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HARMONIC ANALYSIS ON HEISENBERG

NILMANIFOLDS

SUNDARAM THANGAVELU

Abstract. In these lectures we plan to present a survey of certain aspects of
harmonic analysis on a Heisenberg nilmanifold Γ\Hn. Using Weil-Brezin-Zak
transform we obtain an explicit decomposition of L2(Γ\Hn) into irreducible
subspaces invariant under the right regular representation of the Heisenberg
group. We then study the Segal-Bargmann transform associated to the Lapla-
cian on a nilmanifold and characterise the image of L2(Γ\Hn) in terms of
twisted Bergman and Hermite Bergman spaces.

1. Introduction

The standard theory of multiple Fourier series deals with functions on the n di-
mensional torus T

n which can be identified with the quotient group R
n/Zn where

Z is the additive group of integers. If L2(Tn) is the Hilbert space of square inte-
grable functions on Tn, formed using the Lebesgue measure, then Rn has a natural
action defined by R(x)f(y) = f(y + x), f ∈ L2(Tn). As is well known, the one
dimensional subspaces Vm spanned by the functions em(x) = e2πim·x are invariant
under R(x) for all x and L2(Tn) is the orthogonal direct sum of Vm as m runs
through Zn. We can also replace the standard lattice Zn by any discrete subgroup
Γ for which Rn/Γ is compact.

In these lectures we plan to study a similar problem for the nilmanifolds which
are Γ\Hn where Hn is the Heisenberg group and Γ is a discrete co-compact sub-
group of Hn. We consider the representation R of Hn on L2(Γ\Hn) defined by
R(g)F (Γh) = F (Γhg) and address the problem of identifying all irreducible, in-
variant subspaces. As the group Hn is non-abelian this problem turns out to be
more interesting and difficult. By performing a Fourier expansion in the central
variable, we are lead to consider spaces of functions satisfying F (Γhz) = eiλzF (Γh)
for all z from the center of Hn. Such spaces turn out to be invariant under R and
can be further decomposed into finitely many irreducible, invariant subspaces. The
number of such subspaces is known in terms of λ and on each of these spaces R is
unitarily equivalent to the Schrödinger representation πλ.

The spectrum of the standard Laplacian ∆ acting on functions on R
n is continu-

ous but on L2(Tn) it is discrete. The functions em(x),m ∈ Zn are all eigenfunctions
of the Laplacian with eigenvalues |m|2. In Section 4 we study the spectrum of the
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76 SUNDARAM THANGAVELU

sublaplacian L on a nilmanifold Γ\Hn. This operator L plays the role of Laplacian
on the Heisenberg group. It has continuous spectrum on the full group Hn but
when restricted to a (compact) nilmanifold it has discrete spectrum. The spectral
theory of L on L2(Γ\Hn) is intimately connected with that of Hermite and special
Hermite operators. We show that an orthonormal basis for L2(Γ\Hn) consisting of
eigenfunctions of L can be constructed.

Another problem we address in Section 4 is the characterisation of the image of
L2(Γ\H

n) under the Segal-Bargmann (or heat kernel) transform associated to the
full Laplacian on Hn. In the classical set up, the function

u(x, t) =
∑

m∈Zn

f̂(m)e−4π2t|m|2e2πim·x

solves the heat equation ∂tu(x, t) = ∆u(x, t) with the initial condition u(x, 0) =
f(x). Note that when f ∈ L2(Tn) the above solution u(x, t) extends to Cn as
an entire function which is invariant under the action of Z

n. It is a classical re-
sult of Segal and Bargmann that such entire functions are characterised by the
property that they are square integrable on Cn/Zn with respect to the measure

e−
1

t
π|y|2dx dy. For the Laplacian on the Heisenberg group we study the Segal-

Bargmann transform acting on L2(Γ\Hn). The image turns out to be a direct sum
of twisted Bergman spaces satisfying certain quasi-periodicity conditions. This is
proved in Section 4.2 using another family of weighted Bergman spaces associated
to the Hermite operator.

2. Heisenberg groups and their representations

Our main aim in this section is to introduce the Schrödinger and Fock- Bargmann
representations of the Heisenberg group. We use the Schrödinger representations
in defining the group Fourier transform. We use Bargmann transforms and twisted
Bergman spaces in order to study the classical and generalised Fock-Bargmann
representations. The latter spaces appear in connection with the Segal-Bargmann
transform on nilmanifolds (see Section 4.2). The main references for Section 2.1
are the monographs of Folland [5] and Thangavelu [14]. For the twisted Bergman
spaces we refer to Krötz, Thangavelu and Xu [9], [11] and Thangavelu [16].

2.1. Fourier transform on Hn. The Heisenberg group Hn is R2n × R equipped
with the group law

(ξ, t)(η, s) = (ξ + η, t+ s+
1

2
ω(ξ, η))

where ω is the symplectic form on R2n defined by ω(ξ, η) = (u · y − x · v) if
ξ = (x, u), η = (y, v). It is the simplest example of a non-abelian group from the
realm of nilpotent Lie groups. Note that the center of Hn is Z = {0} × R. We
briefly recall some basic results from the representation theory of Hn.

If π is any irreducible unitary representation of Hn then its restriction π(0, t) to
the center of H

n, viz. Z = {0}×R commutes with every π(ξ, s) and hence for some
λ ∈ R, π(0, t) = eiλtId. When λ = 0 the representaion π defines a representation
of R2n and hence it is one dimensional given by a character. Such representations
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ANALYSIS ON NILMANIFOLDS 77

do not interest us. When λ 6= 0 there is a well known realisation of π on the
Hilbert space L2(Rn). This representation, denoted by πλ is called the Schrödinger
representation and is given explicitly by

πλ(ξ, t)ϕ(v) = eiλteiλ(x·v+ 1

2
x·u)ϕ(v + u)

for ϕ ∈ L2(Rn). It is not difficult to show that this is indeed an irreducible unitary
representation of Hn. A celebrated theorem of Stone and von Neumann says that
any irreducible unitary representation π whose restriction to the center is eiλtId
with λ 6= 0 is unitarily equivalent to πλ (see [5]).

We define the group Fourier transform of a function f on Hn in terms of πλ.
When f ∈ L1 ∩ L2(Hn) set

f̂(λ) =

∫

Hn

f(g)πλ(g)dg

for every λ 6= 0 as an operator valued function. The Plancherel theorem then reads
as

∫ ∞

−∞

‖f̂(λ)‖2
HSdµ(λ) =

∫

Hn

|f(g)|2dg

where dµ(λ) = (2π)−n−1|λ|ndλ is the Plancherel measure for Hn. In the above

‖f̂(λ)‖HS stands for the Hilbert-Schmidt operator norm of f̂(λ). Recalling the

definition of πλ we see that f̂(λ) can be written as

f̂(λ) =

∫

R2n

fλ(ξ)πλ(ξ, 0)dξ

where fλ(ξ) is the inverse Fourier transform of f in the central variable,

fλ(ξ) =

∫ ∞

−∞

f(ξ, t)eiλtdt.

In view of this, we define πλ(F ) for any function F on R
2n by

πλ(F ) =

∫

R2n

F (ξ)πλ(ξ, 0)dξ

and call it the Weyl transform of F. We also remark that

(f ∗ g)λ(ξ) =

∫

R2n

fλ(ξ − η)e
i

2
λω(ξ,η)g(η)dη

which is usually denoted by fλ ∗λ g
λ(ξ) and called the λ-twisted convolution of

fλ with gλ. The relation (f ∗ g)̂(λ) = f̂(λ)ĝ(λ) which is easily checked translates
into πλ(F ∗λ G) = πλ(F )πλ(G). We also remark that for F ∈ L2(R2n), πλ(F ) is a
Hilbert-Schmidt operator and

‖πλ(F )‖2
HS = cλ

∫

R2n

|F (ξ)|2dξ

for an explicit constant cλ which is the Plancherel theorem for the Weyl transform.
Given ϕ, ψ ∈ L2(Rn) their Fourier-Wigner transform is defined to be the function

(πλ(ξ, 0)ϕ, ψ) on R
2n. Using the explicit formula for the representation πλ and

Rev. Un. Mat. Argentina, Vol 50-2



78 SUNDARAM THANGAVELU

Plancherel theorem for the Euclidean Fourier transform it is not difficult to show
that

∫

R2n

(πλ(ξ, 0)ϕ, ψ)(πλ(ξ, 0)f, g)dξ = (2π)n|λ|−n(ϕ, f)(g, ψ)

for functions ϕ, ψ, f, g ∈ L2(Rn). We use the Fourier-Wigner transform to construct
an orthonormal basis for L2(R2n) starting from the Hermite basis for L2(Rn).

If we let H = −∆+|x|2 stand for the Hermite operator on Rn then the eigenfunc-
tions are given by the normalised Hermite functions Φα indexed by α ∈ N

n. These

are of the form Hα(x)e−
1

2
|x|2 where Hα is a polynomial of degree |α| =

∑n
j=1 αj .

Moreover, HΦα = (2|α| + n)Φα and the family {Φα : α ∈ Nn} is an orthonormal

basis for L2(Rn). For each λ 6= 0 we define Φλ
α(x) = |λ|

n

4 Φα(|λ|
1

2 x) so that they are
eigenfunctions of the scaled Hermite operatorH(λ) = −∆+λ2|x|2 with eigenvalues

(2|α| + n)|λ|. We remark that Φλ
0 (x) = π−n

4 |λ|
n

4 e−
1

2
|λ||x|2.

We define the special Hermite functions Φλ
α,β(ξ) in terms of the Fourier-Wigner

transform as (2π)−
n

2 |λ|
n

2 (πλ(ξ, 0)Φλ
α,Φ

λ
β). Then it follows from the properties of

the Fourier-Wigner transform that {Φλ
α,β : α, β ∈ Nn} is an orthonormal basis for

L2(R2n). A simple calculation shows that

πλ(Φλ
α,β)ϕ = (ϕ,Φλ

α)Φβ .

From this and the relation πλ(F ∗λ G) = πλ(F )πλ(G) it follows that

Φλ
α,β ∗λ Φλ

µ,ν = (2π)
n

2 |λ|−nδβ,µΦλ
α,ν .

This interesting orthogonality under λ−twisted convolution will be made use of in
the next section. For more about special Hermite functions see [14].

2.2. Fock-Bargmann representations. We now describe another family of irre-
ducible unitary representations ρλ of H

n known in the literature as Fock-Bargmann
representations. More generally, we define a whole family of representations ρλ

α in-
dexed by α ∈ Nn with ρλ

0 = ρλ. These representations may be called generalised
Fock-Bargmann representations, see e.g. Szabo [13]. For each α ∈ Nn we set Eλ

α

to be the subspace of L2(R2n) spanned by Φλ
α,β , β ∈ Nn. Define Fλ

α to be the space

of functions of the form G(ξ, t) = eiλtF (ξ) where F ∈ Eλ
α equipped with the inner

product

(G1, G2) =

∫

R2n

G1(ξ, 0)G2(ξ, 0)dξ.

It is not difficult to show that each of these spaces Fλ
α is invaraint under left

translations and hence we can define representations ρλ
α by setting

ρλ
α(η, s)G(ξ, t) = G((−η,−s)(ξ, t)).

Theorem 2.1. For each α ∈ Nn and λ 6= 0 the above representations are unitary,
irreducible and equivalent to πλ.

We now consider the representation ρλ
0 more closely. Writing ξ = (x, u) the

transformation A : (x, u, t) → (−u, x, t) is an automorphism of Hn. We consider
the representation ρλ

0 (A(x, u, t)) = ρλ
0 (−u, x, t) and show that it can be realised on
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a Hilbert space of entire functions. Look at the intertwining operator Bλ
0 f(ξ) =

(πλ(ξ)Φλ
0 , f̄). Writing the definition and simplifying,we see that

Bλ
0 f(−u, x) = e−

1

4
λ(x2+u2)

∫

Rn

f(v)e−
1

2
λv2

e−λ(x+iu)e−
1

4
(x+iu)2dv.

Thus e
1

4
λ(x2+u2)Bλ

0 f(−u, x) is an entire function of the complex variable z = x+iu.
We define Fλ(Cn) to be the space of entire functions F on C

n which are square

integrable with respect to the measure e−
1

2
λ(x2+u2). This is the classical Fock-

Bargmann space and the transformation F (x, u) → e
1

4
λ(x2+u2)F (−u, x) sets up an

isometric isomorphism from E
λ
0 onto Fλ(Cn). By setting

Bλf(x+ iu) = e
1

4
λ(x2+u2)Bλ

0 (−u, x)

we see that Bλπλ(x, u, t)B∗
λ defines a representation ρλ of Hn on Fλ(Cn) called the

Fock-Bargmann representation.

2.3. Twisted Bergman spaces. We now introduce the twisted Bergman space
Bλ

t , for each t > 0, which is isometrically isomorphic to L2(R2n) and show that
it can be written as a direct sum of certain subspaces on which we can define
representations of Hn unitarily equivalent to ρλ

α. Consider the weight function

Wλ
t (z, w) = eλ(u·y−v·x)pλ

2t(2y, 2v)

where

pλ
t (y, v) = cn

(

λ

sinh(tλ)

)n

e−
1

4
λ coth(tλ)(y2+v2).

Later we will see that this is the heat kernel associated to a certain elliptic differ-
ential operator Lλ called the special Hermite operator. For each t > 0 we define
the twisted Bergman space Bλ

t (C2n) to be the space of all entire functions F on
C2n which are square integrable with respect to the weight function Wλ

t . It is a
Hilbert space equipped with the norm

‖F‖2
Bλ

t

=

∫

C2n

|F (z, w)|2Wλ
t (z, w)dzdw.

We require the following facts about these spaces that we recall without proofs (see
[9] and [16]).

The functions Φλ
α,β(x, u) extend to C2n as entire functions and they belong to

Bλ
t (C2n) for every t > 0. In fact,

∫

C2n

|Φλ
α,β(z, w)|2Wλ

t (z, w)dzdw = e2(2|α|+n)|λ|t

∫

R2n

|Φλ
α,β(x, u)|2dxdu.

More generally,

(Φλ
α,β ,Φ

λ
µ,ν)Bλ

t

= e2(2|α|+n)|λ|tδα,µδβ,ν

and the functions Φ̃λ
α,β = e−(2|α|+n)|λ|tΦλ

α,β form an orthonormal basis for Bλ
t (C2n).

Therefore, for every F ∈ Eλ
α which has the orthogonal expansion

F (x, u) =
∑

β∈Nn

(F,Φλ
α,β)Φλ

α,β(x, u)

Rev. Un. Mat. Argentina, Vol 50-2



80 SUNDARAM THANGAVELU

the series
F̃ (z, w) =

∑

β∈Nn

(F,Φλ
α,β)Φ̃λ

α,β(z, w)

converges in Bλ
t (C2n). In other words, every F ∈ E

λ
α is the restriction to R

2n of an

element (e(2|α|+n)|λ|tF̃ ) of Bλ
t (C2n). Note that ‖F̃‖Bλ

t

= ‖F‖2.

Every F ∈ Bλ
t (C2n) can be written as F =

∑

α Fα where

Fα(z, w) =
∑

β

(F, Φ̃λ
α,β)Bλ

t

Φ̃λ
α,β(z, w).

This means that Bλ
t (C2n) is the orthogonal direct sum of the subspaces Bλ

t,α(C2n)

spanned by {Φ̃λ
α,β : β ∈ Nn}. Hence we can identify Eλ

α with Bλ
t,α(C2n) the isomor-

phism being given by the map Φλ
α,β → Φ̃λ

α,β . Thus we have the following result.

Theorem 2.2. For every t > 0 the map B̃λ
α : L2(Rn) → Bλ

t,α(C2n) given by

f → e−(2|α|+n)|λ|tBλ
αf̄(z, w) is an isometric isomorphism.

This theorem shows that by conjugating with B̃λ
α we can make πλ into a repre-

sentation of Hn realised on Bλ
t,α(C2n) which is unitarily equivalent to ρλ

α. From the

above expansion for F ∈ Bλ
t (C2n) we infer that its restriction to R2n is given by

F (x, u) =
∑

α,β

(F, Φ̃λ
α,β)Bλ

t

Φ̃λ
α,β(x, u)

so that
(F,Φλ

α,β) = e−(2|α|+n)|λ|t(F, Φ̃λ
α,β)Bλ

t

.

This means that
∑

α,β

e2(2|α|+n)|λ|t|(F,Φλ
α,β)|2 = ‖F‖2

Bλ

t

.

Thus the twisted Bergman space Bλ
t can be identified with a certain subspace of

L2(R2n). As we will see later, this is precisely the image of L2(R2n) under the
semigroup generated by the operator Lλ.

Each of Bλ
t,α(C2n) is a Hilbert space of entire functions and hence is associated

with a reproducing kernel which can be easily identified (see [6] and [13]). In fact,
it is given by

Kt
(z,w)(z

′, w′) = e−2(2|α|+n)|λ|tΦλ
α,α(z − z̄′, w − w̄′)e−

i

2
λ(w·z̄′− w̄′·z).

3. Heisenberg nilmanifolds

In this section we introduce nilmanifolds as quotients of Hn by certain lattice
subgroups. All such lattices have been characterised and we recall some results,
without proof, from the paper by Tolimieri [19]. We are mainly interested in a stan-
dard lattice Γ and we study the right regular representation of Hn on L2(Γ\Hn).
We obtain a decomposition of L2(Γ\Hn) into irreducible subspaces that are invari-
ant under the right regular representation. General references for this section are
Gelfand,Graeve and Piatetskii-Shapiro [7], Folland [5], Auslander and Brezin [1],
Brezin [3] and Tolimieri [18].
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3.1. Lattices in Hn. A discrete subgroup Γ of Hn is said to be a lattice if the
quotient Γ\Hn is compact. When Γ is a lattice, the space Γ\Hn of right cosets is
called a nilmanifold. The standard example we study in details is Γ = Zn×Zn× 1

2Z.
The quotient

Γ\H
n ≃ T

2n × S
1

is clearly compact. It is a circle bundle over the torus T2n.
Let An stand for the group of automorphisms of Hn and let A0

n be its identity
component. This group A0

n plays an important role in classifying all lattices in Hn.
Let Sp(2n,R) stand for the symplectic group consisting of all 2n × 2n matrices
preserving the symplectic form ω(ξ, η). That is to say A ∈ Sp(2n,R) if and only
if ω(Aξ,Aη) = ω(ξ, η). Every element A ∈ Sp(2n,R) defines an automorphism in
A0

n denoted by the same symbol, by A(ξ, t) = (Aξ, t). Note that if Γ is a lattice
and A ∈ A0

n then A(Γ) is another lattice. Thus we have an action of A0
n on the

set L(Hn) of all lattices in Hn. We also note that Γ ∩ Z is a nontrivial discrete
subgroup of Z and hence there is unique positive real number β(Γ) such that

Γ ∩ Z = {(0, β(Γ)m) : m ∈ Z}.

Let π : Hn → R2n be the projection π(ξ, t) = ξ. Then π(Γ) is a lattice in R2n,
meaning R2n/π(Γ) is compact. But the lattices π(Γ) thus obtained are somewhat
special. The condition

[Γ,Γ] ⊂ Γ ∩ Z = {(0, β(Γ)m) : m ∈ Z}

imposes some extra conditions on π(Γ). Indeed, when g = (ξ, t), h = (η, s) then
[g, h] = ghg−1h−1 = (0, ω(ξ, η)) and hence for any ξ, η ∈ π(Γ) we have ω(ξ, η) ∈
β(Γ)Z. Actually, it turns out that ω(π(Γ), π(Γ)) = β(Γ)Z whenever Γ is a lattice
in Hn. This motivates us to make the following definition. We call a lattice D in
R2n a Heisenberg lattice if ω(D,D) = lZ for some l > 0. The collection of such
lattices will be denoted by HL(R2n). Thus π(Γ) ∈ HL(R2n) for any lattice Γ in
Hn. The converse is also true.

Theorem 3.1. There is a one to one correspondence between lattices in Hn and
Heisenberg lattices in R2n.

The structure of Heisenberg lattices in R2n have been well understood. To
each such lattice D one can associate n positive real numbers l1, l2, ..., ln with the
property that lj divides lj+1. Set

Z
∗
n = {l = (1, l2, ..., ln) ∈ N

n : lj+1l
−1
j ∈ Z}.

Let ej, 1 ≤ j ≤ 2n be the standard co-ordinate vectors in R
2n. For l ∈ Z

∗
n denote

by D(l) = [e1, ..., en, en+1, l2en+2, ..., lne2n] be the Z module of R2n spanned by the
vectors e1, ..., en, en+1, l2en+2, ..., lne2n. Then it is clear that D(l) ∈ HL(R2n) and
ω(D(l), D(l)) = Z.

Theorem 3.2. For each D ∈ HL(R2n) there exists a unique l ∈ Z∗
n, a unique

d > 0 and an A ∈ Sp(2n,R) such that D = A(d.D(l)).

Rev. Un. Mat. Argentina, Vol 50-2



82 SUNDARAM THANGAVELU

Combining Theorems 3.2 and 3.3 we can obtain the following result which gives
the structure of all lattices in Hn. Given l ∈ Z∗

n, let Γ(l) be the subgroup of Hn

generated by

(e1, 0), (e2, 0), ..., (en, 0), (en+1, 0), (l2en+2, 0), ..., (lne2n, 0).

We then have

Theorem 3.3. For each Γ ∈ L(Hn) there exist a unique l ∈ Z∗
n, a unique d > 0

and an A ∈ An such that Γ = A(d.Γ(l)).

We refer to Tolimieri [19] for proofs of the above results. In the next subsection
we consider function spaces on the nilmanifold Γ\Hn. When D = A(d.D(l)) we
remark that β(D) = d2 where β(D) is the unique constant introduced earlier.
Similarly, β(Γ) = d2 whenever Γ = A(d.Γ(l)).

3.2. Analysis on the standard nilmanifold Γn\Hn. We first consider the stan-
dard lattice Γn = Γ(1, 1, ..., 1) and the associated nilmanifold M = Γn\Hn. The
Lebesgue measure on H

n induces a H
n invariant measure on M. Hence we get a

unitary representation R of Hn on L2(M) defined by

R(g)F (Γnh) = F (Γnhg), F ∈ L2(M), g, h ∈ H
n.

We can identify functions on M with functions on Hn that are invariant under left
translations by elements of Γn. (We may call them Γn periodic functions.) We are
interested in identifying irreducible subspaces of L2(M) invariant under R.

Note that Γn = Z2n × 1
2Z so that β(Γn) = 1

2 . Therefore, every Γn periodic

function is 1
2 periodic in the central variable. Thus by defining

Hk(Γn) = {F ∈ L2(M) : F (ξ, t) = e4πiktF (ξ, 0)}

we get the orthogonal direct sum decomposition

L2(M) =
∑

k∈Z

⊕Hk(Γn).

It is easy to see that each Hk(Γn) is R invariant and hence for every k 6= 0 Stone-
von Neumann theorem says that the restriction of R to Hk(Γn) decomposes into
a direct sum of irreducible representations each one unitarily equivalent to π4πk.
The task is to identify the irreducible subspaces and determine the intertwining
operators. We also like to get the multiplicity with which π4πk occurs. All these
questions can be answered easily in the case of standard lattice. For the rest of
this subsection we simply write Γ instead of Γn.

The case k = 0 can be easily dispensed with. Note that H0(Γ) can be identified
with L2(R2n/π(Γ)) and hence it decomposes into an infinite direct sum of one
dimensional R invariant subspaces.

A standard way of constructing Γ invariant functions on Hn is to start with a
tempered distribution ν on R

n which is πλ(Γ) invariant and consider F (x, u, t) =
(ν, πλ(x, u, t)f) where f is a Schwartz function on Rn ([7]). Let ν be such a distri-
bution; that is it verifies (ν, πλ(h)f) = (ν, f), h ∈ Γ. Then taking h = (0, 0, j/2) ∈
Γ, j ∈ Z we are led to πλ(h)f = eiλj/2f and (ν, eiλj/2f) = (ν, f). This holds for
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all j ∈ Z if and only if λ = 4πk for some k ∈ Z. Let us assume k 6= 0 and write
ρk = π4πk.

Proposition 3.4. For k 6= 0 define Fk = Zn/(2kZ)n. Then every tempered dis-
tribution ν invariant under ρk(Γ) is of the form ν =

∑

j∈Fk
cjνj with νj defined

by

(νj, f) =
∑

m∈Zn

f̂(2km + j)

where f̂ denotes the Euclidean Fourier transform of the Schwartz class function f .

We refer to [11] for a proof of this result. We now show that the functions
(νj, f) can be expressed as Weil- Brezin- Zak transforms studied in [3]. Consider
the operator Vk defined on the Schwartz class S(Rn) by

Vkf(x, u, t) =
∑

m∈Zn

ρk(x, u, t)f(m).

Written explicitly

Vkf(x, u, t) = e4πkite2πkix·u
∑

m∈Zn

e4πkim·xf(u+ m).

It is easy to see that Vkf is Γ invariant. For each j ∈ Fk we also define

Vk,jf(x, u, t) = e2πij·xVkf(x, u, t).

These are called the Weil-Brezin-Zak transforms in the literature.

Proposition 3.5. (i) The transform Vk,j initially defined on S(Rn) extends to the
whole of L2(Rn) as an isometry into Hk.
(ii) For each f ∈ S(Rn) we have the relation

(νj, ρk(x, u, t)f) = Vk,jgj(u,−x, t)

where f and gj are related by gj(x) = f̂(2kx+ j).

The above proposition shows that (νj, ρk(x, u, t)f) can be defined on the whole
of L2(Rn). We can now prove the following result.

Theorem 3.6. Denote by Hk,j the span of (νj, ρk(x, u, t)f) as f varies over L2(Rn).
Then Hk is the orthogonal direct sum of the spaces Hk,j, j ∈ Fk.

The orthogonality part of the proof follows from a little group theory and direct
computation. In fact, let us consider the finite group Fk := Z

n/(2kZ)n. Let Mk be
the linear span of νj, j ∈ Fk. Then the prescription

Πk(a)(ν) := ν(· + a) (ν ∈ Mk, a ∈ Fk)

defines a representation of Fk on Mk. Moreover, it is clear that νj is a basis of
eigenvectors for this action; explicitly:

Πk(a)νj = e−2πia·jνj (j ∈ Fk) .
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Futhermore for f, g ∈ S(Rn) and ν, µ ∈ Mk we set Fν(x, u, ξ) = (ν, ρk(x, u.ξ)f)
and Gµ(x, u, ξ) = (µ, ρk(x, u, ξ)g). Then one immediately verifies that

(FΠk(a)ν , Gµ)L2(Γ\Hn) = (Fν , GΠk(−a)µ)L2(Γ\Hn) .

Therefore, the above gives

e−2πia·j(Fνj
, Gνl

) = e−2πia·l(Fνj
, Gνl

).

As this is true for all a ∈ Fk we get (Fνj
, Gνl

) = 0 whenever j 6= l.
From general theory ([7]) it follows that νj is in fact an orthogonal basis for Mk.

By direct calculation which we omit we can show that ‖Fνj
‖2

L2(ΓHn) = 2‖f‖2
2. (One

way to see this is to use Proposition 3.5.) The abstract theory can be used to prove
the rest of the theorem. In what follows, we give a direct proof.

We only need to show that every F ∈ Hk can be decomposed as F =
∑

j∈Fk
Fj,

Fj ∈ Hk,j. In view of Proposition 3.5 it is enough to show that we have F =
∑

j∈Fk
Vk,jfj, fj ∈ L2(Rn). To this end we make use of the finite group Fk.

We first note that if we define G(x, u) = F (x, u, 0) then the Γ -invariance of F
translates into the condition

G(x+ m, u+ n) = e2πik(u·m−x·n)G(x, u), m,n ∈ Z
n.

We show that every G(x, u) satisfying the above condition can be further decom-
posed as G(x, u) =

∑

j∈Fk
Gj where Gj satisfies some extra conditions. To prove

this we define

Gj,m(x, u) = e−πim·ue−
1

k
πim·jG(x+

1

2k
m, u)

and consider the sum

∑

j∈Fk

∑

m∈Fk

Gj,m(x, u) =
∑

m∈Fk

e−πim·uG(x+
1

2k
m, u)





∑

j∈Fk

e−
1

k
πim·j





Since the sum
∑

j∈Fk
e−

1

k
πim·j = 0 unless m = 0 in which case it is (2k)n we get

∑

j∈Fk

∑

m∈Fk

Gj,m(x, u) = (2k)nG(x, u).

By defining

Gj(x, u) = (2k)−n
∑

m∈Fk

Gj,m(x, u)

we get the decomposition G =
∑

j∈Fk
Gj. We now show that Gj satisfies the same

condition as G and the extra condition

Gj(x +
1

2k
m, u) = eπim·(u+ 1

k
j)Gj(x, u)

for every m ∈ Zn. To see this, consider

Gj(x+
1

2k
n, u) = (2k)−n

∑

m∈Fk

e−πim·ue−
1

k
πim·jG(x+

1

2k
(m + n), u).
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The right hand side simplifies to

eπin·ue
1

k
πin·j(2k)−n

∑

m∈Fk

Gj,m+n(x, u).

Now observe that Gj,m(x, u) satisfies

Gj,m+2kn(x, u) = G(x+
1

2k
m + n, u)e−πim·ue−

1

k
πim·je−2πikn·u.

Since G satisfies

G(x +
1

2k
m + n, u) = e2πikn·uG(x+

1

2k
m+, u)

we see that Gj,m+2kn = Gj,m. Therefore,
∑

m∈Fk

Gj,m+n(x, u) =
∑

m∈Fk

Gj,m(x, u)

which proves

Gj(x+
1

2k
n, u) = eπin·ue

1

k
πin·jGj(x, u)

as claimed. Similarly we can show that

Gj(x+ m, u+ n) = e2πik(m·u−n·x)Gj(x, u).

It remains to show that Gj(x, u) = Vk,jfj(x, u, 0) for some fj ∈ L2(Rn) for each
j. To prove this, consider

gj(x, u) = e−2πij·xe−2πikx·uGj(x, u).

In view of the transformation properties ofGj the function gj becomes 1
2k− periodic

in the x-variables. Therefore, it admits an expansion of the form

gj(x, u) =
∑

m∈Zn

Cm(u)e4πikm·x

where Cm(u) are the Fourier coefficients given by

Cm(u) =

∫

[0, 1

2k
)n

gj(x, u)e
−4πikm·xdx.

The properties ofGj(x, u) leads to gj(x, u−m) = gj(x, u)e
4πikm·x and hence Cm(u−

m) = C0(u). Thus, we obtain

Gj(x, u) = e2πij·xe2πikx·u
∑

m∈Zn

C0(u+ m)eiλm·z

which shows that Gj(x, u) = Vk,jfj(x, u, 0) where fj = C0. It is easily seen that
C0 ∈ L2(Rn). This completes the proof of Theorem 3.6.

Remark 3.1. From the above proof it follows that the restriction of R to Hk,j is uni-
tarily equivalent to ρk. The intertwining operator is given by Vk,j. The multiplicity
of R restricted to Hk is easily seen to be (2|k|)n.
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4. Sublaplacian on nilmanifods

In this section we study the spectral theory of the sublaplacian L and the Segal-
Bargmann transform associated to the full Laplacian on the standard nilmanifold.
Section 4.1 deals with the spectrum of L on L2(Γ\Hn). We construct an explicit
orthonormal basis for each Hk using special Hermite functions. In Section 4.2 we
study the Segal-Bargmann transform and show that the image of L2(Γ\Hn) under
this is a direct sum of weighted Bergman spaces related to twisted Bergman spaces.
The main reference for this section is the paper by Krötz, Thangavelu and Xu [11].
For the Segal-Bargmann transform in other contexts see [2], [8], [12], [9] and [16].

4.1. Spectrum of the sublaplacian. On the Heisenberg group Hn with co-
ordinates (x, u, t) we consider the left invariant vector filelds

Xj =
∂

∂xj
+

1

2
uj
∂

∂t
, Uj =

∂

∂uj
−

1

2
xj
∂

∂t
, T =

∂

∂t

for j = 1, 2, ..., n. They satisfy the relations [Xj , Uj] = T, all other commutators
being zero. They form a basis for the Heisenberg Lie algebra hn : the map

R
2n+1 → hn, (x, u, t) 7→

n
∑

j=1

xjXj +
n
∑

j=1

ujUj + tT

is a linear isomorphism providing us with suitable coordinates for hn. The sub-
laplacian on Hn is the operator L = −

∑n
j=1(X

2
j + U2

j ) and plays an important
role in harmonic analysis on Hn.

Another important operator closely related to L is the special Hermite operator,
also called the twisted Laplacian and Landau Hamiltonian (see [6]). For each λ 6= 0
let Lλ be the operator defined by the relation L(eiλtF (x, u)) = eiλtLλF (x, u). It is
explicitly given by

Lλ = −

n
∑

j=1

(
∂2

∂x2
j

+
∂2

∂u2
j

) +
1

4
λ2(x2 + u2) + iλ

n
∑

j=1

(xj
∂

∂uj
− uj

∂

∂xj
).

We remark that the scaled Hermite operator H(λ) = −∆ + λ2x2 is also related to

the sublaplacian: ˆ(Lf)(λ) = f̂(λ)H(λ). The spectral theory of the sublaplacian is
intimately connected to those of Hermite and special Hermite operators.

Considering the standard lattice Γ = Z2n × 1
2Z let us look at the action of

L on Hk appearing in the Fourier decomposition of L2(Γ\Hn). If F ∈ Hk and
G(x, u) = F (x, u, 0) then LF (x, u, t) = e4πiktL4πkG(x, u). Thus it is enough to look
at the spectral decomposition of L4πk acting on R2n/π(Γ). When k = 0, L0 is just
the standard Laplacian and hence the eigenfunctions are provided by e2πim·ξ,m ∈
Z2n, ξ = (x, u). The corresponding eigenvalues are 4π2|m|2. The cases k 6= 0 are
more interesting.

Consider the operators Uk,j defined on L2(Rn) by

Uk,jf(x, u, t) = (νj, ρk(x, u, t)f).
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These are related to Vk,j and allowing f to run through an orthonormal basis of
L2(Rn) we can get an orthonormal basis for L2(Γ\Hn). It follows that the func-
tions Ψk

α,j = cα,jUk,jΦ
4πk
α , where cα,j are certain normalising constants, form an

orthonormal basis for L2(Γ\Hn). The functions Ψk
α,j are also eignefunctions of the

sublaplacian with eigenvalues 4(2|α| + n)πk. Indeed, expanding the tempered dis-
tribution νj in terms of Φ4πk

β we have

Uk,jΦ
4πk
α (x, u, t) =

∑

β

(νj,Φ
4πk
β )(Φ4πk

β , ρk(x, u, t)Φ4πk
α ).

It can be checked that the functions (Φ4πk
β , ρk(x, u, t)Φ4πk

α ) are all eigenfunctions

of the sublaplacian with eigenvalues 4(2|α| + n)πk.
Thus we have proved that the spectrum of the sublaplacian on Γ\Hn consists

of the points 4π2|m|2,m ∈ Z2n and 4(2m + n)π|k|,m ∈ N, k ∈ Z. For any fixed
m ∈ N the number of eigenfunctions in Hk having the eigenvalue 4(2m+ n)π|k| is

given by (2|k|)n (m+n−1)!
m!(n−1)! . For another proof of this result see [6]. For the spectrum

of L on a general nilmanifold we refer to [5].

4.2. Segal-Bargmann transform on Γ\Hn. The sublaplacian L generates a dif-
fusion semigroup Tt, t > 0 which is given by a non-negative Schwartz class function
pt in the sense that pt∗ps = pt+s and for f ∈ L2(Hn) the function u(g, t) = f ∗pt(g)
solves the heat equation ∂tu(g, t) = −Lu(g, t) with initial condition f. The heat
kernel pt is explicitly known: its Fourier transform in the central variable is given
by

pλ
t (x, u) = cnλ

−n(sinh(λt))ne−
1

4
λ coth(λt)(x2+u2).

Throughout this section we use (x, u, ξ) to denote elements of Hn. When f ∈
L2(Γ\Hn) the convolution f ∗ pt still makes sense and solves the heat equation on
the nilmanifold. We also note that

f ∗ pt(g) =

∫

Γ\Hn

f(h)
∑

γ

pt(h
−1γg)dh

as f is left Γ invariant. From the above it is clear that f ∗ pt is again Γ invariant.
Let ∆ = L − T 2 be the full Laplacian on Hn whose heat kernel is given by

qt(x, u, ξ) =

∫ ∞

−∞

e−iλξe−tλ2

pλ
t (x, u)dλ.

Owing to the factor e−tλ2

inside the integral this kernel can be extended to C2n+1

as an entire function. We remark that this property does not hold for the kernel pt.
Therefore, for any f ∈ L2(Γ\Hn) the function f ∗qt(x, u, ξ) also extends as an entire
function. We denote this by f ∗ qt(z, w, ζ) where z = x+ iy, w = u+ iv, ζ = ξ+ iη.
Note that f ∗ qt(z, w, ζ) is also invariant under the left action of Γ. This transform
taking f into f ∗ qt(z, w, ζ) is known as the Segal-Bargmann transform (or heat
kernel transform) in the literature. We are interested in characterising the image
of L2(Γ\H

n) under this transform.
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Any f ∈ L2(Γ\Hn) has the Fourier decomposition f =
∑

k fk, fk ∈ Hk and it
is easily seen that the Segal-Bargmann transform preserves this decomposition. In
fact, if fk(x, u, ξ) = e4πikξFk(x, u) it follows that

f ∗ qt(z, w, ζ) =
∑

k

e−t(4πk)2e4πikζFk ∗−4πk p
−4πk
t (z, w).

Thus, the image of L2(Γ\Hn) under the Segal-Bargmann transform will be a direct

sum of spaces of functions of the form e4πikζFk∗−4πkp
−4πk
t (z, w). Therefore, we can

neglect the ξ part and consider the space of functions of the form F∗−4πkp
−4πk
t (z, w)

where F comes from Hk. As we have remarked earlier the restriction of ∆ on H0 is
just the standard Laplacian. The image of H0 is well known, given by the classical
Fock-Bargmann space. We therefore assume k 6= 0 from now on.

Let Λ = Z2n and define Hk(R2n,Λ) to be the space of all functions F (x, u)
for which e4πikξF (x, u) ∈ Hk. Note that these functions are characterised by the
property

F (x+ m, u+ n) = e2πik(u·m−x·n)F (x, u)

for all (m,n) ∈ Λ. With this notation we can say that F ∈ L2(Γ\Hn) if and only
if for every k ∈ Z its Fourier component

Fk(x, u) =

∫ 1

2

0

F (x, u, ξ)e−4πikξdξ

belongs to Hk(R2n,Λ). For each k 6= 0 let Ht
k(C2n,Λ) be the space of all functions

in Hk(R2n,Λ) having an entire extension to C2n and satisfying

‖F‖2
k,t =

∫

R2n

(

∫

[0,1)2n

|F (z, w)|2W−4πk
t (z, w)dxdu

)

dydv <∞.

When k = 0 we take

‖F‖2
0,t = t−2n

∫

R2n

(

∫

[0,1)2n

|F (z, w)|2dxdu

)

e−
1

t
π(y2+v2)dydv

which corresponds to the classical Fock-Bargmann space.

Theorem 4.1. An entire function F (z, w, ζ) belongs to the image of L2(Γ\Hn)
under the Segal-Bargmann transform if and only if Fk ∈ Ht

k(C2n,Λ) for every k
and

∑

k

‖Fk‖
2
k,te

2t(4πk)2 <∞.

Moreover, if F = f ∗ qt, f ∈ L2(Γ\Hn) then the above sum is a constant multiple
of ‖f‖2

2.

This theorem will be proved by showing that Ht
k(C2n,Λ) is the direct sum of

certain subspaces Ht
k,j(C

2n,Λ) which are defined as follows. For each λ = 4πk and

j ∈ Fk let Ht
k,j(C

2n,Λ) be the subspace of Ht
k(C2n,Λ) satisfying the extra condition

G(z +
1

2k
m, w) = eπim·(w+ 1

k
j)G(z, w)
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for all m ∈ Zn.

Theorem 4.2. An entire function F belongs to Ht
k,j(C

2n,Λ) if and only if F (z, w) =

f ∗ qt(z, w, 0) where f belongs to Hk,j.

We postpone the proof of this theorem. We have already proved that Hk is the
orthogonal direct sum of all Hk,j, j ∈ Fk. In view of this Theorem 4.1 follows from
the above result once we show the following is true.

Theorem 4.3. Ht
k(C2n,Λ) is the orthogonal direct sum of Ht

k,j(C
2n,Λ) as j varies

over Fk.

It is easy to see that Ht
k,j(C

2n,Λ), j ∈ Fk forms an orthogonal family of subspaces
in the sense that

∫

R2n

∫

[0,1)2n

F (z, w)G(z, w)W−λ
t (z, w)dzdw = 0

whenever F ∈ Ht
k,j(C

2n,Λ) and G ∈ Ht
k,l(C

2n,Λ) where j, l ∈ Fk, j 6= l. That

every G ∈ Ht
k(C2n,Λ) can be decomposed as a sum of Gj ∈ Ht

k,j(C
2n,Λ) fol-

lows as in the proof of Theorem 3.6. Indeed, we just have to define Gj(z, w) =
(2k)−n

∑

m∈Fk
Gj,m(z, w) where

Gj,m(z, w) = e−πim·we−
1

k
πim·jG(z +

1

2k
m, w)

and show that Gj has the required transformation properties and G =
∑

j∈Fk
Gj.

We now sketch the proof of Theorem 4.1 which uses a connection between twisted
Bergman spaces and Hermite-Bergman spaces which are defined as follows. For
each nonzero λ ∈ R let us consider the scaled Hermite operatorH(λ) = −∆+λ2|x|2

on Rn whose eigenfunctions are provided by the Hermite functions

Φλ
α(x) = |λ|

n

4 Φα(
√

|λ|x), x ∈ R
n, α ∈ N

n.

The operator H(λ) generates the Hermite semigroup e−tH(λ) whose kernel is ex-
plicitly given by

Kλ
t (x, u) =

∑

α∈Nn

e−(2|α|+n)|λ|tΦλ
α(x)Φλ

α(u).

Using Mehler’s formula (see [14]) the above series can be summed to get

Kλ
t (x, u) = cn(sinh(λt))−

n

2 (cosh(λt))−
n

2

×e−
λ

4
tanh(λt)(x+u)2e−

λ

4
coth(λt)(x−u)2 .

The image of L2(Rn) under the Hermite semigroup has been studied by Byun [4]
whose result is stated as follows. Let Hλ

t be the space of all entire functions on Cn

for which
∫

R2n

|F (x+ iy)|2Uλ
t (x, y)dxdy <∞

where the weight function Ut is given by

Ut(x, y) = cn(sinh(4λt))−
n

2 eλ tanh(2λt)x2

e−λ coth(2λt)y2

.
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Theorem 4.4. The image of L2(Rn) under the Hermite semigroup is precisely
the space Hλ

t and e−tH(λ) is a constant multiple of an isometry between these two
spaces.

Another proof of this theorem can be found in [17]. The relation between the
Segal-Bargmann transform on Γ\H and the Hermite semigroup is given in the
following proposition.

Proposition 4.5. Let f ∈ L2(Rn) and F = Vk,jf for j ∈ Fk. Then

F ∗ kt(x, u, ξ) = cλe
−tλ2+iλξeiλ(a·x+ 1

2
x·u)

∑

m∈Zn

eiλx·mτ−a

(

e−tH(λ)τaf
)

(u+ m)

where λ = 4πk,a = 1
2k j, τaf(x) = f(x− a) and cλ is a constant depending only on

λ and n.

The above proposition is now used to get a characterisation of functions in
Ht

k(C2n,Λ). Theorem 4.2 follows easily from the next theorem.

Theorem 4.6. An entire function F (z, w) belongs to Ht
k,j(C

2n,Λ) if and only if

F (z, w) = et(4πk)2(Vk,jf) ∗ qt(z, w, 0) for some f ∈ L2(Rn).

If F (z, w) = etλ2

(Vk,jf) ∗ qt(z, w, 0) where f ∈ L2(Rn) then it is easy to check
that F has the required transformation properties. From the previous proposition
we know that

F (z, w) = cλe
iλ(a·z+ 1

2
z·w)

∑

m∈Zn

eiλz·mτ−a

(

e−tH(λ)τaf
)

(w + m).

The function G(z, w) = e−iλa·zF (z, w − a) is given by the expansion

G(z, w) = ei λ

2
z·w

∑

m∈Zn

eiλz·m
(

e−tH(λ)g
)

(w + m)

where g = τaf. Now
∫

R2n

∫

[0,1)2n

|G(z, w)|2W−λ
t (z, w)dxdudydv

=

∫

R2n

∫

[0,1)2n

|
∑

m∈Zn

eiλx·me−λy·(u+m)
(

e−tH(λ)g
)

(w + m)|2

×pλ
2t(2y, 2v)dxdudydv.

Applying Parseval’s formula for the integral with respect to x variables and then
summing the integrals with respect to u variables the above expression becomes

∫

R2n

∫

Rn

|e−tH(λ)g(w)|2e−2λy·upλ
2t(2y, 2v)dudydv.

Making use of the explicit formula for pλ
2t(2y, 2v) and the fact that

∫

Rn

e−2λy·ue−λ coth(2λt)y2

dy = cλ(tanh(2λt))
n

2 eλ tanh(2λt)u2
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integration with respect to y varaibles gives

(sinh(4λt))−
n

2

∫

R2n

|e−tH(λ)g(w)|2eλ tanh(2λt)u2

e−λ coth(2λt)v2

dudv.

This means that e−tH(λ)g(w) is in the Hermite-Bergman space and we have, as
g = τaf ,

∫

R2n

∫

[0,1)2n

|G(z, w)|2W−λ
t (z, w)dxdudydv = cλ

∫

Rn

|f(x)|2dx.

Since G(z, w) = e−i λ

2
a·zF (z, w − a) and

|e−i λ

2
a·z|2W−λ

t (z, w + a) = W−λ
t (z, w)

the above simply means that
∫

R2n

∫

[0,1)2n

|F (z, w)|2W−λ
t (z, w)dxdudydv = cλ

∫

Rn

|f(x)|2dx.

This proves that F (z, w) belongs to Bλ
t,j.

In order to prove the converse assume that F ∈ Ht
k,j(C

2n,Λ). If we can show that

there exists f ∈ L2(Rn) such that Vk,jf ∗ qt(z, w, 0) = e−tλ2

F (z, w) the converse
follows. To this end we consider the function

G(z, w) = e−iλa·ze−i λ

2
z·wF (z, w).

In view of the transformation properties of F the function G becomes 1
2k -periodic

in the x-variables. Therefore, it admits an expansion of the form

G(z, w) =
∑

m∈Zn

Cm(w)eiλm·z

where Cm are the Fourier coefficients given by

Cm(w) =

∫

[0, 1

2k
)n

G(x,w)e−iλm·xdx.

The transformation properties of F leads to G(x,w − m) = G(x,w)eiλm·x and
hence Cm(w − m) = C0(w). Thus, we obtain

F (z, w) = eiλa·zei λ

2
z·w

∑

m∈Zn

C0(w + m)eiλm·z.

We now show that C0 belongs to the Hermite-Bergman space Hλ
t , λ = 4πk. We

look at
∫

R2n

∫

[0,1)2n

|F (z, w)|2W−λ
t (z, w)dxdudydv

which is given to be finite. Using the above expansion and proceeding as in the
previous part of the proof we can conclude that

∫

R2n

|C0(w − a)|2Uλ
t (u, v)dudv <∞.
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Thus there exists g ∈ L2(Rn) such that C0(w) = e−tH(λ)g(w+a). Taking f = τ−ag
we see that

F (z, w) = etλ2

Vk,jq ∗ kt(z, w, 0).

This completely proves the theorem.
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