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UNIÓN MATEMÁTICA ARGENTINA
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SATURATED NEIGHBOURHOOD MODELS OF MONOTONIC

MODAL LOGICS

SERGIO ARTURO CELANI

Abstract. In this paper we shall introduce the notions of point-closed, point-
compact, and m-saturated monotonic neighbourhood models. We will give
some characterizations, and we will prove that the ultrafilter extension and
the valuation extension of a model are m-saturated.

1. Introduction

Monotonic neighbourhood semantics (cf. [1] and [6]) is a generalization of Kripke
semantics. It is also the standard tool for reasoning about monotonic modal logics
in which some (Kripke valid) principles such as �p∧�q → �(p∧q), do not hold. A
monotonic neighbourhood model, or monotonic model, is a structure M = 〈X,R, V 〉
where R ⊆ X × P(X), R(x) is closed under supersets for each x ∈ X , and V is a
valuation defined on X .

The main objective of this paper will be the identification and study of some
properties of saturation of monotonic models. It is also intented to prove that the
ultrafilter and valuation extension of a monotonic model is m-saturated. We will
define the image-compact, point-compact, point-closed, and modally saturated (or
m-saturated) models. These notions are defined in topological terms. For each
monotonic model M = 〈X,R, V 〉 we will define a topology TDV

in the set

KR = {Y ⊆ X : ∃x ∈ X (Y ∈ R(x))} ,

using the Boolean algebra DV = {V (ϕ) : ϕ ∈ Fm}, and taking as sub-basis the
collection of all sets of the form

LV (ϕ) = {Y ∈ KR : Y ∩ V (ϕ) 6= ∅} .

The topological space KR = 〈KR, TDV
〉 is called the hyperspace of 〈X,DV 〉 relative

to KR. The notions of point-compact, point-closed, and m-saturated monotonic
models are defined relative to this space. For instance, a model M is m-saturated
if R(x) is a compact subset of KR for each x ∈ X , and for each Y ∈ R(x), there
exists a compact set of Z of 〈X,DV 〉 such that Z ⊆ Y and (x, Z) ∈ R. With this
notion of m-saturation we will be able to prove that the ultrafilter extension of a
monotonic model is m-saturated. This question has already been addressed in [6],
but with a different notion of m-saturation.
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In Section 2 we will recall the principal results on the relational and algebraic
semantics for monotonic modal logic. In Section 3 we will introduce the notions
of compact, image-compact, point-compact, point-closed, and m-saturated mono-
tonic models. We will give a characterizations of point-compact models. We will
show that some of the notions introduced are invariant by surjective bounded mor-
phisms. Section 4 is the core of this paper. We shall prove that for a monotonic
model M there exists at least two saturated extensions: the valuation extension
and the ultrafilter extension. The valuation extension of a model is a bounded
image of the ultrafilter extension, and as the property of m-saturation is invariant
under surjective bounded morphism, we will deduce that the valuation extension
is also m-saturated. Saturated extensions of monotonic models may be seen as a
completation of the underlying frame structure. For Kripke models, the saturated
extensions are modally saturated structures, which implies that modally states are
bisimilar (see [7] for Kripke models and [6] for monotonic models).

2. Preliminaries

A monotonic algebra is a pair A = 〈A,♦〉 , where A is a Boolean algebra, and
♦ : A→ A is a monotonic function, i.e. if a ≤ b then ♦(a) ≤ ♦(b), for all a, b ∈ A.
The dual operator � is defined as �a = ¬♦¬a. The filter (ideal) generated by a
set H ⊆ A will be denoted by [H) ((H ]). The set of all prime filters or ultrafilters
of A is denoted by Ul(A).

Given a set X , we denote by P(X) the powerset of X , and for a subset Y of
X , we write Y c for the complement X\Y of Y in X . We will call a space a pair
X = 〈X,D〉 , where X is a set, and D a subalgebra of the Boolean algebra of P(X).
We note that D is a basis of a topology TD on X whose open sets are the unions
of subsets of D. All the elements of D are clopen (closed and open) subsets of X ,
because D is a Boolean algebra, but an arbitrary clopen set does not to be need
an element of D. Given a space 〈X,D〉 and Y ⊆ X, we will use the notation cl(Y )
to express the closure of Y. The set of all closed subsets (compact subsets) of X
will be denoted by C(X) (K(X)). We note that C(X) and K(X) are posets under
the inclusion relation. Some topological properties of X can be characterized in
terms of the map εD : X → Ul (D) given by εD (x) = {U ∈ D : x ∈ U}. The map
εD is called the insertion map in [2]. A space X is called a Boolean space if it is
compact and totally disconnected. If X is a Boolean space, then the family D of
clopen subsets is a basis for X .

To each Boolean algebra A we can associate a Boolean space whose points
are the elements of Ul (A) with the topology determined by the basis βA (A) =
{βA (a) : a ∈ A}, where βA (a) = {x ∈ Ul (A) : a ∈ x}. It is known that βA (A) is a
Boolean subalgebra of P(Ul (A)). By the explanation above we have that, if X is
a Boolean space, then X ∼= Ul (D), by means of the map εD, and if A is a Boolean
algebra, then A ∼= βA (A), by means of the map βA. Moreover, it is known that the

map F → F̂ = {x ∈ Ul (A) : F ⊆ x} establishes a bijective correspondence between
the lattice of all filters of A and the lattice C(Ul (A)) of all closed subsets of Ul (A).
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SATURATED NEIGHBOURHOOD MODELS OF MONOTONIC MODAL LOGICS 113

Definition 1. Let X = 〈X,D)〉 be a space. The lower topology TD on a subset K of
P(X) has as sub-base the collection of all sets of the form LU = {Y ∈ K : Y ∩ U 6= ∅} ,
for U ∈ D. The pair K = 〈K, TD〉 is called the hyperspace of X relative to K.

Let X be a set. A neighbourhood relation, or multirelation, defined on X is a
relation R ⊆ X × P(X).

Definition 2. A monotonic neighbourhood frame, or monotonic frame, is a struc-
ture F = 〈X,R〉 where R is a multirelation on X such that R (x) = {Z ∈ P(X) :
(x, Z) ∈ R} is an increasing subset of P(X), for all x ∈ X .

Every monotonic frame F gives rise to a monotonic algebra of sets. Consider
the monotonic map ♦R : P(X) → P(X) defined by:

♦R(U) = {x ∈ X : ∃Y ⊆ X (Y ⊆ U and (x, Y ) ∈ R)} ,

for each U ∈ P(X). It is clear that the pair 〈P(X),♦R〉 is a monotonic algebra.
Using the notation introduced in Definition 1 the map ♦R can be defined also as
♦R(U) = {x ∈ X : R (x) ∩ (LUc)c 6= ∅} , for each U ∈ P(X). The dual map �R is
defined by

�R(U) = {x ∈ X : R (x) ⊆ LU} ,

for each U ∈ P(X).
Next we show that any monotonic algebra with monotone gives rise to a mono-

tonic frame by invoking the basic Stone representation. In other words, we repre-
sent the elements of a monotonic algebra as subsets of some universal set, namely
the set of all ultrafilters, and then define a multirelation over this universe.

Let 〈A,♦〉 be a monotonic algebra. Let us define a multirelation R♦ ⊆ Ul (A)×
P(Ul(A) by:

(x, Y ) ∈ R♦ ⇔ ∃F ∈ Fi(A) (F̂ ⊆ Y and F ⊆ ♦−1(x). (2.1)

where F̂ = {y ∈ Ul (A) : F ⊆ x}. We note that for any filter F ∈ Fi(A), and for
all x ∈ Ul (A),

(x, F̂ ) ∈ R♦ iff F ⊆ ♦−1(x).

Theorem 3. Let 〈A,♦〉 be a monotonic algebra. Then

(1) 〈Ul (A) , R♦〉 is a monotonic frame.
(2) ♦R♦

(βA(a)) = βA(♦(a)), for all a ∈ A.

Proof. (1) Clearly R♦(x) is an increasing subset of P(Ul(A)), for each x ∈ Ul(A).
(2) We prove that for all a ∈ A, and for all x ∈ Ul (A) ,

♦(a) ∈ x iff ∃F ∈ Fi (A) : (x, F̂ ) ∈ R♦ and a ∈ F.

If ♦(a) ∈ x, then F (a) ⊆ ♦−1(x). So, (x, F (a)) ∈ R♦. If there exists F ∈ Fi (A)

such that (x, F̂ ) ∈ R♦ and a ∈ F, then a ∈ F ⊆ ♦−1(x). Thus, ♦(a) ∈ x. As
consequence of this we have that ♦R♦

(βA(a)) = βA(♦a), for all a ∈ A. Now it is
easy to prove ♦R♦

(βA(a)) = ♦R♦
(βA(a)). �

Rev. Un. Mat. Argentina, Vol 49-1



114 SERGIO ARTURO CELANI

3. m-saturated models

Let us consider a propositional language L♦ defined by using a denumerable set
of propositional variables V ar, the connectives ∨ and ∧, the negation ¬, the modal
connective ♦, and the propositional constant ⊤. We shall denote by � the operator
defined as �p = ¬♦¬p, for p ∈ V ar. The set of all well formed formulas will be
denoted by Fm.

Definition 4. A monotonic model in the language L is a structure M = 〈X,R, V 〉 ,
where 〈X,R〉 is a monotonic frame, and V : V ar → P(X) is a valuation.

Every valuation can be extended to Fm by means of the following clauses:

(1) V (⊤) = X,
(2) V (ϕ ∨ ψ) = V (ϕ) ∪ V (ψ),
(3) V (¬ϕ) = X − V (ϕ) = V (ϕ)c,
(4) V (♦ϕ) = ♦R(V (ϕ)).

The notions of truth at a point, validity in a model and validity in a frame for
formulas are defined as is usual. A formula ϕ is valid at point x in a model M, in
symbols M �x ϕ if x ∈ V (ϕ) . The formula ϕ is valid in a model M, in symbols
M � ϕ, if V (ϕ) = X.

Let M be a monotonic model. As DV = {V (ϕ) : ϕ ∈ Fm} is a Boolean algebra
of sets, and V (♦ϕ) = ♦R(V (ϕ)) ∈ DV , for every ϕ ∈ Fm, 〈DV ,♦R〉 is a monotonic
subalgebra of the algebra 〈P(X),♦R〉. We shall denote by XV = 〈X,DV 〉 the space
generated taking DV as a basis for a topology defined in X. Let

KR = {Y ⊆ X : ∃x ∈ X ((x, Y ) ∈ R)}

the range of the multirelation R. Let KR = 〈KR, TDV
〉 the hyperspace of XV =

〈X,DV 〉 relative to KR. Recall that K(XV ) denotes the set of all compact subsets
of XV .

Definition 5. Let M = 〈X,R, V 〉 be a model. We shall say that:

(1) M is compact if the space XV is compact,
(2) M is image-compact if for all x ∈ X and for all Y ∈ R(x), there exists

Z ∈ K(XV ) such that Z ⊆ Y and (x, Z) ∈ R.
(3) M is point-compact if R(x) is compact subset in the topological space KR,

for each x ∈ X ,
(4) M is point-closed, if R(x) is a closed subset of the space KR, for each

x ∈ X .
(5) M is modally saturated (or m-saturated) if it is image-compact and point-

compact.

Remark 6. In [6] Hansen defines the notion of m-saturated model as follows:
A model M = 〈X,R, V 〉 is m-saturated if the following conditions hold:

(m1) For any Γ ⊆ Fm, x ∈ X and Y ⊆ X such that (x, Y ) ∈ R, if
⋂

{V (ϕ) :
ϕ ∈ Γ0}∩Y 6= ∅, for all finite subset Γ0 of Γ, then

⋂

{V (ϕ) : ϕ ∈ Γ}∩Y 6= ∅.
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SATURATED NEIGHBOURHOOD MODELS OF MONOTONIC MODAL LOGICS 115

(m2) For any Γ ⊆ Fm, and x ∈ X, if for every finite subset Γ0 of Γ there exists an
Y ∈ R(x) such that Y ⊆

⋂

{V (ϕ) : ϕ ∈ Γ0}, then there exists an Z ∈ R(x)
such that Z ⊆

⋂

{V (ϕ) : ϕ ∈ Γ}.

The condition (m2) is equivalent to say that the model M is point-compact, as
we will see. But the condition (1) is not equivalent to the notion of image-compact.
Hansen’s definition has the disadvantage that the ultrafilter extension of a model
(see definition 15) fails to meet the condition (m1). Now we will see that the
condition (m2) is equivalent to require that M should be point-compact.

Proposition 7. Let M be a model. Then M is point-compact iff it satisfies the
condition (m2).

Proof. ⇒) Let Γ ⊆ Fm and x ∈ X, such that for every finite subset Γ0 of Γ
there exists an Y ∈ R(x) such that Y ⊆

⋂

{V (ϕ) : ϕ ∈ Γ0}. Suppose that Y *
⋂

{V (ϕ) : ϕ ∈ Γ}, for any Y ∈ R(x). Then for each Y ∈ R(x) there exists ϕy ∈ Γ
such that Y ∩ V (¬ϕy) 6= ∅. So,

R(x) ⊆
⋃

{

LV (¬ϕy) : ϕy ∈ Γ
}

.

AsR(x) is a compact subset of 〈KR, TDV
〉 , there exists a finite subset {ϕy1

, ..., ϕyn
} ⊆

Γ such that
R(x) ⊆ LV (¬ϕy1

) ∪ . . . ∪ LV (¬ϕyn ). (3.1)

By hypothesis, there exists Z ∈ R(x) such that Z ⊆ V (¬ϕy1
) ∩ . . . ∩ V (¬ϕyn

),
which is a contradiction to (3.1). Thus, there exists an Z ∈ R(x) such that Z ⊆
⋂

{V (ϕ) : ϕ ∈ Γ}.
⇐) Let x ∈ X . We prove that R(x) is compact subset in the topological space

〈KR, TDV
〉. Let Γ ⊆ Fm such that R(x) ⊆

⋃
{

LV (ϕ) : ϕ ∈ Γ
}

. Suppose that

R(x) *
⋃

{

LV (ϕ) : ϕ ∈ Γi

}

,

for any finite subset Γi of Γ. So for each finite subset Γi of Γ there exists Yi ∈ R(x)
such that Yi ⊆

⋂

{V (¬ϕ) : ϕ ∈ Γi}. From condition (m1), there exists Z ∈ R(x)
such that Z ⊆

⋂

{V (¬ϕ) : ϕ ∈ Γ}. Thus, Z /∈
⋃

{

LV (ϕ) : ϕ ∈ Γ
}

, which is a
contradiction. �

Let M be a model. Recall that the insertion map εDV
of 〈X,DV 〉 is defined by

εDV
(x) = {V (ϕ) : x ∈ V (ϕ)}, for each x ∈ X . We write εV by εDV

.

Lemma 8. Let M be a model. If M is point-closed, then

FεV (Y ) =
⋂

{εV (y) : y ∈ Y } ⊆ ♦
−1
R (εV (x)) implies that (x, Y ) ∈ R,

for all x ∈ X and for all Y ⊆ X.

Proof. Let x ∈ X and Y ⊆ X such that FεV (Y ) ⊆ ♦−1
R (εV (x)). Suppose that

Y /∈ R(x). Since R is point-closed, there exists V (ϕ) ∈ DV such that Y ⊆ V (ϕ)
and x /∈ ♦R(V (ϕ)). Since FεV (Y ) ⊆ ♦

−1
R (εV (x)), there exists y ∈ Y such that

y /∈ V (ϕ), which is a contradiction, because Y ⊆ V (ϕ). Therefore (x, Y ) ∈ R. �

Let M be a model. Let us consider the following property:
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(P): For all x ∈ X and for all Y ∈ P(X), if FεV (Y ) ⊆ ♦
−1
R (εV (x)) then there

exists Z ⊆ X such that (x, Z) ∈ R and Z ⊆ cl(Y ),

where cl(Y ) is the topological closure in the space XV .

Proposition 9. Let M be a model. If M is point-compact, then M satisfies the
property (P).

Proof. Let x ∈ X and let Y ∈ P(X). Assume that

FεV (Y ) ⊆ ♦−1
R (εV (x)). (3.2)

Suppose that for all Zi ∈ R (x) , Zi * cl (Y ) =
⋂

{V (ϕ) : Y ⊆ V (ϕ)}. So for each
Zi ∈ R (x) there exists V (ϕi) ∈ DV such that Y ⊆ V (ϕi) and Zi * V (ϕi), i.e.
Zi ∩ V (¬ϕi) 6= ∅. Thus,

R (x) ⊆
⋃

{

LV (¬ϕi) : Y ⊆ V (ϕi)
}

.

Since R(x) is a compact subset of 〈KR, TDV
〉, there exists a some finite set of

formulas {ϕ1, ..., ϕn} such that

R (x) ⊆ LV (¬ϕ1) ∪ · · · ∪ LV (¬ϕn).

Then,

x /∈ ♦R (V (ϕ1) ∩ . . . ∩ V (ϕn)) = V (♦(ϕ1 ∧ . . . ∧ ϕn)),

and Y ⊆ V (♦(ϕ1 ∧ . . . ∧ ϕn)). By (3.2), V (ϕ1 ∧ . . . ∧ ϕn) ∈ ♦
−1
R (εV (x)), i.e.,

x ∈ V (♦(ϕ1∧ . . .∧ϕn)), which is a contradiction. Therefore, there exists Z ∈ R (x)
such that Z ⊆ cl(Y ). �

Proposition 10. Let M be a compact model. Then M satisfies the property (P)
iff M is point-compact.

Proof. Suppose that M satisfies the property (P). Let W ⊆ DV . Suppose that for
every finite subset W0 of W

R (x) *
⋃

{

LV (ϕ) : V (ϕ) ∈ W0

}

. (3.3)

We prove that
⋂

{V (ϕ)c : V (ϕ) ∈W} 6= ∅. Suppose the contrary. Then X =
⋃

{V (ϕ) : V (ϕ) ∈W}. As M is compact, X = V (ϕ1) ∪ . . . ∪ V (ϕn), for some
{ϕ1, ..., ϕn}. From (3.3), there exists Y ∈ R(x) such that Y ∩ V (ϕ1) = ∅, ..., Y ∩
V (ϕn) = ∅, i.e., Y ∩(V (ϕ1)∪ . . .∪V (ϕn)) = Y ∩X = ∅, which is impossible. Thus,
⋂

{V (ϕ)c : V (ϕ) ∈W} 6= ∅. Let

Z =
⋂

{V (ϕ)c : V (ϕ) ∈ W} .

It is clear that Z is a closed subset of X , and by compacity, Z is compact. We
prove that

⋂

{εV (z) : z ∈ Z} ⊆ ♦
−1
R (εV (x)) .

If V (ψ) ∈
⋂

{εV (z) : z ∈ Z}, then Z =
⋂

{V (ϕ)c : V (ϕ) ∈ W} ⊆ V (ψ). By

compacity, there exists a finite set {ϕ1, ..., ϕn} such that

V (ϕ1)
c ∩ . . . ∩ V (ϕn)c ⊆ V (ψ).
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Then ♦R(V (ϕ1)
c ∩ . . . ∩ V (ϕn)c) ⊆ ♦R(V (ψ)). From (3.3), there exists T ∈ R(x)

such that T ∩ (V (ϕ1) ∪ . . . ∪ V (ϕn)) = ∅, i.e., T ⊆ V (ϕ1)
c ∩ . . . ∩ V (ϕn)c ⊆ V (ψ).

Thus, x ∈ ♦R(V (ψ)). So,
⋂

{εV (z) : z ∈ Z} ⊆ ♦
−1
R (εV (x)) ,

and by hypothesis there exists Y ∈ R (x) such that Y ⊆ cl(Z) = Z. Then Y ∩
V (ϕ) = ∅, for every V (ϕ) ∈W. Thus,

R (x) *
⋃

{

LV (ϕ) : V (ϕ) ∈ W
}

.

The other direction is followed by Proposition 9. �

The maps between monotonic frames and monotonic models which preserve the
modal structure will be referred to as bounded morphisms. These have previously
been studied in [6] (see also [5]).

Definition 11. ([6]) A bounded morphism between two monotonic models M1

and M2 is a function f : X1 → X2 such that

(1) f−1(V2(p) = V1(p), for each propositional variable p,
(2) If (x, Y ) ∈ R1, then (f(x), f(Y )) ∈ R2, and
(3) If (f(x), Z) ∈ R2, then there exists Y ⊆ X such that (x, Y ) ∈ R1 and

f(Y ) ⊆ Z.

It follows that truth of modal formulas is invariant under bounded morphisms
([6]).

Proposition 12. Let M1 and M2 be monotonic models. If f : X1 → X2 is a
bounded morphism from M1 to M2 then for each formula ϕ, f−1(V2(ϕ)) = V1(ϕ).

The following technical lemma is needed in the next results.

Lemma 13. Let M be a model. Then XV is compact iff εV is surjective.

Proof. ⇒) Let P ∈ Ul(DV ). We prove that
⋂

{V (ϕ) : V (ϕ) ∈ P} 6= ∅. Let

us suppose the opposite. Then X =
⋃

{V (¬ϕ) : V (ϕ) ∈ P} . Since 〈X,DV 〉 is

compact, X = V (¬ϕ1) ∪ . . . ∪ V (¬ϕn) , for some formulas ϕ1, . . . , ϕn. So,
V (ϕ1 ∧ . . . ∧ ϕn) = ∅ ∈ P , which is impossible. It follows that there exists

x ∈
⋂

{V (ϕ) : V (ϕ) ∈ P}. Now, it is easy to see that εV (x) = P .

⇐) Let X =
⋃

{V (ϕ) : ϕ ∈ Γ ⊆ Fm.} . Suppose that for any finite subset Γ0

of Γ, X 6=
⋃

{V (ϕ) : ϕ ∈ Γ0} . Let us consider the filter F of DV generated by the

set {V (¬ϕ) : ϕ ∈ Γ} . It is not difficult to prove that F is proper. It follows that
there exists an ultrafilter P of DV such that F ⊆ P. Since the map εV is onto,
there exists x ∈ X such that εV (x) = P. Then, x ∈ V (¬ϕ) for all ϕ ∈ Γ. So,

x ∈
⋂

ϕ∈Γ

V (¬ϕ) , which is a contradiction. Thus, there is a finite subset Γ0 of Γ,

such that X =
⋃

{V (ϕ) : ϕ ∈ Γ0 ⊆ Fm.}. �
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The concepts of compact and point-compact models are preserved by surjective
bounded morphisms.

Proposition 14. Let f : X1 → X2 be a bounded morphism between the monotonic
models M1 and M2.

(1) If M1 is compact, then M2 is compact.
(2) If f is surjective and M2 is compact, then M1 is compact.
(3) If M2 is point-compact, then M1 is point compact.
(4) If f is surjective and M1 is point-compact, then M2 is point compact.

Proof. (1) By Lemma 13 we need to prove that the map εV2
: X2 → Ul(DV2

) is
surjective. Let Q ∈ Ul(DV2

). Consider the set Q′ = {V1(ϕ) : V2(ϕ) ∈ Q}. It is easy
to prove that Q′ ∈ Ul(DV1

). Since εV1
is surjective, there exists x ∈ X1 such that

εV1
(x) = Q′. Let y = f(x). Then, it is easy to see that εV2

(y) = Q.
(2) By Lemma 13 we need to prove that the map εV1

: X1 → Ul(DV1
) is sur-

jective. Let P ∈ Ul(DV1
). Consider P ′ = {V2(ϕ) : V1(ϕ) ∈ P}. It is easy to see

that P ′ ∈ Ul(DV2
). As εV2

is surjective, there exists y ∈ X2 such that εV2
(y) = P ′.

Since f is surjective, there exists x ∈ X1 such that f(x) = y. We prove that
εV1

(x) = P . For all ϕ ∈ Fm, x ∈ V1(ϕ) = f−1(V2(ϕ)) iff f(x) = y ∈ V2(ϕ) iff
V2(ϕ) ∈ εV2

(y) = P ′ iff V1(ϕ) ∈ P . Thus, εV1
(x) = P .

(3) Let x ∈ X1 and let Γ ⊆ DV1
. Suppose that

R1(x) ⊆
⋃

{

LV1(ϕ) : V1(ϕ) ∈ Γ
}

.

Taking into account that f−1(V2(ϕ)) = V1(ϕ), for all ϕ ∈ Fm, it is easy to see that

R2(f(x)) = R2(y) ⊆
⋃

{

LV2(ϕ) : V1(ϕ) ∈ Γ
}

.

As M2 is point-compact, there exists a finite set {V2(ϕ1), ..., V2(ϕn)} such that
R2(y) ⊆ LV2(ϕ1) ∪ . . . ∪ LV2(ϕ1). Let Z ∈ R1(x). Then f(Z) ∈ R2(y). So there

exists V2(ϕi) ∈ {V2(ϕ1), ..., V2(ϕn)} such that Z ∩ f−1(V2(ϕi)) = Z ∩ V1(ϕi) 6= ∅.
Thus R1(x) ⊆ LV1(ϕ1) ∪ . . . ∪ LV1(ϕn).

(4) Let y ∈ X2 and let Γ ⊆ DV2
. Suppose that

R2(y) ⊆
⋃

{

LV2(ϕ) : V2(ϕ) ∈ Γ
}

.

As f is surjective there exists x ∈ X1 such that f(x) = y. We prove that

R1(x) ⊆
⋃

{

Lf−1(V2(ϕ)) : V2(ϕ) ∈ Γ
}

. (3.4)

Let Z ∈ R1(x). Since f is a bounded morphism, f(Z) ∈ R2(f(x)) = R2(y). So,
there exists V2(ϕ) ∈ Γ such that f(Z) ∩ V2(ϕ) 6= ∅, i.e. Z ∩ f−1(V2(ϕ)) 6= ∅. Thus
(3.4) is valid. As M1 is point-compact, there exists {V2(ϕ1), ..., V2(ϕn)} ⊆ Γ such
that R1(x) ⊆ Lf−1(V2(ϕ1)) ∪ . . . ∪ Lf−1(V2(ϕn)). We prove that

R2(y) ⊆ LV2(ϕ1) ∪ . . . ∪ LV2(ϕn).

Let Y ∈ R2(y) = R2(f(x)). Since f is a bounded morphism, there exists Z ⊆ X1

such that Z ∈ R1(x) and f(Z) ⊆ Y . As R1(x) ⊆ LV2(ϕ1)∪ . . .∪LV2(ϕ1), there exists

V2(ϕi) ∈ {V2(ϕ1), ..., V2(ϕn)} such that Z∩f−1(V2(ϕi)) 6= ∅ .i.e. f(Z)∩V2(ϕi) 6= ∅.
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It follows Y ∩ V2(ϕi) 6= ∅. Thus, R2(y) ⊆ LV2(ϕ1) ∪ . . . ∪LV2(ϕn). So, M2 is point-
compact. �

4. Ultrafilter and model extension

Let M = 〈X,R, V 〉 be a model. Let Ul (P (X)) = Ul(X). Let
〈

Ul(X), βP(X)(P(X))
〉

the Boolean space of the algebra P(X). Let us consider the ultrafilter frame
〈

Ul (X) , RP(X)

〉

of the monotonic algebra 〈P(X),♦R〉. Recall that RP(X) ⊆
Ul(X) × P(Ul(X)) is defined as:

(P, Y ) ∈ RP(X) iff ∃C ∈ C(Ul (X)) (C ⊆ Y and FC ⊆ ♦
−1
R (P )),

where FC =
⋂

{Q : Q ∈ Y } , and Y ⊆ Ul (X). We write RP(X) = RU . We note
that if Y is a closed subset of Ul (X), then

(P, Y ) ∈ RU iff FY =
⋂

{Q : Q ∈ Y } ⊆ ♦−1
R (P ).

Definition 15. The ultrafilter extension of a monotonic model M = 〈X,R, V 〉 is
the structure

Ue (M) = 〈Ul (X) , RU , VU 〉 ,

where VU : V ar → P(Ul(X)) is a map defined by:

VU (p) = {P ∈ Ul (X) : V (p) ∈ P} ,

for every p ∈ P.

It is easy to see that VU (p) = βP(X)(V (p)), for each p ∈ V ar (see [6]).

Given a model M we can define another extension taking the set Ul(DV ) as the
base set of a model. Let 〈Ul(DV ), βDV

(DV )〉 be the Boolean space of DV . Let us
consider the ultrafilter frame 〈Ul (DV ) , RDV

〉 of the monotonic algebra 〈DV ,♦R〉,
where RDV

⊆ Ul (DV ) × P(Ul(DV )) is defined by

(P, Y ) ∈ RDV
iff ∃C ∈ C(Ul (DV )) (C ⊆ Y and FC ⊆ ♦−1

R (P )),

where FC =
⋂

{Q : Q ∈ Y } , and Y ⊆ Ul (DV ).

Definition 16. The valuation extension, or valuation model, of a model M is the
structure

V e(M) = 〈Ul (DV ) , RDV
, VDV

〉 ,

where the function VDV
: V ar → P (Ul (DV )) is defined by

VDV
(p) = {P ∈ Ul (DV ) : V (p) ∈ P} ,

for every p ∈ P.

We note that VDV
(p) = βDV

(V (p)), for each p ∈ V ar.

Theorem 17. Let M be a monotonic model. Then for any ϕ ∈ Fm,

(1) VU (ϕ) = βP(X)(V (ϕ)), and VDV
(ϕ) = βDV

(V (ϕ)),
(2) M � ϕ iff Ue(M) � ϕ, and M � ϕ iff V e(M) � ϕ.
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Proof. We prove VDV
(ϕ) = βDV

(V (ϕ)), for any ϕ ∈ Fm. The other proof is very
similar. The proof is by induction on the complexity of ϕ. We consider the case
♦ϕ. Let P ∈ Ul (DV ). Let V (♦ϕ) = ♦R (V (ϕ)) ∈ P. Let us consider the filter F =

F (V (ϕ)) in the Boolean algebra DV . Then it is easy to see that
(

P, F̂
)

∈ RDV
.

For the other direction, suppose that P ∈ VDV
(♦ϕ) . Then there exists a filter F

of DV such that
(P, F̂ ) ∈ RDV

and F̂ ⊆ VDV
(ϕ) .

By inductive hypothesis we have VDV
(ϕ) = βDV

(V (ϕ)). Thus, V (ϕ) ∈ F ⊆
♦
−1
R (P ), i.e., V (♦ϕ) = ♦R (V (ϕ)) ∈ P .
(2). We prove M � ϕ iff V e(M) � ϕ. The other proof is similar. Assume

that M � ϕ. Then, V (ϕ) = X . But X belong to every ultrafilter of DV .
Then, VDV

(ϕ) = Ul (DV ), i.e., V e(M) � ϕ. Now, if M 2 ϕ, then there exists
x ∈ X such that x /∈ V (ϕ) . Then, V (ϕ) /∈ {V (α) : x ∈ V (α)} ∈ Ul (DV ). Thus,
V e(M) 2 ϕ. �

Theorem 18. Let M be a model. Then the model Ue (M) is m-saturated.

Proof. Let M be a monotonic model. We prove that Ue (M) is compact i.e.,
〈Ul (X) , DVU

〉 is a compact space. From Lemma 13 it is enough to prove that
the map εVU

: Ul (X) → Ul (DVU
) is surjective. Let P ∈ Ul (DVU

). Consider the
filter F in P(X) generated by {V (ϕ) : VU (ϕ) ∈ P}. It is clear that F is proper.
So there exists Q ∈ Ul (X) such that F ⊆ Q. By construction εVU

(Q) ⊆ P . So,
εVU

(Q) ⊆ P , and consequently εVU
is surjective.

We prove that RU is point-compact in the hyperspace
〈

KRU
, TDVU

〉

, where

XVU
= 〈Ul (X) , DVU

〉. As 〈Ul (X) , DVU
〉 is a compact space we will apply Propo-

sition 10. Let P ∈ Ul (X) and let Y be a subset of Ul (X) . Suppose that
⋂

{εU (Q) : Q ∈ Y } ⊆ ♦−1
RU

(εU (P )).

We need to prove that there exists a subset Z of Ul (X) such that Z ∈ RU (P ) and
Z ⊆ cl (Y ), where cl (Y ) is the topological closure of Y in the topological space
〈Ul (X) , DVU

〉.
Consider the filter F generated by the set {V (ϕ) : Y ⊆ VU (ϕ)}. We prove that

(P, F̂ ) ∈ RU .

Let W ∈ F . Then there exists ϕ1, ..., ϕn ∈ Fm such that

Y ⊆ VU (ϕ) ∩ . . . ∩ VU (ϕn) and V (ϕ) ∩ . . . ∩ V (ϕn) ⊆W.

So, VU (ϕ) ∩ . . . ∩ VU (ϕn) ∈
⋂

{εU (Q) : Q ∈ Y } ⊆ ♦−1
RU

(εU (P )). Then

♦RU
(VU (ϕ ∧ . . . ϕn) = VU (♦(ϕ1 ∧ . . . ∧ ϕn)) ∈ εU (P ) ,

i.e. V (♦(ϕ1 ∧ . . . ∧ ϕn)) = ♦R(V (ϕ1 ∧ . . . ∧ ϕn)) ∈ P . Then ♦R(W ) ∈ P . Thus

(P, F̂ ) ∈ RU . Taking into account that the topological closure of Y in the space

〈Ul (X) , DVU
〉 is cl(Y ) =

⋂

{VU (ϕ) : Y ⊆ VU (ϕ)}, it is easy to prove that F̂ ⊆
cl(Y ). Therefore U e (M) is m-saturated. �
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Theorem 19. Let M be a model. Then the model V e (M) is m-saturated.

Proof. Since 〈DV ,♦R〉 is a subalgebra of the algebra 〈P(X),♦R〉, we can define
a map f : Ul (X) → Ul (DV ) by f (P ) = P ∩ DV . By well-established results in
the duality theory of Boolean algebras the map f is the dual map of the inclusion
homomorphism between DV and P (X). From the results given by H. Hansen [6]
we get that f : Ul (X) → Ul (DV ) is a surjective bounded morphism between the
ultrafilter extension U e (M) and the valuation extension V e (M). Since U e (M)
is m-saturated, by Proposition 14 we get that V e (M) is also m-saturated. �
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