomorphism HomΛ((f1, f2, ..., fn)tr, N) is by construction an epimor-
phism. Now assume that the equality `(HomΛ(N,N)) = `(HomΛ(M,N))
is satisfied. Letting Im(HomΛ((f1, f2, ..., fn)tr,M)) denote the image of the
morphism HomΛ((f1, f2, ..., fn)tr,M), one gets from the exact sequences above
that ` Im(HomΛ((f1, f2, ..., fn)tr,M)) = `(HomΛ(Nn,M)) − `(HomΛ(C,M)) ≥
`(HomΛ(Nn, N)) − `(HomΛ(C,N)) = `(HomΛ(M,N)) ≥ `(HomΛ(M,M)), which
shows that HomΛ((f1, f2, ..., fn)tr,M) is an epimorphism. Therefore one also ob-
tains that the identity from M to M factors through the map (f1, f2, ..., fn)tr and
hence (f1, f2, ..., fn)tr is itself a split monomorphism. This shows that the two
modules M and N have to have some common nonzero direct summands. Hence
if M and N have no common nonzero direct summands and M ≤hom N , then
`(HomΛ(N,M)) < `(HomΛ(N,N)), and hence there is at least one nonzero di-
rect summand N ′ of N where one has a proper inequality `(HomΛ(N ′,M)) <
`(HomΛ(N ′, N)) completing the proof of the lemma. �

If one analysis the proof of the theorem above, one also get that if M ≤hom
N and `HomΛ(X,M) = `HomΛ(X,N) is satisfied for all but a finite number
of indecomposable Λ-modules X which are of finite length as K-modules, then
M ≤deg N .

Also for the algebra Λ = K[X], the degeneration order and the hom order
coincides on repdK[X]. This can be seen from the description on the degeneration
order given earlier in this note and a simple calculation of the hom order.

One also has that the hom order descends to all extension groups for an artin
K-algebra Λ as the next result shows.

Proposition 5.4. Let Λ be an artin K-algebra and M and N two Λ-modules of
the same length as K-modules. Then M ≤hom N implies that `(Exti(X,M)) ≤
`(Exti(X,N)) and `(Exti(M,Y )) ≤ `(Exti(N,Y )) for all Λ-modules X and Y of
finite length and for all i ≥ 0.

Proof. Since Λ is assumed to be an artin K-algebra, one can consider an exact
sequence

0→ ΩX → P → X → 0
with P projective and both P and ΩX of finite length. Applying HomΛ( ,M) and
HomΛ( , N) to this sequence one obtains the following two exact sequences

0→ HomΛ(X,M)→ HomΛ(P,M)→ HomΛ(ΩX,M)→ Ext1
Λ(X,M)→ 0

and

0→ HomΛ(X,N)→ HomΛ(P,N)→ HomΛ(ΩX,N)→ Ext1
Λ(X,N)→ 0.
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From these sequences one obtains that

`(HomΛ(P,M)) + `(Ext1
Λ(X,M)) = `(HomΛ(X,M)) + `(HomΛ(ΩX,M))

≤ `(HomΛ(X,N)) + `(HomΛ(ΩX,N)) = `(HomΛ(P,N)) + `(Ext1
Λ(X,N)).

However, M and N being from repd Λ with M ≤hom N implies that
`(HomΛ(P,M)) = `(HomΛ(P,N)) for all projective Λ-modules of fine length.
Subtracting this number from both sides of the inequality above gives then
`(Ext1

Λ(X,M)) ≤ `(Ext1
Λ(X,N)) for all Λ-modules X of finite length. That

`(ExtiΛ(X,M)) ≤ `(ExtiΛ(X,N)) for all i ≥ 0 now follows by induction. A dual
argument gives the other half of the statement. �

This result is also due to K. Bongartz.
The following consequences on the projective and injective dimensions of Λ-

modules are immediate:

Corollary 5.5. Let Λ be an artin K-algebra and M and N two finitely generated
Λ-modules of the same length as K-modules. If M ≤hom N , then the projective
dimension of M is less than or equal to the projective dimension of N , and the
injective dimension of M is less than or equal to the injective dimension of N .

For those who want to work with tensor products and torsion groups instead
of groups of homomorphisms and extensions, the following translation may be of
interest.

Proposition 5.6. Let Λ be a finitely generated K-algebra and M and N two
nonzero Λ-modules of the same length as K-modules. Then M ≤hom N if and only
if `(X⊗ΛM) ≤ `(X⊗ΛN) for all right Λ-modules X of finite length as K-modules.

Proof. Let X be a right Λ-module which has finite length as a K-module. Then
one has the following equality for all left Λ-modules Y which have finite length as
K-modules. `(X ⊗Λ Y ) = `(D(X ⊗Λ Y )) where D is a duality on the category
of finitely generated K-modules over the commutative artin ring K. Using the
isomorphisms D(X ⊗Λ N) ' HomΛ(N,DX) and D(X ⊗Λ M) ' HomΛ(M,DX)
one then gets `(X⊗ΛM) = `(HomΛ(M,DX)) and `(HomΛ(N,DX)) = `(X⊗ΛN).
The statement in the proposition is then an immediate consequence of this. �

Restricting to artin K-algebras Λ this inequality also descends to all torsion
groups which is now stated without a proof.

Proposition 5.7. Let Λ be an artin K-algebra and M and N two Λ-modules
of the same length as K-modules such that M ≤hom N , then `(TorΛ

i (X,M)) ≤
`(TorΛ

i (X,N)) for all finitely generated right Λ-modules X and all i ≥ 0.

6. Degenerations, hom order and discrete invariants

The degeneration order and the hom order has also some impact on discrete
invariants associated with modules. One has already observed that projective di-
mension and injective dimension behaves nicely with respect to these orders as
a corollary of Bongatz’ result. These numerical invariants are rather coarse, and
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some interesting cases of degenerations occur between modules which cannot be
separated by these invariants. Therefore it is interesting to look at the induced
degeneration order, the induced virtual degeneration order and the induced hom
orders on sets of modules where these discrete invariants stay the same.

Some consequences of the hom order, and which are therefore also consequences
of the degeneration and the virtual degeneration orders, are the following.

Proposition 6.1. Let Λ be a finitely generated K-algebra and M and N two Λ-
modules of finite length as K-modules such that M ≤hom N Then the following
holds true:

1. The annihilator of M is contained in the annihilator of N .
2. `(M/ radiM) ≤ `(N/ radiN) for all i.
3. `(sociM) ≤ `(sociN) for all i. Here soci denotes the i’th socle of the Λ-

module.

Proof. From both general considerations and the assumption of the proposition
one has the following equalities and inequalities:

`(HomΛ(Λ/ annM,M)) = `M = `N ≤ `(HomΛ(Λ/ annM,N))

. Now the following isomorphism HomΛ(Λ/ annM,N) ' {n ∈ N | (annM)n = 0}
is satisfied, and hence this last set has to be the whole of N because of the length
inequality. Therefore (annM)N = 0 which finishes the proof of part 1.

For the Λ-module Γi = (Λ/ annM)/ radi(Λ/ annM), one can by evaluating a
Λ-homomorphism f in HomΛ(Γi, X) in the residue of the identity, identify sociX
with HomΛ(Γi, X) for all Λ-modules X annihilated by annM . Applying this to M
and N using 1, one gets that part 3 is satisfied.

Part 2 is proven in a similar way. Let Γ = Λ/ annM and consider the Λ-module
Γ/ radi Γ. Then from Proposition 5.6 one obtains that

`(M/ radiM) = `((Γ/ radi Γ)⊗Λ M)

≤ `((Γ/ radi Γ)⊗Λ N) = `(N/ radiN)

which completes the proof of the whole proposition. �

This shows that when one wants to consider the hom order, one can always cut
down to an artin algebra since Λ/ annM will always be an artin algebra when M
is a Λ-module of finite length as a K-module.

Let

0→ A→ A⊕M ⊕B → N ⊕B → 0

be an exact sequence of Λ-modules which are all of finite length as K-modules. By
letting Γ = Λ/ annM one has that Γ⊗Λ M is isomorphic to M and from the first
part of Proposition 6.1 one also has that Γ⊗Λ N is isomorphic to N . By applying
the functor Γ⊗Λ − to the above sequence one obtains the exact sequence

Γ⊗Λ A→ Γ⊗Λ (A⊕M ⊕B)→ Γ⊗Λ (N ⊕B)→ 0.
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By using the identification Γ⊗Λ X ' X/ annMX this is translated into an exact
sequence

A/ annM → A/ annMA⊕M ⊕B/ annMB → N ⊕B/ annMB → 0.

Now by counting lengths as K-modules one sees that the left hand homomorphism
in this last sequence has to be a monomorphism, and hence one has an exact
sequence

0→ Γ⊗Λ A→ Γ⊗Λ (A⊕M ⊕B)→ Γ⊗Λ (N ⊕B)→ 0

of Γ-modules which are all of finite lengths as K-modules. This shows that the
orders M ≤deg N and M ≤vgen N introduced so far are also preserved by reducing
to only Λ/ annM -modules.

One can now give the characterization of closed orbits in repd Λ for a finitely
generated algebra over an algebraically closed field K.

Corollary 6.2. Let Λ be a finitely generated K-algebra where K is an algebraically
closed field and d a natural number. Then the orbit of a Λ-module M in repd Λ is
closed if and only if M is semisimple.

Proof. That the orbit of M is closed in repdΛ forces M to be semisimple is already
established as a corollary of Artin’s result. One has that if M is a semisimple
module, then Λ/ annM is a semisimple ring. Therefore if M is semisimple and M
degenerates into N , then N is annihilated by annM and is hence itself semisimple.
From the comments above one then has that M degenerates into N as a Λ/ annM -
module. Hence, there is an exact sequence 0→ A→ A⊕M → N → 0 as Λ/ annM -
modules, which have to split since Λ/ annM is semisimple. This forces M to be
isomorphic to N , and therefore the orbit of M is closed in repd Λ. �

For modules M and N in repd Λ one has the following list of partial orders on
subsets of repd Λ:

1. M ≤tdeg N if M ≤deg N and M/ radM is isomorphic to N/ radN , i.e the
Λ-modules M and N have isomorphic tops and M degenerates to N .

2. M ≤ldeg N if M ≤deg N and radiM/ radi+1M is isomorphic to
radiN/ radi+1N for all i, i.e. the Λ-modules M and N have isomorphic radical
layers and M degenerates to N .

The notation M ≤tvdeg N, M ≤lvdeg N, M ≤thom N and M ≤lhom N is defined
in a similar way using the virtual degeneration order and hom order instead of
degeneration order respectively.

This list is not exhaustive since one could also add socle layers or even use the
subsets of repd Λ having the same lengths for the extension groups with a fixed
set of Λ-modules on one or the other side, or both sides. Here the semisimple Λ-
module Λ/ rad Λ is the most obvious one to be used. This will be giving subsets of
Λ-modules of a fixed length as K-modules where the terms in the projective and the
injective resolutions are the same respectively, but where the Λ-homomorphisms
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in these resolutions may be different. These are generalizations of the require-
ment that the tops and the socles being isomorphic for the two Λ-modules being
compared, respectively.

There is the following result obtained by B. Huisgen-Zimmermann regarding
degenerations between two Λ-modules M and N which have simple tops and where
the radical layers of the two modules are isomorphic. [H-Z]

Proposition 6.3. If M is a Λ-module of finite length as a K-module with
M/ radM simple and M ≤ldeg N , then M is isomorphic to N .

This result can be deduced as a corollary of the following more general result
using the hom order instead of the degeneration order.

Proposition 6.4. If M is a Λ-module with M/ radM simple and M ≤lhom N ,
then M is isomorphic to N .

Proof. The proof of this proposition goes by induction on the Loewy length of M .
If the Loewy length of M is one, then M is simple and hence also N has to

be simple. Further since `(HomΛ(M,M)) ≤ `(HomΛ(M,N)), there is at least
one nonzero Λ-homomorphism from M to N . This is then showing that M is
isomorphic to N .

So, let the Loewy length of M be n + 1 and assume by induction that the
statement hold for each X ′ with Loewy length less than or equal to n. Now
assume M ≤lhom N with M having simple top. As has already been observed,
annMN = 0 so one can reduce to the artin K-algebra Λ/ annM .

Now consider the two Λ/ annM -modules M ′ = M/ radnM and N ′ = N/ radnN
of Loewy length n. Then from the assumption in the proposition one has that
radiM ′/ radi+1M ′ is isomorphic to radiN ′/ radi+1N ′ for all i. One also has that
for each Λ/ annM -module X of finite length as a K-module that the following
equalities and inequalities hold:

`(HomΛ(N ′, X)) = `(HomΛ(N ′, socnX)) = `(HomΛ(N, socnX))

≥ `(HomΛ(M, socnX)) = `(HomΛ(M ′, X)).
Therefore one obtains that M ′ ≤lhom N ′. Hence M ′ is isomorphic to N ′ by the
induction assumption.

Next, since the top of M is simple the following equalities and inequalities hold:

`(HomΛ(M,M)) = `(HomΛ(M, radM)) + `(EndΛ(M)/ rad EndΛ(M))

= `(HomΛ(M ′, radM)) + `(EndΛ(M)/ rad EndΛ(M))

= `(HomΛ(N ′, radM)) + `(EndΛ(M)/ rad EndΛ(M))

≥ `(HomΛ(N ′, radM)).
However, if N is not isomorphic to M , then again since the top of M is simple,
and N ′ is isomorphic to M ′ the following equalities hold:

`(HomΛ(N,M)) = `(HomΛ(N, radM))

= `(HomΛ(N ′, radM)) = `(HomΛ(M ′, radM))).
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In general one has that when the Loewy length of M is n + 1 then
`(HomΛ(M ′, radM)) is properly less than `(HomΛ(M,M)), and therefore by the
last identities one gets that `(HomΛ(N,M) is properly less than `(HomΛ(M,M).
This contradicts the assumption that M ≤hom N . Hence M has to be isomorphic
to N which completes the proof of the proposition. �

This result about the hom order was obtained in a joint paper with Anita Valenta
[SV].

7. Modules determined by their tops and first syzygies

One has seen in the previous section that sometimes some invariants are com-
pletely determining a module up to isomorphism. In this section one will look
at a result of this type for artin algebras obtained by R. Bautista and E. Perez
and also present a generalization of their result discovered by C. M. Ringel at this
conference.

Let Λ be an artin K-algebra, and let rad denote the radical of Λ. For a Λ-module
M , let ΩM denote its first syzygy, i.e. there is an exact sequence

0→ ΩM → P →M → 0

with P →M a projective cover. The purpose of the rest of this note is to give an
elementary proof of the following theorem obtained by R. Bautista and E. Perez
in [BP], [S]. This is a generalization of earlier results of D. Voigt [V] for finitely
dimensional algebras over an algebraically closed field.

Theorem 7.1. Let Λ be an artin K-algebra, M and N two finitely generated Λ-
modules such that Ext1

Λ(M,M) = 0 and Ext1
Λ(N,N) = 0. Then M is isomorphic

to N if and only if M/ radM is isomorphic to N/ radN and ΩM is isomorphic to
ΩN .

The proof of this fact presented here is based on elementary homological algebra
and length considerations over the commutative artin ring K.

The next lemma is a consequence of Nakayama’s lemma and is well known.

Lemma 7.2. Let X be a non-zero finitely generated Λ-module and f : Xn →
X a Λ-epimorphism. Then there is an indecomposable Λ-module X ′ and Λ-
homomorphisms g : X ′ → Xn and h : X → X ′ such that hfg = 1X′ , the identity
on X ′.

This lemma can be applied to give the result after the following proposition has
been proven.

Proposition 7.3. Let M and N be finitely generated Λ-modules such that
Ext1

Λ(M,M) = 0, Ext1
Λ(N,N) = 0, M/ radM is isomorphic to N/ radN and ΩM

is isomorphic to ΩN . Then there is a Λ-epimorphism Mn → N for some natural
number n.
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Proof. Let M and N satisfy the assumption in the proposition. Without loss of
generality one can assume that M (and hence N) is non-zero. One has exact
sequences 0 → ΩM → P → M → 0 and 0 → ΩM → P → N → 0 of Λ-modules
with P a projective Λ-module. Then for each finitely generated Λ-module X one
obtains exact sequences

0→ HomΛ(M,X)→ HomΛ(P,X)→ HomΛ(ΩM,X)

→ Ext1
Λ(M,X)→ 0

and
0→ HomΛ(N,X)→ HomΛ(P,X)→ HomΛ(ΩM,X)

→ Ext1
Λ(N,X)→ 0

This shows that the identities

(1) : `(HomΛ(N,X))− `(Ext1
Λ(N,X))

= `(HomΛ(P,X))− `(HomΛ(ΩM,X))

= `(HomΛ(M,X))− `(Ext1
Λ(M,X))

hold for all finitely generated Λ-modules X.
Next, let τM (N) be the trace of M in N which is the sum of all images of all

Λ-homomorphisms from M to N . Then there is an n such that there is an exact
sequence

(2) : 0→ K →Mn → τM (N)→ 0
which stays exact after applying the functor HomΛ(M,−). Hence one obtains the
exact sequence

(3) : 0→ HomΛ(M,K)→ HomΛ(M,Mn)→ HomΛ(M, τM (N))→
Ext1

Λ(M,K)→ Ext1
Λ(M,Mn)

with the third homomorphism being surjective and the last K-module being zero.
Hence one deduces that Ext1

Λ(M,K) = 0 and therefore the following equality holds:

(4) : `(HomΛ(M, τM (N))) = `(HomΛ(M,Mn))− `(HomΛ(M,K)).

Next, apply the functor HomΛ(N,−) to the sequence (2) and one obtains the
exact sequence

0→ HomΛ(N,K)→ HomΛ(N,Mn)→ HomΛ(N, τM (N))→
Ext1

Λ(N,K)→ Ext1
Λ(N,Mn).

From this sequence one gets that the following inequality holds:
`(HomΛ(N, τM (N))) ≥ `(HomΛ(N,Mn)) − `(Ext1

Λ(N,Mn)) − (`(HomΛ(N,K)) −
`(Ext1

Λ(N,K))). Using the identity (1) twice with X = Mn and X = K
respectively, one obtaines that the right hand side of this inequality is equal to
`(HomΛ(M,Mn)) − `(Ext1

Λ(M,Mn)) − (`(HomΛ(M,K)) − `(Ext1
Λ(M,K))).

This last number is equal to `(HomΛ(M,Mn)) − `(HomΛ(M,K)) since
`(Ext1

Λ(M,Mn)) = 0 and `(Ext1
Λ(M,K)) = 0. Now `(HomΛ(M,Mn)) −
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`(HomΛ(M,K)) is equal to `(HomΛ(M, τM (N))) by equality (4) above. Fur-
thermore, HomΛ(M, τM (N)) can be identified with HomΛ(M,N) through
the inclusion τM (N) ⊆ N . Using the equality (1) with X = N , one gets
that `(HomΛ(M,N)) ≥ `(HomΛ(N,N)). From this one obtains all in all
that `(HomΛ(N, τM (N))) ≥ `(HomΛ(M, τM (N))) = `(HomΛ(M,N)) ≥
`(HomΛ(N,N)). Since τMN is a Λ-submodule of N one has that
`(HomΛ(N, τM (N))) ≤ `(HomΛ(N,N)) and therefore these two last inequalities
give that the following equality holds: `(HomΛ(N, τM (N))) = `(HomΛ(N,N)).
From this equality one deduces that all Λ-homomorphisms from N to N factors
through τMN . However, the identity from N to N can factors through τMN only
when τM (N) = N . This finishes the proof of the proposition. �

One can now give the promised proof of the theorem of R. Bautista and E. Perez.

Proof. So let M and N be two Λ-modules such that Ext1
Λ(M,M) = 0 and

Ext1
Λ(N,N) = 0. If M is isomorphic to N then clearly M/ radM is isomorphic to

N/ radN and ΩM is isomorphic to ΩN .
For the converse, assume that M/ radM is isomorphic to N/ radN and that

ΩM is isomorphic to ΩN . One can without loss of generality assume that M (and
hence also N) is non-zero. From Proposition 7.3 one then has an Λ-epimorphism f :
Mn → N for some natural number n and also an Λ-epimorphism g : Nm →M for
some natural number m. Hence, there is a composition of Λ-epimorphisms Nmn →
Mn → N . Then Lemma 7.2 ensures that there is an indecomposable Λ-module X
and Λ-homomorphisms X → Nmn and N → X such that the composition

X → Nmn →Mn → N → X

is the identity on X. This shoves that X is isomorphic to an indecomposable direct
summand of both M and N . Hence M and N have some common indecomposable
direct summand and the result now follows by induction on the number of direct
summands in a direct sum decomposition of M . �

During the meeting in Mar del Plata, C. M. Ringel observed that the following
more general statement is valid.

Theorem 7.4. Let Λ be an artin K-algebra and M a finitely generated Λ-module
such that Ext1

Λ(M,M) = 0. If N is a finitely generated Λ-module such that there
exists finitely generated Λ-modules U and V , and exact sequences 0 → U → V →
M → 0 and 0→ U → V → N → 0, then there exists a finitely generated Λ-module
X and an exact sequence 0→ X → X ⊕M → N → 0, i.e. M ≤deg N .
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