
REVISTA DE LA
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MATRIX SPHERICAL FUNCTIONS AND ORTHOGONAL

POLYNOMIALS: AN INSTRUCTIVE EXAMPLE

I. PACHARONI

Abstract. In the scalar case, it is well known that the zonal spherical func-
tions of any compact Riemannian symmetric space of rank one can be ex-
pressed in terms of the Jacobi polynomials. The main purpose of this paper
is to revisit the matrix valued spherical functions associated to the complex
projective plane to exhibit the interplay among these functions, the matrix
hypergeometric functions and the matrix orthogonal polynomials. We also
obtain very explicit expressions for the entries of the spherical functions in
the case of 2×2 matrices and exhibit a natural sequence of matrix orthogonal
polynomials, beyond the group parameters.

1. Introduction

The well known Legendre polynomials are a special case of spherical harmonics:
the homogeneous harmonic polynomials of R

3, considered as functions on the unit
sphere S2. Let (r, θ, φ) be ordinary polar coordinates in R3: x = r sin θ cosφ, y =
r sin θ sinφ and z = r cos θ. In terms of these coordinates the Riemannian structure
of R3 is given by the symmetric differential form ds2 = dr2 + r2dθ2 + r2(sin θ)2dφ2,
and the Laplace operator is

∆ =
∂2

∂r2
+

1

r2
∂2

∂θ2
+

1

r2(sin θ)2
∂2

∂φ2
+

2

r

∂

∂r
+

cos θ

r2 sin θ

∂

∂θ
.

If f is a homogeneous harmonic polynomial of degree n which does not depend on
the variable φ, then

d2f

d θ2
+

cos θ

sin θ

df

dθ
+ n(n+ 1)f = 0.

By making the change of variables y = (1 + cos θ)/2 we get

y(1 − y)
d2f

d y2
+ (1 − 2y)

df

dy
+ n(n+ 1)f = 0.

The bounded solution at y = 0, up to a constant, is 2F1(−n, n+ 1, 1; y). Since the
Legendre polynomial of degree n is given by

Pn(x) = 2F1

(

−n , n+ 1
1

; (1 + x)/2

)

,

we get that f(θ) = Pn(cos θ)f(0).
Let o = (0, 0, 1) be the north pole of S2, and let d(o, p) be the geodesic distance
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2 I. PACHARONI

from a point p ∈ S2 to o. Let φ(p) = Pn(cos(d(o, p))). Then we have proved that
φ is the unique spherical harmonic of degree n, constant along parallels and such
that φ(o) = 1. Moreover the set of all complex linear combinations of translates
φg(p) = φ(g · p), g ∈ SO(3), is the linear space of all spherical harmonics of degree
n.

Legendre and Laplace found that the Legendre polynomials satisfy the following
addition formula

Pn(cosα cosβ + sinα sinβ cosφ)

= Pn(cosα)Pn(cos β) + 2

n
∑

k=1

(n− k)!

(n+ k)!
P k

n (cosα)P k
n (cosβ) cos kφ,

(1)

where the P k
n ’s are the associated Legendre polynomials.

By integrating (1) we get

Pn(cosα)Pn(cosβ) =
1

2π

∫ 2π

0

Pn(cosα cosβ + sinα sinβ cosφ)dφ. (2)

Moreover the Legendre polynomials can be determined as solutions to (2). This
integral equation can now be expressed in terms of the function φ on SO(3) defined
by φ(g) = φ(g · o) = Pn(cos(d(o, g · o))). In fact (2) is equivalent to

φ(g)φ(h) =

∫

K

φ(gkh) dk, (3)

where K denotes the compact subgroup of SO(3) of all elements which fix the north
pole o, and dk denotes the normalized Haar measure of K.

In fact, let A denote the subgroup of all elements of SO(3) which fix the point
(0, 1, 0). Then SO(3) = KAK. Thus to prove (3) it is enough to consider rotations
g and h around the y-axis through the angles α and β, respectively. Then if k
denotes the rotation of angle φ around the z-axis we have

gkh ·o = (− cosα cosφ sinβ+sinα cosβ,− sinφ sinβ, sinα cosφ sinβ+cosα cosβ).

Thus cos(d(o, g · o)) = cosα cosβ + sinα sinβ cosφ and

φ(gkh) = Pn(cosα cosβ + sinα sinβ cosφ).

The functional equation (3) has been generalized to many different settings.
One is the following. Let G be a locally compact unimodular group and let K be
a compact subgroup. A nontrivial complex valued continuous function φ on G is a
zonal spherical function if (3) holds for all g, h ∈ G. Note that then φ(k1gk2) = φ(g)
for all k1, k2 ∈ K and all g ∈ G, and that φ(e) = 1 where e is the identity element
of G.

The example above arises when G = SO(3) K = SO(2) and S2 = G/K. The
other compact connected rank one symmetric spaces have zonal spherical functions
which are orthogonal polynomials in an appropriate variable. These polynomials
are special cases of Jacobi polynomials and they can be given explicitly as hyper-
geometric functions.
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MATRIX SPHERICAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS 3

The complex projective plane P2(C) = SU(3)/U(2) is another rank one sym-
metric space. In this case the zonal spherical functions are P 0,1

n (cosφ).
A very fruitful generalization of the functional equation (3) is the following (see

[T1] and [GV]. Let G be a locally compact unimodular group and let K be a

compact subgroup of G. Let K̂ denote the set of all equivalence classes of complex
finite dimensional irreducible representations of K; for each δ ∈ K̂, let ξδ and d(δ)
denote, respectively, the character and the dimension of any representation in the
class δ, and set χδ = d(δ)ξδ. We shall denote by V a finite dimensional complex
vector space and by End(V ) the space of all linear transformations of V into V .

A spherical function Φ on G of type δ ∈ K̂ is a continuous function Φ : G −→
End(V ) such that Φ(e) = I, (I= identity transformation) and

Φ(x)Φ(y) =

∫

K

χδ(k
−1)Φ(xky) dk, for all x, y ∈ G.

When δ is the class of the trivial representation of K and V = C, the corre-
sponding spherical functions are precisely the zonal spherical functions. From the
definition it follows that π(k) = Φ(k) is a representation of K, equivalent to the
direct sum of n representations in the class δ, and that Φ(k1gk2) = π(k1)Φ(g)π(k2)
for all k1, k2 ∈ K and all g ∈ G. The number n is the height of Φ. The height and
the type are uniquely determined by the spherical function.

2. Matrix valued spherical functions associated to P2(C)

In [GPT1] the authors consider the problem of determining all irreducible spher-
ical functions associated to the complex projective plane P2(C). This space can be
realized as the homogeneous space G/K, G = SU(3) and K = S((U(2) × U(1)) ≃
U(2). In this case all irreducible spherical functions are of height one. Let (Vπ , π)
be any irreducible representation of K in the class δ. Then an irreducible spherical
function can be characterized as a function Φ : G −→ End(Vπ) such that

i) Φ is analytic,
ii) Φ(k1gk2) = π(k1)Φ(g)π(k2), for all k1, k2 ∈ K, g ∈ G, and Φ(e) = I,
iii) [∆Φ](g) = λ(∆)Φ(g), for all g ∈ G and ∆ ∈ D(G)G.

Here D(G)G denotes the algebra of all left and right invariant differential operators
on G. In our case it is known that the algebra D(G)G is a polynomial algebra in
two algebraically independent generators ∆2 and ∆3, explicitly given in [GPT1].

The set K̂ can be identified with Z × Z≥0 in the following way: If k ∈ K then

π(k) = πn,ℓ(k) = (det k)nkℓ,

where kℓ denotes the ℓ-symmetric power of the matrix k.
For any g ∈ SU(3) we denote by A(g) the left upper 2 × 2 block of g, and we

consider the open dense subset A = {g ∈ G : det(A(g)) 6= 0}. Then A is left
and right invariant under K. For any π = πn,ℓ we introduce the following function
defined on A:

Φπ(g) = π(A(g)),
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4 I. PACHARONI

where π above denotes the unique holomorphic representation of GL(2,C) which
extends the given representation of U(2).

To determine all irreducible spherical functions Φ : G −→ End(Vπ) of type
π = πn,ℓ, we use the function Φπ in the following way: in the open set A ⊂ G we
define the function H by

H(g) = Φ(g)Φπ(g)−1, (4)

where Φ is supposed to be a spherical function of type δ. Then H satisfies

i) H(e) = I,
ii) H(gk) = H(g), for all g ∈ A, k ∈ K,
iii) H(kg) = π(k)H(g)π(k−1), for all g ∈ A, k ∈ K.

The canonical projection p : G −→ P2(C) defined by p(g) = g · o where o =
(0, 0, 1) maps the open dense subset A onto the affine space C2 of those points in
P2(C) whose last homogeneous coordinate is not zero. Then property ii) says that
H may be considered as a function on C2, and moreover from iii) it follows that H
is determined by its restriction H = H(r) to the cross section {(r, 0) ∈ C2 : r ≥ 0}
of the K-orbits in C2, which are the spheres of radius r ≥ 0 centered at the origin.
That is H is determined by the function r 7→ H(r) = H(r, 0) on the interval
[0,+∞). Let M be the closed subgroup of K of all diagonal matrices of the form
diag(eiθ, e−2iθ, eiθ), θ ∈ R. Then M fixes all points (r, 0) ∈ C2. Therefore iii)
also implies that H(r) = π(m)H(r)π(m−1) for all m ∈ M . Since any Vπ as an
M -module is multiplicity free, it follows that there exists a basis of Vπ such that
H(r) is simultaneously represented by a diagonal matrix for all r ≥ 0. Thus, if
π = πn,ℓ, we can identify H(r) ∈ End(Vπ) with a vector

H(r) = (h0(r), . . . , hℓ(r))
t ∈ C

ℓ+1.

The fact that Φ is an eigenfunction of ∆2 and ∆3 makes H = H(r) into an eigen-

function of certain differential operators D̃ and Ẽ on (0,∞).
Making the change of variables t = 1/(1 + r2) ∈ (0, 1) these operators become

D̃H = t(1 − t)H ′′ + (A0 − tA1)H
′ +

1

1 − t
(B0 − tB1)H, (5)

ẼH = t(1 − t)MH ′′ + (C0 − tC1)H
′ +

1

1 − t
(D0 + tD1)H. (6)

If we denote by Eij the (ℓ + 1) × (ℓ + 1) matrix with entry (i, j) equal to 1 and 0
elsewhere, then the coefficient matrices are

A0 =
∑ℓ

i=0(n+ ℓ− i+ 1)Ei,i A1 =
∑ℓ

i=0(n+ ℓ− i+ 3)Ei,i,

B0 =
∑ℓ

i=0(i+ 1)(ℓ− i)(Ei,i+1 − Ei,i), B1 =
∑ℓ

i=0 i(ℓ− i+ 1)(Ei,i − Ei,i−1),

M =
∑ℓ

i=0(n− ℓ+ 3i)Ei,i,

C0 =
∑ℓ

i=0(n− ℓ+ 3i)(n+ ℓ− i+ 1)Ei,i − 3
∑ℓ

i=0(i+ 1)(ℓ − i)Ei,i+1,

C1 =
∑ℓ

i=0(n− ℓ+ 3i)(n+ ℓ− i+ 3)Ei,i − 3
∑ℓ

i=0 i(ℓ− i+ 1)Ei,i−1,
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D0 =
∑ℓ

i=0(n+ 2ℓ− 3i)(i+ 1)(ℓ− i)(Ei,i+1 − Ei,i)

− 3
∑ℓ

i=0(n+ ℓ− i+ 1)i(ℓ− i+ 1)(Ei,i − Ei,i−1),

D1 = (2n+ ℓ+ 3)B1.

The following result, which characterizes the spherical functions associated to
the complex projective plane is taken from Theorem 3.8 of [RT], see also [GPT1].

Theorem 2.1. The irreducible spherical functions Φ of SU(3) of type (n, ℓ), cor-

respond precisely to the simultaneous Cℓ+1-valued polynomial eigenfunctions H of

the differential operators D̃ and Ẽ, introduced in (5) and (6), such that hi(t) =
ti−n−ℓgi(t) for all n+ ℓ+ 1 ≤ i ≤ ℓ with gi polynomial and H(1) = (1, . . . , 1)t.

We also obtain, from [GPT1] or [PT1], that there is a bijective correspondence
between the equivalence classes of all irreducible spherical functions Φ of type (n, ℓ)
and the set of pairs of integers

{

(w, k) ∈ Z × Z : 0 ≤ w, 0 ≤ k ≤ ℓ , 0 ≤ w + n+ k
}

. (7)

Under this correspondence the function H associated to the spherical function
Φ satisfies D̃H = λH and ẼH = µH where

λ = λk(w) = −w(w + n+ ℓ+ k + 2) − k(n+ k + 1),

µ = µk(w) = λ(n− ℓ+ 3k) − 3k(ℓ− k + 1)(n+ k + 1),
(8)

2.1. Hypergeometric operators. A key result to characterize the spherical func-
tions of SU(3) of any type (n, ℓ) is the fact that the differential operator D̃ is con-
jugated, by a matrix polynomial function ψ(t), to a hypergeometric operator D.
From [RT], (or [PT2], for a more general situation) we obtain that the function
ψ(t) = XT (t), where

X =
∑

0≤j≤i≤ℓ

(

i
j

)

Eij T =
∑

0≤i≤ℓ

(1 − t)iEii,

satisfies that the differential operator D = ψ−1D̃ψ takes the hypergeometric form

D = t(1 − t)
d2

du2
+ (C − tU)

d

du
− V, (9)

where the coefficient matrices are

C =
∑ℓ

i=0(n+ ℓ+ i+ 1)Ei,i +
∑ℓ

i=0 iEi,i−1, U =
∑ℓ

i=0(n+ ℓ+ i+ 3)Ei,i,

V =
∑ℓ

i=0 i(n+ i+ 1)Ei,i −
∑ℓ

i=0(ℓ − i)(i+ 1)Ei,i+1

This fact allows us to describe the eigenfunctions of the differential operator D̃ in
term of the matrix valued hypergeometric functions, introduced in [T2]: Let W
be a d-dimensional complex vector space, and let A,B and C ∈ End(W ). The
hypergeometric equation is

z(1 − z)F ′′ + (C − z(I +A+B))F ′ −ABF = 0, (10)

where F stands for a function of z with values in W .
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6 I. PACHARONI

More generally we can consider the equation

z(1 − z)F ′′ + (C − zU)F ′ − V F = 0. (11)

In the scalar case the differential operator (11) is always of the form (10). Never-
theless in a noncommutative setting the equations U = 1 + A + B and V = AB
may have no solutions A, B.

If the eigenvalues of C are not in −N0 we define the function

2H1

(

U ; V
C

; z
)

=
∞
∑

m=0

zm

m!
[C;U ;V ]m, (12)

where the symbol [C,U, V ]m is defined inductively by [C;U ;V ]0 = I and

[C;U ;V ]m+1 = (C +m)−1(m2 +m(U − 1) + V )[C;U ;V ]m,

for all m ≥ 0. The function 2H1

(

U ; V
C

; z
)

is analytic on |z| < 1, with values in

End(W ). Moreover if F0 ∈ W then 2H1

(

U ; V
C

; z
)

F0 is a solution of the hyperge-
ometric equation (11) such that F (0) = F0. Conversely any solution F of (11),
analytic at z = 0 is of this form.

2.2. Spherical functions as matrix hypergeometric functions. The irre-
ducible spherical functions of SU(3) of type (n, ℓ) are in a one to one correspondence
with certain simultaneous Cℓ+1-polynomial eigenfunctions H of the differential op-
erators D̃ and Ẽ (see Theorem 2.1).

A delicate fact establish in [RT] is that the functions F (t) = ψ(t)−1H(t) are
also polynomials functions which are eigenfunctions of the differential operators
D = ψ−1D̃ψ and E = ψ−1Ẽψ.
In the variable u = 1 − t, these operators have the form

D = ψ−1D̃ψ = u(1 − u)
d2

du2
+ (C − uU)

d

du
− V, (13)

E = ψ−1Ẽψ = u(Q0 + uQ1)
d2

du2
+ (P0 + uP1)

d

du
− (n+ 2ℓ+ 3)V, (14)

where the coefficient matrices are

C =
∑ℓ

i=0 2(i+ 1)Ei,i +
∑ℓ

i=0 iEi,i−1,

U =
∑ℓ

i=0(n+ ℓ + i+ 3)Ei,i,

V =
∑ℓ

i=0 i(n+ i+ 1)Ei,i −
∑ℓ

i=0(ℓ− i)(i+ 1)Ei,i+1

(15)

Q0 =
∑ℓ

i=0 3iEi,i−1, Q1 =
∑ℓ

i=0(n− ℓ+ 3i)Ei,i,

P0 =
∑ℓ

i=0

(

2(i+ 1)(n+ 2ℓ) − 3(ℓ− i) − 3i2
)

Ei,i −
∑ℓ

i=0 i(3i+ 3 + ℓ+ 2n)Ei,i−1,

P1 =
∑ℓ

i=0 −(n− ℓ+ 3i)(n+ ℓ+ i+ 3)Ei,i +
∑ℓ

i=0 3(i+ 1)(ℓ− i)Ei,i+1,

To describe all simultaneous Cℓ+1-polynomial eigenfunctions of the differential
operators D and E we start by considering the eigenfunctions of D of eigenvalues
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λ = −w(w+ n+ ℓ+ k+ 2)− k(n+ k+ 1), with w, k ∈ N0, 0 ≤ k ≤ ℓ (see (8)). We
let

Vλ = {F = F (u) : DF = λF, F polynomial}.

Remark. It is not difficult to prove that that Vλ 6= 0 if and only if λ = −w(w+n+
ℓ+ k + 2) − k(n+ k + 1), for some 0 ≤ k ≤ ℓ.

Therefore if F ∈ Vλ then it is of the form

F (u) = 2H1

(

U ; V +λ
C

;u
)

F0,

for some F0 ∈ Cℓ. The simultaneous eigenfunctions of D and E will correspond to
particular choices of F0.

Since the initial value F (0) = F0 determines F ∈ Vλ, we have that the linear map
ν : Vλ :→ Cℓ+1 defined by ν(F ) = F (0) is a surjective isomorphism. Since ∆2 and
∆3 commute, the differential operators D and E also commute. Moreover, since
E has polynomial coefficients whose degrees are less or equal to the corresponding
orders of differentiation, E restricts to a linear operator of Wλ. Thus we have the
following commutative diagram

Vλ
E

−−−−→ Vλ

ν





y





y

ν

Cℓ+1 M(λ)
−−−−→ Cℓ+1

(16)

where M(λ) is the (ℓ + 1) × (ℓ+ 1) matrix given by

M(λ) = Q0(C+1)−1(U+V +λ)C−1(V +λ)+P0C
−1(V +λ)− (n+2ℓ+3)V. (17)

The eigenvalues of M are given by (see Theorem 10.3 in [GPT1])

µk(λ) = λ(n− ℓ+ 3k) − 3k(ℓ− k + 1)(n+ k + 1), k = 0, 1, . . . , ℓ.

Moreover, all eigenvalues µk(λ) of M(λ) have geometric multiplicity one. In other
words all eigenspaces are one dimensional. Moreover if v = (v0, ..., vℓ)

t is a nonzero
µ-eigenvector of M(λ), then v0 6= 0.

The irreducible spherical functions of SU(3) of type (n, ℓ) are parameterized by
two nonnegative integers w, k with 0 ≤ k ≤ ℓ and 0 ≤ w + n+ k (see (7)). Under
this correspondence the function H associated to the spherical function satisfies
D̃H = λH and ẼH = µH where

λ = λk(w) = −w(w + n+ ℓ+ k + 2) − k(n+ k + 1),

µ = µk(w) = λ(n− ℓ+ 3k) − 3k(ℓ− k + 1)(n+ k + 1),
(18)

Then the characterization of the irreducible spherical functions is summarize in
the following theorem, taking from [RT].

Theorem 2.2. The function H associated to a spherical function of type (n, ℓ)
and parameters w, k is of the form H(u) = XT (u)F (u), where

X =
∑

0≤j≤i≤ℓ

(

i
j

)

Eij , T (u) =
∑

0≤i≤ℓ

uiEii
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8 I. PACHARONI

F (u) = 2H1

(

U ; V +λ
C

;u
)

F0, (19)

and F0 is the unique µ-eigenvector of M(λ) normalized by F0 = (1, x1, . . . , xℓ)
t.

The expressions of the matrices C,U, V are given in (15) and the eigenvalues λ
and µ are given in (18).

2.3. Orthogonality. Let (C(G) ⊗ End(Vπ))K×K be the space of all continuous
functions Φ : G −→ End(Vπ) such that Φ(k1gk2) = π(k1)Φ(g)π(k2) for all g ∈ G,
k1, k2 ∈ K. Let us equip Vπ with an inner product such that π(k) becomes unitary
for all k ∈ K. We have the following inner product in (C(G) ⊗ End(Vπ))K×K :

〈Φ,Ψ〉 =

∫

G

Tr(Φ(g)Ψ(g)∗) dg , (20)

where Ψ(g)∗ denotes the adjoint of Ψ(g) with respect to the inner product in
Vπ . Then we have the following inner product on the corresponding functions H ’s
associated to the spherical functions

〈H,K〉 =

ℓ
∑

i=0

∫ 1

0

(1 − t)tn+ℓ−i hi(t)ki(t) dt =

∫ 1

0

K(t)∗W̃ (t)H(t) dt, (21)

where

W̃ (t) =
∑

0≤i≤ℓ

(1 − t)tn+ℓ−iEii.

Since the Casimir operator is symmetric with respect to the L2-inner product for
matrix valued functions on G given in (20), it follows that the differential operators

D̃ and Ẽ are symmetric with respect to the weight function W̃ , that is they satisfy

〈DH,K〉 = 〈H,DK〉.

Now it is easy to verify that the differential operators D = ψ−1D̃ψ and E =
ψ−1Ẽψ are symmetric with respect to the weight function W = ψ∗W̃ψ

W (u) =

ℓ
∑

i,j=0

(

ℓ
∑

r=0

(

r
i

)(

r
j

)

(1 − u)n+ℓ−rui+j+1

)

Eij . (22)

3. The explicit expressions

To illustrate the above result we will display the cases ℓ = 0 (the scalar case)
and ℓ = 1, where the size of our matrices will be 2 × 2.

3.1. The case ℓ = 0. In this case the functions H(t) = h(t) are scalar functions.
If the parameter n is 0 then we have the zonal spherical functions.
The operator Ẽ is proportional to D̃, (Ẽ = nD̃) and

D̃h = t(1 − t)h′′ + (n+ 1 − t(n+ 3))h′

To find the eigenfunctions of D̃ we put λ = −w(w + n + 2). Then h should be a
solution of the hypergeometric equation with

a = −w, b = w + n+ 2 and c = n+ 1.
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For generic values of the parameters the functions

2F1

(

−w,w+n+2
n+1 ; t

)

and t−n
2F1

(

−w−n,w+2
1−n ; t

)

are linearly independent solutions. By Theorem 2.1 we have that h should be a
polynomial function such that h(1) = 1. Moreover if n < 0 the function h have to
satisfies h(t) = t−ng(t) with g a polynomial function. Therefore we get: For n ≥ 0
and w = 0, 1, 2, . . .

hw(t) = (n+1)w

(−w−1)w
2F1

(

−w,w+n+2
n+1 ; t

)

For n < 0 and w = −n,−n+ 1, . . .

hw(t) = (1−n)w+n

(−w−n−1)w+n
t−n

2F1

(

−w−n,w+2
1−n ; t

)

where (a)m = a(a+ 1) . . . (a+m− 1), for m ∈ N and (a)0 = 1.
By using the Pfaff’s identity we get

(n+1)w

(−w−1)w
2F1

(

−w,w+n+2
n+1 ; t

)

= 2F1

(

−w,w+n+2
2 ; 1 − t

)

and
(1−n)w+n

(−w−n−1)w+n
t−n

2F1

(

−w−n,w+2
1−n ; t

)

= t−n
2F1

(

−w−n,w+2
2 ; 1 − t

)

Now by using the Euler transformation we get

t−n
2F1

(

−w−n,w+2
2 ; 1 − t

)

= 2F1

(

−w,w+n+2
2 ; 1 − t

)

Therefore we obtain that

Proposition 3.1. The spherical functions associated to the complex projective

plane of type (n, 0) are

hw(t) = 2F1

(

−w,w+n+2
2 ; 1 − t

)

under the conditions w ∈ Z, w ≥ 0 and w+n ≥ 0. Moreover these functions satisfy

D̃hw = −w(w + n+ 2)hw Ẽhw = −nw(w + n+ 2)hw.

3.2. The case ℓ = 1. In this case the operators D̃ and Ẽ are

D̃ =t(1 − t)
d2

dt2
+

(

n+ 2 − t(n+ 4) 0
0 n+ 1 − t(n+ 3)

)

d

dt
+

1

1 − t

(

−1 1
t −t

)

Ẽ =t(1 − t)

(

(n− 1) 0
0 (n+ 2)

)

d2

dt2

+

(

(n− 1)
(

n+ 2 − t(n+ 4)
)

−3
3t (n+ 2)

(

n+ 1 − t(n+ 3)
)

)

d

dt
(23)

+
1

1 − t

(

−n+ 2 n+ 2
3n+ 3 − 2(n+ 2)t −3n− 3 + 2(n+ 2)t

)

In [GPT1], Section 11.1 we exhibit the complete list of spherical function of
type (n, 1). We have two families of such functions, corresponding with the choice
of the parameter k = 0 or k = 1. For n ≥ 0 the parameter w is in the range
w = 0, 1, 2, . . . , and if n < 0 w = −n,−n+ 1, . . . .
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First family. For k = 0 we have λ = −w(w + n + 3), µ = λ(n − 1). The
(vector valued) function H is given by, up to the normalizing constant such that
H(1) = (1, 1).

H =















(

(

1 − λ
n+1

)

3F2

(

−w, w+n+3, λ−n

n+2, λ−n−1
; t
)

, 2F1

(

−w, w+n+3

n+1
; t
))

if n ≥ 0

(

nt−n−1
3F2

(

w+2, −w−n−1, a+1

−n, a
; t
)

, t−n
2F1

(

w+3, −w−n

1−n
; t
))

if n < 0

with a = −w(w + n+ 3) − 2n− 2.
Second family. For k = 0 we have λ = −w(w+n+4)−n−2 and µ = (λ−3)(n+2).

The functions H is

H =















(

2F1

(

−w, w+n+4
n+2 ; t

)

, −(n+ 1) 3F2

(

−w−1, w+n+3, λ
n+1, λ−1 ; t

))

if n ≥ 0

(

t−n−1
2F1

(

w+3, −w−n−1
−n ; t

)

, b
n
t−n

3F2

(

w+3, −w−n−1, b+1
1−n, b ; t

))

if n < 0

with b = −w(w + n+ 4) − 2n− 3.

By taking the Taylor expansion at t = 1 these functions takes the following unified
expression. We recall that t = 1 corresponds to the identity of the group G.

Theorem 3.2. The complete list of spherical functions associated to SU(3) of type

(n, 1) are given by

(1) For k = 0 we have λ = −w(w + n+ 3), µ = λ(n− 1) and

H(t) =

(

3F2

(

−w, w+n+3, 2
3, 1 ; 1 − t

)

2F1

(

−w, w+n+3
3 ; 1 − t

)

)

The parameter w is an integer that satisfies w ≥ 0 and w + n ≥ 0.
(2) For k = 1, we have λ = −w(w + n+ 4) − n− 2, µ = (λ − 3)(n+ 2) and

H(t) =

(

2F1

(

−w, w+n+4
3 ; 1 − t

)

3F2

(

−w−1, w+n+3, c+1
3, c ; 1 − t

)

)

where c = (w+1)(w+n+3)
(w+1)(w+n+3)+n

.

The parameter w is an integer that satisfies w ≥ 0 and w + n+ 1 ≥ 0.

In this case the function ψ(u) = XT (u), where X = ( 1 0
1 1 ) and T (u) = ( 1 0

0 u ) is

ψ(u) =

(

1 0
1 u

)

. (24)

Rev. Un. Mat. Argentina, Vol 49-2



MATRIX SPHERICAL FUNCTIONS AND ORTHOGONAL POLYNOMIALS 11

In the variable u = 1−t, the conjugated operatorsD = ψ−1D̃ψ and E = ψ−1Ẽψ
are

D = u(1 − u)
d2

du2
+

(

2 − (n+ 4)u 0
1 4 − (n+ 5)u

)

d

du
−

(

0 −1
0 n+ 2

)

,

E = (1 − u)

(

(n− 1)u 0
3 (n+ 2)u

)

d2

du2

+

(

2n+ 1 − (n− 1)(n+ 4)u 3u
−(2n+ 7) 4n+ 5 − (n+ 2)(n+ 5)u

)

d

du

− (n+ 5)

(

0 −1
0 n+ 2

)

(25)

The matrix M(λ) (see (17)), is

M(λ) =

(

λ(n+ 1
2 ) 9

2

λ(λ
2 − n− 2) λ(n+ 1

2 ) − 3(n+ 2)

)

.

The eigenvalues of M(λ) are µ0 = λ(n − 1) and µ1 = (n + 2)(λ − 3) and the
respective normalized eigenvectors are

F0,0 =

(

1
−λ

3

)

, F0,1 =

(

1
λ−2(n+2)

3

)

.

Therefore the functions F associated to the spherical functions are, for k = 0, 1,

F (u) = 2H1

(

U ; V +λk

C
;u
)

F0,k,

where λk = −w(w + n+ 3 + k) − k(n+ k + 1),

C =

(

2 0
1 4

)

, U =

(

n+ 4 0
0 n+ 5

)

, V =

(

0 1
0 −n− 2

)

.

The explicit expression of the entries of these functions F ’s are given in the
following theorem.

Theorem 3.3. The functions F = ψ−1H associated to the spherical functions of

the pair (SU(3),U(2)) of type (n, 1) are given by

(1) For k = 0 we have λ = −w(w + n+ 3), µ = λ(n− 1) and

F (u) =

(

3F2

(

−w, w+n+3, 2
3, 1 ;u

)

w(w+n+3)
3 2F1

(

−w+1, w+n+4
4 ;u

)

)

The parameter w is an integer that satisfies w ≥ 0 and w + n ≥ 0.
(2) For k = 1, we have λ = −w(w + n+ 4) − n− 2, µ = (λ− 3)(n+ 2) and

F (u) =

(

2F1

(

−w, w+n+4
3 ;u

)

− sw

3 3F2

(

−w, w+n+4, sw+1
4, sw

;u
)

)

where sw = w(w + n+ 4) + 3(n+ 2).
The parameter w is an integer that satisfies w ≥ 0 and w + n+ 1 ≥ 0.
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Proof. If H = (h1, h2) is an eigenfunction of D̃ then F (u) = ψ−1(u)H(u) is an
eigenfunction of D with the same eigenvalue. Explicitly the function F is

F (u) =
(

h1(u),
h2(u)−h1(u)

u

)

(26)

From (26) we only have to prove the expression for the second entry of the
function F . For the first family, from Theorem 3.2 we get

f2(u) =
h2(u) − h1(u)

u
=

1

u

(

2F1

(

−w, w+n+3
3 ;u

)

− 3F2

(

−w, w+n+3, 2
3, 1 ;u

)

)

=
1

u

(

∑

j≥0

(−w)j(w+n+3)j(1−(j+1))
j! (3)j

uj
)

= w(w+n+3)
3 2F1

(

−w+1, w+n+4
4 ;u

)

For the second family we obtain, with c = (w+1)(w+n+3)
(w+1)(w+n+3)+n

f2(u) =
h2(u) − h1(u)

u
=

1

u

(

3F2

(

−w−1, w+n+3, c+1
3, c ;u

)

− 2F1

(

−w, w+n+4
3 ;u

)

)

=
1

u

(

∑

j≥0

(−w)j−1(w+n+4)j−1

(3)j j!

(

− (w + 1)(w + n+ 3)(1 + j/c)

− (−w + j − 1)(w + n+ 3 + j)
)

uj
)

=
∑

j≥0

(−w)j−1(w+n+4)j−1

(3)j j! (−j)
(

w(w + n+ 4) + 3(n+ 2) + j − 1
)

uj−1

= −
∑

j≥0

(−w)j(w+n+4)j

3(4)j j!

(

w(w + n+ 4) + 3(n+ 2) + j
)

uj

= −
∑

j≥0

sw

3
(−w)j(w+n+4)j(sw+j)

j! (4)jsw
uj = − sw

3 3F2

(

−w, w+n+4, sw+1
4, sw

;u
)

This concludes the proof of the theorem. �

3.3. Matrix valued orthogonal polynomials coming from spherical func-

tions. In the scalar case, it is well known that the zonal spherical functions of
the sphere Sd = SO(d + 1)/SO(d) are given, in spherical coordinates, in terms of
Gegenbauer polynomials. Therefore, it is not surprising that in the matrix valued
setting the same phenomenon occurs: the matrix spherical functions are closely
related to matrix orthogonal polynomials.

For a given nonnegative integers n and w we define the matrix polynomial Pw(u)
as the 2 × 2 matrix function whose k-row is the polynomial Fw,k(u), associated to
the spherical functions of type (n, 1), given in the previous section. In other words

Pw(u) =





3F2

(

−w, w+n+3, 2
3, 1 ;u

)

w(w+n+3)
3 2F1

(

−w+1, w+n+4
4 ;u

)

2F1

(

−w, w+n+4
3 ;u

)

− sw

3 3F2

(

−w, w+n+4, sw+1
4, sw

;u
)



 .

where sw = w(w + n+ 4) + 3(n+ 1).
Since different spherical functions are orthogonal with respect to the natural

inner product among these functions, we obtain that the matrices Pw are orthogonal
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with respect to the weight function W = W (u):

W (u) = u(1 − u)n

(

2 − u u
u u2

)

,

explicitly we have

(Pw , Pw′) =

∫ 1

0

Pw(u)W (u)Pw′(u)∗ du = 0, for all w 6= w′.

A look at the definition shows that the leading coefficient of Pw is a triangular
nonsingular matrix. Therefore (Pw)w is a sequence of matrix valued orthogonal
polynomials with respect to the weight matrix W .

The columns of P ∗
w are eigenfunctions of the differential operatorsD and E given

in (25), thus we have that Pw(u) satisfies

DPw(u)∗ = Pw(u)∗
(

λ0(w) 0
0 λ1(w)

)

, EPw(u)∗ = Pw(u)∗
(

µ0(w) 0
0 µ1(w)

)

,

where the eigenvalues λk(w) and µk(w) are

λ0(w) = −w(w + n+ 3), λ1(w) = −w(w + n+ 4) − n− 2

µ0(w) = λ0(w)(n − 1), µ1(w) = (λ1(w) − 3)(n+ 2)

3.4. Extension of the group parameters. These results have a direct and fruit-
ful generalization by replacing the complex projective plane by the d-dimensional
complex projective space Pd(C), which can be realized as the homogeneous space
G/K, where G = SU(d+ 1) and K = S(U(d) × U(1)) ≃ U(d).

In this case, the finite dimensional irreducible representations of K, are pa-
rameterized by the d-tuples of integers π = (m1,m2, . . . ,md) ∈ K̂ such that
m1 ≥ m2 ≥ · · · ≥ md. By considering the irreducible spherical functions of type
π = (n + 1, n, . . . , n), and proceeding as we explained for the complex projective
plane, one obtains a situation that generalizes the one of d = 2. Then by extending
the parameters α = n, β = d− 1 we have the following results.

Theorem 3.4. Let sw = w(w+α+β+3)+(β+2)(α+β+1)
β

and let us define

Pw(t) =





3F2

(

−w,w+α+β+2,2
β+2,1 ; 1 − t

)

w(w+α+β+2)
β+2 2F1

(

−w+1,w+α+β+3
β+3 ; 1 − t

)

2F1

(

−w,w+α+β+3
β+2 ; 1 − t

)

− sw

β+2 3F2

(

−w,w+α+β+3,sw+1
β+3,sw

; 1 − t
)





Then {Pw}w≥0 is a sequence of orthogonal polynomials with respect the weight

matrix

W (t) = tα(1 − t)β

(

β + t β(1 − t)
β(1 − t) β(1 − t)2

)

, (α, β > −1).

Let D be the following second order differential operator

D = t(1 − t)
d2

dt2
+
(

α+2−t(α+β+3) 0
−1 α+1−t(α+β+4)

) d

dt
+
(

0 β

0 −(α+β+1)

)

I

The polynomials Pw satisfies

DP ∗
w = P ∗

wΛw
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where

Λw =

(

−w(w + α+ β + 2) 0
0 −w(w + α+ β + 3) − (α+ β + 1)

)

In [PT1] for SU(3) or in general in [P08], we obtain a multiplication formula for
spherical functions by tensoring certain irreducible representations of SU(n+1) and
decomposing them into irreducible representations. From this formula we derive a
three term recursion relation for the “packages” of spherical functions. Restricting
this to the variable t (the variable that parameterizes a section of the K-orbits in
P2(C)), we obtain a three term recursion relation for the packages of functions F
associated to the spherical functions. In this case we obtain the following

Theorem 3.5. The sequence {Pw(t)}w≥0 satisfies the following three term recur-

sion relation

AwPw−1(t) +BwPw(t) + CwPw+1(t) = tPw(t).

with

Aw =

(

w(w+α)(w+α+β+1)
(w+α+β)(2w+α+β+1)(2w+α+β+2)

wβ
(w+1)(w+α+β)(2w+α+β+2)

0 w(w+2)(w+α+1)
(w+1)(2w+α+β+2)(2w+α+β+3)

)

Cw =

(

(w+1)(w+β+2)(w+α+β+2)
(w+2)(2w+α+β+2)(2w+α+β+3) 0

(w+β+2)
(w+2)(w+α+β+2)(2w+α+β+3)

(w+β+2)(w+α+β+1)(w+α+β+3)
(w+α+β+2)(2w+α+β+3)(2w+α+β+4)

)

Bw =

(

B11
w

β(w+α+β+2)
(w+2)(w+α+β+1)(2w+α+β+2)

w+α+1
(w+1)(w+α+β+1)(2w+α+β+3) B22

w

)

where

B11
w = (w+1)2(w+β+2)

(w+2)(2w+α+β+2)(2w+α+β+3) + β
(w+1)(w+2)(w+α+β)(w+α+β+1)

+ (w+α)(w+α+β+1)2

(w+α+β)(2w+α+β+1)(2w+α+β+2)

B22
w = (w+1)(w+3)(w+β+2)

(w+2)(2w+α+β+3)(2w+α+β+4) + (w+α+1)(w+α+β)(w+α+β+2)
(w+α+β+1)(2w+α+β+2)(2w+α+β+3)

Remark 3.6. The three term recursion relation can be seen as a difference op-
erator in the variable w, given by a semiinfinite matrix L. The vector matrix
P = (P0, P1, . . . , Pw, . . . ) is an eigenfunction of L because it satisfies LP = tP .
We observe that the semiinfinte matrix L have the interesting property that the
sum of all the matrix elements in any row is equal to one. Moreover all the en-
tries of L are nonnegative real numbers. This has important applications in the
modeling of some stochastic phenomena.
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