ON TWISTED HOMOGENEOUS RACKS OF TYPE D

N. ANDRUSKIEWITSCH, F. FANTINO, G. A. GARCÍA AND L. VENDRAMIN

Abstract. We develop some techniques to check when a twisted homogeneous rack of class \((L, t, \theta)\) is of type D. Then we apply the obtained results to the cases \(L = \mathbb{A}_n, n \geq 5\), or \(L\) a sporadic group.

Dedicado a Hans-Jürgen Schneider en ocasión de sus 65 años.

1. Introduction

A rack is a pair \((X, \triangleright)\) where \(X\) is a non-empty set and \(\triangleright : X \times X \to X\) is an operation such that the map \(\varphi_x = x \triangleright _\) is bijective for any \(x \in X\), and \(x \triangleright (y \triangleright z) = (x \triangleright y) \triangleright (x \triangleright z)\) for all \(x, y, z \in X\). For instance, a conjugacy class in a group is a rack with \(\triangleright\) given by conjugation. We are interested in the following class of racks.

Definition 1.1. A rack \(X\) is of type D if there exists a decomposable subrack \(Y = R \coprod S\) of \(X\) such that
\[
\text{for some } r \in R, s \in S.
\]

Racks appear in the classification problem of finite-dimensional pointed Hopf algebras over \(\mathbb{C}\). Let us explain very briefly this relation. A finite-dimensional pointed Hopf algebra \(H\) has attached some basic invariants: a rack \(X, n \in \mathbb{N}\) and a 2-cocycle \(q : X \times X \to GL(n, \mathbb{C})\); these satisfy that the Nichols algebra \(B(X, q)\) has finite dimension. This has been explained at length in several papers, see \([AG, AFGV1, AFGV2]\). We refer to \([AS]\) for a detailed exposition of the notion of Nichols algebra of a Yetter-Drinfeld module, of crucial importance in this project. Therefore, a fundamental step for the classification problem is to solve the following question.

Question 1. For any finite rack \(X\), and for any cocycle \(q\), determine if \(B(X, q)\) is finite-dimensional.

This question is related to racks of type D by the following result, a reinterpretation of \([HS, \text{Thm. 8.6}]\), in turn a consequence of \([AHS]\).

Theorem 1.2. \([AFGV1, \text{Th. 3.6}]\) If \(X\) is a finite rack of type D, then \(X\) collapses, that is \(\dim B(X, q) = \infty\) for any \(q\). \(\square\)

2010 Mathematics Subject Classification. 16T05; 17B37.

This work was partially supported by ANPCyT-Foncyt, CONICET, Ministerio de Ciencia y Tecnología (Córdoba), Secyt-UNC and Secyt-UBA.
Consequently, it is natural to address the following question.

Question 2. Determine all simple racks of type D.

Indeed, any indecomposable rack Z admits a rack epimorphism $\pi : Z \to X$ with X simple; and if X is of type D, then Z is of type D.

Now, finite simple racks have been classified in [AG, 3.9, 3.12], see also [J]. Succinctly, any simple rack belongs to one of the following classes:

1. Simple affine racks.
2. Non-trivial (twisted) conjugacy classes in simple groups.
3. Simples twisted homogeneous racks of class (L, t, θ); these are twisted conjugacy classes corresponding to (G, u), where
 - $G = L^t$, with L a finite simple non-abelian group, $t > 1$ and $\theta \in \text{Aut}(L)$,
 - $u \in \text{Aut}(L^t)$ acts by $u(\ell_1, \ldots, \ell_t) = (\theta(\ell_t), \ell_1, \ldots, \ell_{t-1})$, $\ell_1, \ldots, \ell_t \in L$.

See Subsection 3.2 below.

The goal of the present paper is to study when a simple twisted homogeneous rack, that is case (3), is of type D. We first show that twisted homogeneous racks (THR, for short) of class (L, t, θ) are parameterized by twisted conjugacy classes in L with respect to θ, see Proposition 3.3. For example, assume that $L = A_n$, $n \geq 5$, and $\theta = i(1 2)$ (conjugation in S_n). Then the THR of type $(A_n, t, i(1 2))$ are parameterized by the conjugacy classes in S_n not contained in A_n; this explains the notation in Table 2. Then we develop some techniques to check that a twisted homogeneous rack is of type D, see Section 3; neither of these results requires the simplicity of L. Our main results are proved in Section 4:

Theorem 1.3. Let L be A_n, $n \geq 5$, $\theta \in \text{Aut}(L)$, $t \geq 2$ and $\ell \in L$. If C_ℓ is a twisted homogeneous rack of class (L, t, θ) not listed in Tables 1, 2, then C_ℓ is of type D.

Theorem 1.4. Let L be a sporadic group, $\theta = \text{id}$, $t \geq 2$ and $\ell \in L$. If C_ℓ is a twisted homogeneous rack of class (L, t, θ) not listed in Table 3, then C_ℓ is of type D.

We have a computer program based on GAP to check that a conjugacy of some group is of type D. Some of us are presently trying to deal with the inconclusive results as to the racks in the theorems above are of type D or not. Although there are infinitely many such inconclusive cases of THR unknown to be of type D, and therefore the problem could not be solved merely by using this computer program, we do expect that the treatment of some examples would illuminate and give us a hint to more general cases. Alas, the program takes a lot of time and even some simpler cases like $L = A_5$, $\ell = e$ and $t = 4$ are very hard and we still do not have an answer.

The case: L a sporadic group, $\theta \neq \text{id}$, will be treated in another paper. See however a preliminary discussion in Subsection 4.4.
Table 1. THR C_ℓ of type (A_n, t, θ), $\theta = \text{id}$, $t \geq 2$, $n \geq 5$, not known of type D. Those not of type D are in bold.

<table>
<thead>
<tr>
<th>n</th>
<th>ℓ</th>
<th>Type of ℓ</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>e</td>
<td>(1^2)</td>
<td>odd, $(t,n!) = 1$</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>(1^5)</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>(1^5)</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>(1^6)</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>involution</td>
<td>$(1,2^2)$</td>
<td>4, odd</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>$(1^2,2^2)$</td>
<td>odd</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>(2^4)</td>
<td>odd</td>
</tr>
<tr>
<td>any</td>
<td>order 4</td>
<td>$(1^{r_1},2^{r_2},4^{r_4})$, $r_4 > 0$, $r_2 + r_4$ even</td>
<td>2</td>
</tr>
</tbody>
</table>

Table 2. THR C_ℓ of type $(A_n, t, \theta) = \iota_{(12)}$, $t \geq 2$, $n \geq 5$, not known of type D.

<table>
<thead>
<tr>
<th>n</th>
<th>Type of $\ell(1,2)$</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>$(1^{s_1},2^{s_2},\ldots,n^{s_n})$, $s_1 \leq 1$ and $s_2 = 0$ $s_h \geq 1$, for some h, $3 \leq h \leq n$</td>
<td>any</td>
</tr>
<tr>
<td>5</td>
<td>$(1^3,2)$</td>
<td>2, 4</td>
</tr>
<tr>
<td>6</td>
<td>$(1^2,2)$</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>$(1,2^2)$</td>
<td>2, odd</td>
</tr>
<tr>
<td>8</td>
<td>$(1^2,2^4)$</td>
<td>odd</td>
</tr>
<tr>
<td>10</td>
<td>(2^5)</td>
<td>odd</td>
</tr>
</tbody>
</table>

Table 3. THR C_ℓ of type (L, t, θ), with L a sporadic group, $\theta = \text{id}$, not known of type D.

<table>
<thead>
<tr>
<th>sporadic group</th>
<th>Type of ℓ or class name of O^L_ℓ</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>1A</td>
<td>$(t,</td>
</tr>
<tr>
<td></td>
<td>ord(ℓ) = 4</td>
<td>2</td>
</tr>
<tr>
<td>T, J_2, Fi_{22}, Fi_{23}, Co_2</td>
<td>2A</td>
<td>odd</td>
</tr>
<tr>
<td>B</td>
<td>2A, 2C</td>
<td>odd</td>
</tr>
<tr>
<td>Suz</td>
<td>6B, 6C</td>
<td>any</td>
</tr>
</tbody>
</table>
2. Preliminaries

2.1. Glossary. If \(t, n \in \mathbb{N} \), then \((t, n)\) denotes their highest common divisor. If \(G \) is a group and \(x \in G \), then \(\langle x \rangle \) denotes the cyclic subgroup generated by \(x \); \(t_x \), the inner automorphism associated to \(x \); \(\mathcal{O}_G^x \), the conjugacy class of \(x \); and \(C_G(x) \) its centralizer. We say that \(x \) is an involution if it has order 2. If \(u \in \text{Aut}(G) \), then \(G^u \) denotes the subgroup of points fixed by \(u \). The trivial element of \(G \) is denoted by \(e \). The type of a permutation identifies the size and number of disjoint cycles the permutation splits into. For example, \(e \in \mathbb{S}_n \) has type \((1^n)\) and \((1, 2) \in \mathbb{S}_n \) has type \((1^{n-2}, 2)\). A decomposition of a rack \(X \) is a presentation as a disjoint union of two subracks \(X = Y \bigsqcup Z \). A rack is indecomposable if it admits no decomposition.

2.2. Affine racks of type D. Let \(A \) be a finite abelian group and \(g \in \text{Aut}(A) \). We denote by \((A, g)\) the rack with underlying set \(A \) and rack multiplication \(x \rhd y := g(y) + (\text{id} - g)(x) \), \(x, y \in A \); this is a subrack of the group \(A \rtimes \langle g \rangle \). Any rack isomorphic to some \((A, g)\) is called affine.

Remark 2.1. Notice that \((A, g)\) is indecomposable if and only if \(\text{id} - g \) is invertible. For, assume that \(\text{Im}(\text{id} - g) \neq A \); since \(x \rhd y = g(y) + (\text{id} - g)(x) = y + (\text{id} - g)(x - y) \), the decomposition of \(A \) in cosets with respect to \(\text{Im}(\text{id} - g) \) is a decomposition in the sense of racks. In fact, if \(Y \) is any coset, then \(A \rhd Y = Y \); thus, the union of any two different cosets is a decomposable subrack of \(A \). For the converse, note that for any \(y, z \in A \), \(x = (\text{id} - g)^{-1}(z - g(y)) \) satisfies \(x = x \rhd y \); hence \((A, g)\) is indecomposable.

For instance, consider the cyclic group \(A = \mathbb{Z}/n \) and the automorphism \(g \) given by the inversion; the rack \((A, g)\) is denoted \(\mathcal{D}_n \) and called a dihedral rack. Thus, a family \((\mu_i)_{i \in \mathbb{Z}/n}\) of distinct elements of a rack \(X \) is isomorphic to \(\mathcal{D}_n \) if \(\mu_i \rhd \mu_j = \mu_{2^{i-j}} \) for all \(i, j \).

Lemma 2.2. If \(m > 2 \), then the dihedral rack \(\mathcal{D}_{2m} \) is of type D.

Proof. Since \(\text{id} - g = 2 \) is not invertible, \(X = \mathcal{D}_{2m} = \{1, 2, 3, ..., 2m\} \) is decomposable. Indeed, if \(Y = \{1, 3, 5, ..., 2m - 1\} \), then \(X \rhd Y \subseteq Y \) and therefore \(X = Y \bigsqcup (X \setminus Y) \) is a decomposition. Let \(r = 1 \in Y \) and \(s = 2 \in X \setminus Y \). Then \(r \rhd (s \rhd (r \rhd s)) \neq s \), since \(r \rhd (s \rhd (r \rhd s)) = -2 + 2m \) and \(m > 2 \).

We now consider a generalization of this example. Let \(k, t \in \mathbb{N} \), \(k > 1 \), \(t > 2 \) and consider the affine rack \((A, g)\) where \(A = (\mathbb{Z}/k)^{t-1} \) and

\[
g(a_1, \ldots, a_{t-1}) = \left(-\sum_{i=1}^{t-1} a_i, a_1, \ldots, a_{t-2}\right). \tag{2}
\]

Note that the case \(t = 2 \) corresponds to the dihedral rack.

Lemma 2.3. If \((t, k) \neq 1\), and \(k > 2 \) when \(t = 4 \), then \((A, g)\) is of type D.

Proof. First we show that \((A, g)\) contains at least two cosets with respect to \(\text{Im}(\text{id} - g) \). Indeed, consider \((1, 0, \ldots, 0) \in A \). Then \((1, 0, \ldots, 0) \notin \text{Im}(\text{id} - g)\),
since otherwise there exists \((c_1, \ldots, c_{t-1})\) such that

\[
(1, 0, \ldots, 0) = (\text{id} - g)(c_1, \ldots, c_{t-1}) = (c_1 + \sum_{i=1}^{t-1} c_i, c_2 - c_1, \ldots, c_{t-1} - c_{t-2})
\]

which implies that \(c_i = c_j\) and \(1 = tc_1\) in \(\mathbb{Z}/k\), a contradiction. Now, take \(s = (0, \ldots, 0)\) and \(r = (1, 0, \ldots, 0)\); then

\[
r \mapsto (s \mapsto (r \mapsto s)) = \begin{cases}
(2, -2, 2, -1, 0, \ldots, 0), & t \geq 5; \\
(2, -2, 2), & t = 4; \\
(1, -2), & t = 3.
\end{cases}
\]

This is different from \(s\), by hypothesis *. Thus \((A, g)\) is of type D. \(\square\)

3. General techniques

3.1. Twisted conjugacy classes. Let \(G\) be a finite group and \(u \in \text{Aut}(G)\). \(G\) acts on itself by \(y \rightarrow u x = y x u(y^{-1}), x, y \in G\). Let \(O_x^{G, u}\) be the orbit of \(x \in G\) by this action; we call it the twisted conjugacy class of \(x\). Then \(O_x^{G, u}\) is a rack with operation

\[
y \mapsto z = y z y^{-1}, \quad y, z \in O_x^{G, u}.
\]

The verification that this is a rack is straightforward, see [AG, Remark 3.8]. For instance, if \(y = h \rightarrow u x \) and \(z = v \rightarrow u x\), then \(y \mapsto z = w \rightarrow u x\), where \(w = h x u(h^{-1}v)x^{-1}\). We denote this rack by \((G, u)\). Of course, if \(u = \text{id}\), then this is just the rack structure on a conjugacy class.

For fixed \(G\), these racks only depend on the class of \(u \in \text{Out}(G)\). For, if \(n \in G\) and \(u' = u_{tn}\), where \(\nu_n\) is the inner automorphism associated to \(n\), then \(R : (G, u) \rightarrow (G, u')\), \(R(x) = x u(n^{-1})\), is an isomorphism of racks. Indeed, if \(x, y \in G\), then

\[
R(x \mapsto y) = x u(y x^{-1} n^{-1}) = x u(n^{-1}) u(n y x^{-1} n^{-1}) = R(x) \mapsto R(y).
\]

Lemma 3.1. Let \(x \in G\) with \(\text{ord}(x) = 2m > 4\) and \(u(x) = x^{-1}\). If \(\langle x \rangle \subseteq O_x^{G, u}\), then \(O_x^{G, u}\) is of type D.

The hypothesis \(\langle x \rangle \subseteq O_x^{G, u}\) is equivalent to the existence of \(y \in G\) such that \(y \rightarrow u x = x^2\).

Proof. Since \(x^i \mapsto x^j = x^i u(x^{j-i}) = x^{2i-j}\), \(\langle x \rangle\) is a subrack of \(G\) isomorphic to \(D_{2m}\); hence Lemma 2.2 applies. \(\square\)

The following consequence of (3) helps the search of twisted homogeneous racks of type D.

Remark 3.2. If \(x \in G^u\), then \(O_x^{G, u}\) is a subrack of \(O_x^{G, u}\).

Note that, if \(u\) is an involution, then

\[
O_x^{G, u} \cap G^u \neq \emptyset \iff \exists z \in G : z x z = u(x) \text{ and } \exists y \in G : z = u(y^{-1})y.
\]

* If \(k = 2\) and \(t = 4\), then \((A, g)\) is not of type D.

\[\text{Rev. Un. Mat. Argentina, Vol 51-2}\]
3.2. Twisted homogeneous racks. We fix a finite group L, $t \in \mathbb{N}$, $t > 1$, and $\theta \in \text{Aut}(L)$. Furthermore, we fix the following notation for the rest of this section:

- $G = L^t$,
- $u \in \text{Aut}(G)$, $u(\ell_1, \ldots, \ell_t) = (\theta(\ell_1), \ell_1, \ldots, \ell_{t-1})$, $\ell_1, \ldots, \ell_t \in L$.

The twisted conjugacy class of $(x_1, \ldots, x_t) \in L^t$, equipped with the operation defined in (3), will be called a twisted homogeneous rack of class (L, t, θ) and denoted $C_{(x_1, \ldots, x_t)}$. It is also useful to denote $C_t := C_{(e, \ldots, e, \ell)}$, $\ell \in L$, as will be seen below in Proposition 3.3. We first describe the twisted homogeneous racks of class (L, t, θ).

Proposition 3.3.

(i) If $(x_1, \ldots, x_t) \in L^t$ and $\ell = x_1x_{t-1} \cdots x_2x_1$, then
\[
C_{(x_1, \ldots, x_t)} = C_{\ell}.
\]
(ii) $C_{\ell} = C_{k}$ iff $k \in O^{L, \theta}_{\ell}$; hence
\[
C_{\ell} = \{ (x_1, \ldots, x_t) \in L^t : x_1x_{t-1} \cdots x_2x_1 \in O^{L, \theta}_{\ell} \}.
\]
(iii) There exists a bijection φ between the set of twisted conjugacy classes of L and the set of twisted homogeneous racks of class (L, t, θ), given by
\[
\varphi(O^{L, \theta}_{\ell}) = C_{\ell}.
\]
(iv) $|C_{\ell}| = |L|^{t-1}|O^{L, \theta}_{\ell}|$.

Proof. (i). Let $u_j = (x_j \ldots x_1)^{-1}$; then
\[
(u_1, u_2, \ldots, u_{t-1}, e) \rightarrow (x_1, \ldots, x_t)
\]
\[
= (u_1x_1, u_2x_2u_1^{-1}, \ldots, u_{t-1}x_{t-1}u_{t-2}^{-1}, x_tu_{t-1}^{-1})
\]
\[
= (e, \ldots, e, x_1x_{t-1} \cdots x_2x_1).
\]
(ii). Suppose that there exists $(a_1, \ldots, a_t) \in L^t$ such that $(a_1, \ldots, a_t) \rightarrow (e, \ldots, e, \ell) = (e, \ldots, e, k)$. Then $a_{t-1} = a_{t-2} = \ldots = a_2 = a_1 = \theta(a_t)$, hence $k = a_t\theta(a_t^{-1})$. Conversely, assume that $k = b\theta(b^{-1})$; if $a_1 = b$, $a_{t-1} = a_{t-2} = \ldots = a_2 = a_1 = \theta(b)$, then $(a_1, \ldots, a_t) \rightarrow (e, \ldots, e, \ell) = (e, \ldots, e, k)$. The second claim follows at once from the first and (i). Now (iii) is immediate.
(iv). Define the map $\psi : L^{t-1} \times O^{L, \theta}_{\ell} \rightarrow C_{\ell}$ by
\[
\psi(b_1, \ldots, b_{t-1}, c) = (b_1, \ldots, b_{t-1}, \theta^{-1}(b_{t-1} \cdots b_1)^{-1}c).
\]
It is a well-defined map by (ii) and it is clearly injective. Moreover, by the proof of (ii) we know that if $(b_1, \ldots, b_t) \in C_{\ell}$, then $b_t = \theta^{-1}(b_{t-1} \cdots b_1)^{-1}c$ for some $c \in O^{L, \theta}_{\ell}$. Thus $(b_1, \ldots, b_t) = \psi(b_1, \ldots, b_{t-1}, c)$ by definition and ψ is surjective, implying that $|C_{\ell}| = |L|^{t-1}|O^{L, \theta}_{\ell}|$. \hfill \square

3.3. Twisted homogeneous racks intersecting the diagonal. Clearly,
\[
G^u = \{ (a, \ldots, a) : a \in L^\theta \},
\]
hence, by Proposition 3.3
\[
C_{\ell} \cap G^u \neq \emptyset \iff \exists a \in L^\theta : a^t = \ell.
\]
If this happens, then we have an inclusion of racks $O^\theta_\ell \hookrightarrow C_\ell$, see Remark 3.2. In the particular case $\theta = \text{id}$, if there exists $a \in L$ such that $a' = \ell$, we have an inclusion of racks $O^L_a \hookrightarrow C_\ell$.

3.4. **Affine subracks of twisted homogeneous racks.**

Lemma 3.4. Let $\ell \in L$. Assume that there exists $x \in L$ such that

$$\theta(\ell x \ell^{-1}) = x;$$

moreover if $k = \text{ord}(x)$, then we also require

\begin{align*}
(k,t) &\neq 1, & \text{and additionally} \quad (8) \\
2,4, &\neq k, & \text{when } t = 2 \quad (9) \\
2,4, &\neq k, & \text{when } t = 4. \quad (10)
\end{align*}

Then C_ℓ is of type D.

When $\theta = \text{id}$, (7) just means that $x \in C_L(\ell)$.

Proof. Let $X = \{(x^{a_1}, x^{a_2}, \ldots, x^{a_{t-1}}, \ell x^{a_t}) : \sum_{i=1}^t a_i \equiv 0 \text{ mod } k\}$. Then X is a subrack of C_ℓ since $X \subseteq C_\ell$, by Proposition 3.3 (ii), and

\begin{align*}
(x^{a_1}, \ldots, \ell x^{a_t}) &\triangleright (x^{b_1}, \ldots, \ell x^{b_t}) = \\
&= (x^{a_1}, \ldots, \ell x^{a_t})u((x^{b_1}, \ldots, \ell x^{b_t})(x^{-a_1}, \ldots, x^{-a_t} \ell^{-1})) \\
&= (x^{a_1}, \ldots, \ell x^{a_t})\theta(\ell x^{b_1-a_1} \ell^{-1}, \ldots, x^{b_{t-1}-a_{t-1}}) \\
&= (x^{a_1+b_1-a_1}, \ldots, \ell x^{a_1+b_{t-1}-a_{t-1}}).
\end{align*}

Moreover, let (A,g) be the affine rack considered in Lemma 2.2 or Lemma 2.3. Then by the calculation above, there exists a rack isomorphism

\begin{align*}
(A, g) \overset{\phi}{\rightarrow} X, \quad (a_1, \ldots, a_{t-1}) &\mapsto (x^{a_1}, \ldots, x^{a_{t-1}}, \ell x^{-\sum_{i=1}^{t-1} a_i}),
\end{align*}

which implies that X is of type D, by Lemma 2.2 or Lemma 2.3. □

Corollary 3.5. Assume that $t \geq 6$ is even. If $\ell \in L^6$, with $\text{ord}(\ell)$ even, then C_ℓ is of type D.

Proof. Take $x = \ell$ and apply Lemma 3.4. □

Lemma 3.6. Assume $t = 2$ and $\theta = \text{id}$. Let $\ell \in L$. Suppose that there exists $x, y, a \in L$ such that

\begin{align*}
\ell &= xy = yx, & x \neq e \neq y, & x^2 = e, \quad (11) \\
a &\in C_L(x) \cap C_L(y), & a^4 \neq e, & x \notin \langle a \rangle.
\end{align*}

Then C_ℓ is of type D.
Proof. Let \(X = \{(xa^i, a^{-i}y) : 0 \leq i < \text{ord}(a)\} \) and \(Y = \{(a^i, a^{-i}\ell) : 0 \leq i < \text{ord}(a)\} \). Both are subracks of \(C_\ell \) by Proposition 3.3 (ii) and the fact that \(a \in C_L(x) \cap C_L(y) \). Since \(x \notin \langle a \rangle \), we have that \(X \cap Y = \emptyset \). Moreover, \(X \coprod Y \) is a subrack of \(C_\ell \) since
\[
\begin{align*}
(xa^i, a^{-i}y) \triangleright (a^i, a^{-i}\ell) &= (a^{2i-j}, a^{-2i+j}\ell) \\
(a^i, a^{-i}\ell) \triangleright (xa^j, a^{-j}y) &= (xa^{2i-j}, a^{-2i+j}y).
\end{align*}
\]
Taking \(r = (x, y) \) and \(s = (a, a^{-1}\ell) \) we get that \(r \triangleright (s \triangleright (r \triangleright s)) = (a^{-3}, a^3\ell) \). Since \(a^4 \neq e \) by assumption, it follows that \(C_\ell \) is of type D. \(\square\)

Corollary 3.7. Assume \(t = 2 \) and \(\theta = \text{id} \). Let \(\ell \in L \). If \(\text{ord}(\ell) = 2m \) with \(m \) odd, then \(C_\ell \) is of type D.

Proof. The elements \(x = \ell^m, y = a = \ell^{1-m} \) satisfy \(\text{ord}(y) = m \) and (11). \(\square\)

Denote by \(D_n = \langle x, y \mid x^2 = 1 = y^n, xyx = y^{-1} \rangle \) the dihedral group of \(2n \) elements.

Lemma 3.8. Assume \(t = 2 \) and \(\theta = \text{id} \). If there exists \(\psi : D_n \to L \) a group monomorphism, with \(n \geq 3 \) odd, then \(C_{\psi(x)} \) is of type D.

Proof. Let \(z = \psi(y), b_1 = \psi(x) \) and \(b_j = b_1z^{j-1}, 2 \leq j \leq n \). Then \(z^ib_j = b_{j-i} \) and \(b_iz^j = b_{i+j} \), for all \(1 \leq i, j \leq n \).

Let \(R = \{(z^i, z^{-i}b_j) : 1 \leq i, j \leq n\} \) and \(S = \{(z^{-k}b_l, z^k) : 1 \leq l, k \leq n\} \). They are disjoint since otherwise there exist \(i, k, l \in \{1, \ldots, n\} \) such that \(z^i = z^{-k}b_l \); this implies that \(z^{i+k} = b_l \), which is a contradiction because \(b_l \) is an involution and \(z \) has odd order. Note that \((z^i, z^{-i}b_j) = (z^i, b_{j-i}) \) and \((z^{-k}b_l, z^k) = (b_{l+k}, z^k) \). Hence \(R \) and \(S \) are subracks of \(C_{\psi(x)} \) since
\[
\begin{align*}
(z^i, b_{j+i}) \triangleright (z^k, b_{l+k}) &= (z^{2i+j-k-l}, b_{k+j}), \\
(b_{j+i}, z^i) \triangleright (b_{l+k}, z^k) &= (b_{k+j}, z^{2i+j-k-l}).
\end{align*}
\]

Moreover, \(T = R \coprod S \) is a decomposable subrack of \(C_{\psi(x)} \) because
\[
\begin{align*}
(z^i, b_{j+i}) \triangleright (b_{l+k}, z^k) &= (b_{j-k}, z^{-(2i+j-k-l)}), \\
(b_{l+k}, z^k) \triangleright (z^i, b_{j+i}) &= (z^{-(2k+l-j-i)}, b_{l-i}).
\end{align*}
\]

If we take \(r = (1, b_1) \) and \(s=(b_2, 1) \), then \(r \triangleright (s \triangleright (r \triangleright s)) = (b_1b_2b_1, b_1b_2b_1b_2) \neq s \). Therefore, \(C_{\psi(x)} \) is of type D. \(\square\)

3.5. Twisted homogeneous racks with quasi-real \(\ell \). Let \(\ell \in L \) and \(j \in \mathbb{N} \). Recall that \(\ell, \text{ or } O_\ell^L \), is quasi-real of type \(j \) if \(\ell^j \neq \ell \) and \(\ell^j \in O_\ell^L \). We observe that \(\ell \) might be quasi-real of different types. For example, if \(\ell \) is real, that is \(\ell^{-1} \in O_\ell^L \), but not an involution, then it is quasi-real of type \(\text{ord}(\ell) - 1 \).

We partially extend this notion to twisted conjugacy classes. We shall say that \(\ell \in L^\theta \) is \(\theta \)-quasi-real of type \(j \in \mathbb{N} \) if \(\ell^j \neq \ell \) and \(\ell^j \in O_\ell^{L,\theta} \). Note that if \(\ell \in L^\theta \) is quasi-real of type \(j \) in \(L^\theta \), then it is \(\theta \)-quasi-real, but the converse is not true. Indeed, if we take \(L = A_{11}, \theta = t(1 2) \) the conjugation by (12),

\[\ell = (1 2)(3 4)(5 6 7 8 9 10 11) \text{ and } y = (1 4)(2 3)(5 6 8)(7 10 9), \]
then \(y \to_\ell \ell = \ell^2, \)
but \(\ell^2 \not\in O^D_{\ell^1}. \)

Lemma 3.9. Assume that \(\ell \in L^\theta \) is \(\theta \)-quasi-real of type \(j \). If \(t \geq 3 \) or \(t = 2 \) and \(\text{ord}(\ell) \nmid 2(1 - j) \), then \(\mathcal{C}_\ell \) is of type \(D \).

Proof. Let
\[
X = \{ (\ell^{a_1}, \ldots, \ell^{a_t}) : \sum_{i=1}^t a_i = j \},
\]
\[
Y = \{ (\ell^{a_1}, \ldots, \ell^{a_t}) : \sum_{i=1}^t a_i = 1 \}.
\]
By definition, \(X \cap Y = \emptyset \). We have
\[
(\ell^{a_1}, \ldots, \ell^{a_t}) \triangleright (\ell^{b_1}, \ldots, \ell^{b_t}) = (\ell^{a_1 + b_t - a_t}, \ell^{a_2 + b_1 - a_1}, \ldots, \ell^{a_t + b_1 - a_t}). \tag{12}
\]
Hence \(X \) and \(Y \) are subracks of \(\mathcal{C}_\ell \), \(X \triangleright Y \subseteq Y, Y \triangleright X \subseteq X \), and \(X \bigsqcup Y \) is a subrack of \(\mathcal{C}_\ell \).

Take \(r = (1, \ldots, 1, \ell^j) \in X \) and \(s = (1, \ldots, 1, \ell) \in Y \). We show that \(r \triangleright (s \triangleright (r \triangleright s)) \neq s \). Assume first that \(t \geq 4 \). Then by (12) we have that
\[
r \triangleright (s \triangleright (r \triangleright s)) = r \triangleright (s \triangleright (\ell^{1-j}, 1, \ldots, 1, \ell^j)) = r \triangleright (\ell^{j-1}, \ell^{1-j}, 1, \ldots, 1, \ell).
\]
If \(t = 3 \), then \(r = (1, 1, \ell^j), s = (1, 1, \ell) \) and the computation yields
\[
r \triangleright (s \triangleright (r \triangleright s)) = r \triangleright (s \triangleright (\ell^{1-j}, 1, \ell^j)) = r \triangleright (\ell^{j-1}, \ell^{j+1}, \ell) = (\ell^{j-1}, \ell^{j-1}, \ell) \neq (1, 1, \ell).
\]
Finally if \(t = 2 \), then \(r = (1, \ell^j), s = (1, \ell) \) and we have
\[
r \triangleright (s \triangleright (r \triangleright s)) = r \triangleright (s \triangleright (\ell^{1-j}, \ell^j)) = r \triangleright (\ell^{j-1}, \ell^{j+2}) = (\ell^{-2j+2}, \ell^{2j-1}).
\]
Thus, \(\mathcal{C}_\ell \) is of type \(D \) if \((\ell^{-2j+2}, \ell^{2j-1}) \neq (1, \ell) \) which amounts to \(\text{ord}(\ell) \nmid 2(1 - j). \)

3.6. Summary.
The following proposition registers the results proved in the preceding subsections which will be useful in the sequel.

Proposition 3.10. Let \(\ell \in L^\theta \).

(i) If \(\ell \) is quasi-real of type \(j \), \(t \geq 3 \) or \(t = 2 \) and \(\text{ord}(\ell) \nmid 2(1 - j) \), then \(\mathcal{C}_\ell \) is of type \(D \).

(ii) If \(\text{ord}(\ell) \) is even and \(t \geq 6 \) is even, then \(\mathcal{C}_\ell \) is of type \(D \).

(iii) If \(\ell \) is an involution, \(t \) is odd and \(O^D_{\ell^\theta} \) is of type \(D \), then so is \(\mathcal{C}_\ell \).

(iv) If \(t = 4 \) and there exists \(x \in C_{\ell^\theta}(\ell) \) with \(\text{ord}(x) = 2m > 2, m \in \mathbb{N} \), then \(\mathcal{C}_\ell \) is of type \(D \).

(v) If \(t = 2 \) and there exists \(x \in C_{\ell^\theta}(\ell) \) with \(\text{ord}(x) = 2m > 4, m \in \mathbb{N} \), then \(\mathcal{C}_\ell \) is of type \(D \).

(vi) If \(\ell \) is an involution, \(t = 2 \), and there exists \(\psi : \mathbb{D}_n \to L^\theta \) a group monomorphism, with \(n \geq 3 \) and \(\ell = \psi(x) \) for some \(x \in \mathbb{D}_n \) involution, then \(\mathcal{C}_\ell \) is of type \(D \).
(vii) If \((t, |L^\theta|)\) is divisible by an odd prime \(p\), then \(C_e\) is of type D.

(viii) If \((t, |L^\theta|)\) is divisible by \(p = 2\) and \(t \geq 6\), then \(C_e\) is of type D.

(ix) If \(t = 4\) and there exists \(x \in L^\theta\) with \(\text{ord}(x) = 2m > 2, m \in \mathbb{N}\), then \(C_e\) is of type D.

(x) If \(t = 2,\) and there exists \(x \in L^\theta\) with \(\text{ord}(x) = 2m > 4, m \in \mathbb{N}\), then \(C_e\) is of type D.

Proof. (i) is Lemma 3.9; (ii) is Corollary 3.5; (iii) follows from the discussion in Subsection 3.3, since \((\ell, \ldots, \ell) \in C_\ell\). Case (vi) follows by Lemma 3.8. Finally, the remaining cases follow from Lemma 3.4: in cases (vii) and (viii), take \(x\) of order \(p\), and in cases (iv), (v), (ix) and (x) the given \(x\).

4. Simple twisted homogeneous racks

We now explore when Proposition 3.10 applies to a simple twisted homogeneous rack with \(L\) an alternating group \(A_n, n \geq 5\), or a sporadic group.

Remark 4.1. If \(L\) is simple and \(\theta = \text{id} , t \neq 4,2\) and \((t, |L|) \neq 1\), then \(C_e\) is of type D. This follows from Proposition 3.10 (vii) and (viii).

4.1. \(L = A_n, n \geq 5, \theta = \text{id}\). In this subsection we prove Theorem 1.3 in this case by applying the results obtained above.

4.1.1. \(\ell = e\). We now treat the Table 1.

- If \(t \geq 6\) even or \(t\) odd with \((t, n!) \neq 1\), then \(C_e\) is of type D, by Remark 4.1.
- Assume that \(t = 4\). If \(n \geq 6\), then \(C_e\) is of type D, by Proposition 3.10 (ix) with \(x = (1\ 2)(3\ 4\ 5\ 6)\). If \(n = 5\), we do not know if \(C_e\) is of type D.
- Assume that \(t = 2\). If \(n \geq 7\), then \(C_e\) is of type D, by Proposition 3.10 (x) with \(x = (1\ 2)(3\ 4)(5\ 6\ 7)\). If \(n = 5\) or \(6\), then Proposition 3.10 (x) does not apply because the only possible even orders of elements are 2 and 4. Nonetheless, we have checked that \(C_e\) is not of type D, using GAP.

4.1.2. \(\ell\ an\ involution\). The type of \(\ell\) is \((1^{r_1}2^{r_2})\), with \(n = r_1 + 2r_2\) and \(r_2\) even. Assume that \(\ell = (i_1\ i_2)(i_3\ i_4) \cdots (i_{2r_2-1}i_{2r_2})\). Then

- By [AFGV1, Thm. 4.1], \(O_{\ell}^L\) is of type D, except for the following cases:

 \((1^2, 2^2), n = 5;\) \((1^2, 2^2), n = 6;\) \((2^4), n = 8;\)

 In particular, \(C_\ell\) is of type D for all \(t\) odd, except for the cases above.
- If \(t \geq 6\) is even, then \(C_\ell\) is of type D, by Proposition 3.10 (ii).
- Assume that \(t = 4\). If \(r_2 \geq 4\), then \(C_\ell\) is of type D by Proposition 3.10 (iv) with

 \[x = (i_1\ i_2)(i_3\ i_5\ i_7\ i_4\ i_6\ i_8).\] (13)

Suppose that \(r_2 = 2\). If \(r_1 \geq 2\), then \(C_\ell\) is of type D by Proposition 3.10 (iv) with \(x = (i_1\ i_3\ i_2\ i_4)(j_1\ j_2)\), where \(j_1, j_2\) are fixed by \(\ell\). In the case \(r_1 = 1\), Proposition 3.10 (iv) does not apply because the only possible even order of elements is 2.
• Assume that \(t = 2 \). If \(r_2 \geq 4 \), then \(\mathcal{C}_\ell \) is of type D by Proposition 3.10 (v) with \(x \) as in (13). Suppose that \(r_2 = 2 \). If \(r_1 \geq 3 \), then \(\mathcal{C}_\ell \) is of type D by Proposition 3.10 (v) with \(x = (i_1 \ i_2)(i_3 \ i_4)(j_1 \ j_2 \ j_3) \), where \(j_1, j_2, j_3 \) are fixed by \(\ell \). In the case \(r_1 = 1 \) or \(2 \), \(\mathcal{C}_\ell \) yields of type D, by Lemma 3.8 taking \(\psi : \mathbb{D}_3 \simeq (x := (1\ 2)(3\ 4), (1\ 2)(3\ 5)) \mapsto \ell \).

4.1.3. \(\text{ord}(\ell) > 2 \). It is known that:

\[
\begin{align*}
O_\ell^\lambda & \text{ is quasi-real of type 4, if } \text{ord}(\ell) > 3 \text{ is odd,} \\
O_\ell^\lambda & \text{ is quasi-real of type } \text{ord}(\ell) - 1, \text{ if } \text{ord}(\ell) \text{ is even or 3.}
\end{align*}
\]

Indeed, if \(\text{ord}(\ell) > 3 \) is odd, then \(\ell^2 \in O_\ell^{S_n} \), hence \(\ell^4 \in O_\ell^\lambda \); whereas if \(\text{ord}(\ell) \) is even or 3, then \(O_\ell^\lambda = O_\ell^{S_n} \), see [JL, Prop. 12.17] or [FH, Exerc. 3.4], hence \(\ell \) is real. Now, if \(t > 2 \) or \(t = 2 \) and \(\text{ord}(\ell) \neq 4 \), then \(\mathcal{C}_\ell \) is of type D, by Proposition 3.10 (i). On the other hand, if \(t = 2 \) and \(\text{ord}(\ell) = 4 \), then Proposition 3.10 (i) does not apply and we do not know if \(\mathcal{C}_\ell \) is of type D.

4.2. \(L = A_n \), \(n \geq 5 \), \(\theta \neq \text{id} \). We may suppose that \(\theta \) is the inner automorphism associated with an element \(\sigma \) in \(S_n - A_n \). We choose \(\sigma = (1\ 2) \); thus, \(\theta(\ell) = (1\ 2) \ell (1\ 2) \), for all \(\ell \in A_n \). Hence,

\[
\mathbb{A}_n^\theta = (\{(1\ 2)\} \times (S_{\{3,\ldots,n\}} - \mathbb{A}_{\{3,\ldots,n\}})) \coprod \mathbb{A}_{\{3,\ldots,n\}}
\]

and the order of \(L^\theta \) is \((n-2)!\).

Let \(\ell \in A_n \). Recall that \(\mathcal{C}_\kappa = \mathcal{C}_\ell \) if and only if \(\kappa \in O_\ell^{A_n,\theta} \), by Proposition 3.3 (ii), and notice that \(\kappa \in O_\ell^{A_n,\theta} \) amounts to \(\kappa(1\ 2) \in O_{\ell(1\ 2)}^{S_n} \), the conjugacy class of \((1\ 2) \) in \(S_n \). Thus, we will proceed with our study according to the type \((1^{s_1}, 2^{s_2}, \ldots, n^{s_n})\) of \((1\ 2) \).

Notice that \(\text{ord}(\ell(1\ 2)) \) is even, since \(\ell(1\ 2) \in S_n - A_n \), and \(\text{ord}(\ell(1\ 2)) \geq 4 \) if and only if \(s_i \geq 1 \), for some \(h \geq 4 \), or \(s_2 \geq 1 \) and \(s_3 \geq 1 \).

Now, we want to give a description analogous to (14) for the case \(\theta \neq \text{id} \). First, we note that \(O_{\ell(1\ 2)}^{A_n,\theta} \cap \mathbb{A}_{\ell(1\ 2)}^\theta \neq \emptyset \) if and only if \(s_1 \geq 2 \) or \(s_2 \geq 1 \). Indeed, this follows from the form of \(\mathbb{A}_n^\theta \) described in (15) for the only if part and checking the possibilities for the if part.

Assume that \(s_1 \geq 2 \) or \(s_2 \geq 1 \) and let \(\kappa \in O_{\ell(1\ 2)}^{A_n,\theta} \cap \mathbb{A}_{\ell(1\ 2)}^\theta \). Since \(O_{\ell(1\ 2)}^{A_n,\theta} = O_{\ell(1\ 2)}^{S_n} \cdot (1\ 2) \), it is clear that

\[
\kappa \text{ is } \theta\text{-quasi-real of type } j \text{ if and only if } \kappa^j(1\ 2) \in O_{\ell(1\ 2)}^{S_n} \text{ and } \kappa^j \neq \kappa.
\]

If \(\text{ord}(\ell(1\ 2)) \geq 4 \), then \(\kappa(1\ 2) \) is quasi-real of type \(j \) in \(S_n \) with \(j = \text{ord}(\ell(1\ 2)) - 1 \), by (14). Thus, \(\kappa^j(1\ 2) = (\kappa(1\ 2))^j \) and \(\kappa^j(1\ 2) \in O_{\ell(1\ 2)}^{S_n} \). Hence, \(\kappa \) is \(\theta \)-quasi-real of type \(j \), by (16); moreover, \(\kappa \) yields quasi-real of type \(j \) in \(A_n^\theta \). On the other hand, if \(\text{ord}(\ell(1\ 2)) = 2 \), then \(\kappa \in O_{\ell(1\ 2)}^{S_n} \) is \(\theta \)-quasi-real (of type \(j = 0 \)) if and only if \(O_{\ell(1\ 2)}^{A_n,\theta} \) contains \(e \), i.e. \(O_{\ell(1\ 2)}^{S_n} \) is the conjugacy class of the transpositions in \(S_n \).
We study now the twisted homogeneous racks \((\mathbb{A}_n, t, \theta)\), \(n \geq 5\) and \(\theta \neq \text{id}\), for different \(t's\) according to the type \((1^{s_1}, 2^{s_2}, \ldots, n^{s_n})\) of \(\ell(1, 2)\). If \(s_1 \leq 1\) and \(s_2 = 0\), then \(O_{\ell}^{\mathbb{A}_{n}, \theta} \cap \mathbb{A}_{n}^{\theta} = \emptyset\), and we do not know if \(\mathcal{C}_\ell\) is of type D for any \(t\).

From now on we will assume that \(s_1 \geq 2\) or \(s_2 \geq 1\) and let \(\kappa \in O_{\ell}^{\mathbb{A}_{n}, \theta} \cap \mathbb{A}_{n}^{\theta}\). Notice that \(\mathcal{C}_\ell = \mathcal{C}_\kappa\) and that \(\ell(1, 2)\) and \(\kappa(1, 2)\) have the same type, hence the same order. Moreover, if we denote the type of \(\kappa\) by \((1^{r_1}, 2^{r_2}, \ldots, n^{r_n})\), then \(r_h = s_h\), for all \(h, 3 \leq h \leq n\); thus, \(\text{ord}(\kappa)\) divides \(\text{ord}(\ell(1, 2))\).

We will consider different cases. If \(s_h \geq 1\) for \(h = 3\) or \(5 \leq h \leq n\), then \(\text{ord}(\ell(1, 2)) > 4\) and \(\mathcal{C}_\ell\) is of type D for all \(t\), by Proposition 3.10 (i). Assume that \(s_h = 0\) for \(h = 3\) and \(5 \leq h \leq n\). Suppose that \(s_4 \geq 1\); thus \(\text{ord}(\ell(1, 2)) = 4\). If \(t \geq 3\), then \(\mathcal{C}_\ell\) is of type D for all \(t\), by Proposition 3.10 (i); whereas if \(t = 2\), we do not know if \(\mathcal{C}_\ell\) is of type D. Assume that \(s_4 = 0\). Thus, the type of \(\ell(1, 2)\) is \((1^{s_1}, 2^{s_2})\), with \(s_2 \geq 1\) odd.

Suppose that \(s_2 = 1\); thus, \(e \in O_{\ell}^{\mathbb{A}_{n}, \theta}\). If \(t \geq 3\), then \(\mathcal{C}_\ell = \mathcal{C}_e\) is of type D for all \(t\), by Proposition 3.10 (i); whereas if \(t = 2\), \(n \geq 7\) and take \(\kappa = e\), then \(\mathcal{C}_\ell = \mathcal{C}_e\) is of type D, by Proposition 3.10 (x) choosing \(x = (1, 2)(3, 4)(5, 6, 7)\).

Suppose that \(s_2 > 1\) odd. Then the type of \(\kappa \in O_{\ell}^{\mathbb{A}_{n}, \theta} \cap \mathbb{A}_{n}^{\theta}\) is \((1^{r_1}, 2^{r_2})\), with \(n = r_1 + 2r_2\) and \(r_2 \geq 2\) even, i. e. \(\kappa = (i_1 i_2)(i_3 i_4) \cdots (i_2r_2 - 1i_{2r_2})\). We determine now when \(O_{\kappa}^{\mathbb{A}_{n}}\) is of type D. We have two possibilities.

(i) Assume that \(\kappa\) fixes 1 and 2. If the type \((1^{r_1-2}, 2^{r_2})\) is distinct from \((1, 2)^2\), \((1^2, 2^2)\) and \((2^4)\), then \(O_{\kappa}^{\mathbb{A}_{n}}\) is of type D, by [AFGV1, Thm. 4.1]; otherwise, \(O_{\kappa}^{\mathbb{A}_{n}}\) is not of type D.

(ii) Assume that \(\kappa\) does not fix 1 nor 2; thus \(\kappa = (12)(i_3i_4) \cdots (i_2r_2 - 1i_{2r_2})\). If the type \((1^{r_1}, 2^{r_2-1})\) is distinct from \((2^3)\) and \((1^{r_1}, 2)\), then \(O_{\kappa}^{\mathbb{A}_{n}}\) is of type D, by [AFGV1, Thm. 4.1]; otherwise, \(O_{\kappa}^{\mathbb{A}_{n}}\) is not of type D.

We consider now different values of \(t\).

- Assume that \(t\) is odd. If \(\kappa\) fixes 1 and 2 and the type of \(\kappa\) is distinct from \((1^3, 2^2), (1^4, 2^2)\) and \((1^2, 2^4)\), then \(\mathcal{C}_\ell\) is of type D, by (i) above and Proposition 3.10 (iii). On the other hand, if \(\kappa\) does not fix 1 nor 2 and the type of \(\kappa\) is distinct from \((2^4)\) and \((1^{r_1}, 2^2)\), for any \(r_1\), then \(\mathcal{C}_\ell\) is of type D, by (ii) above and Proposition 3.10 (iii).

- If \(t \geq 6\) even, then \(\mathcal{C}_\ell\) is of type D, by Proposition 3.10 (ii).

- Assume that \(t = 4\). We will determine when there exists \(x \in \mathbb{A}_{n}^{\theta}\) such that \(\text{ord}(x) \geq 4\) even and \(\theta(\kappa xxk) = x\), i. e. \((1 2)\kappa xxk(1 2) = x\). If \(\kappa\) fixes 1 and 2, take \(x = (1 2)(i_1 i_3 i_2 i_4)\). If \(\kappa(1) = 2\) and \(\kappa(2) = 1\), take \(x = (1 2)(i_3 i_5 i_4 i_6)\) when \(r_2 \geq 4\) and \(x = (1 j_1 j_2)(i_3 i_4)\) when \(r_2 = 2\) and \(r_1 \geq 2\), \(j_1, j_2\) are fixed by \(\kappa\). In all these cases, \(\mathcal{C}_\ell\) is of type D, by Lemma 3.4. For the remaining cases we do not know if \(\mathcal{C}_\ell\) is of type D.

- Assume that \(t = 2\). We will determine when there exists \(x \in \mathbb{A}_{n}^{\theta}\) such that \(\text{ord}(x) \geq 6\) even and \(\theta(\kappa xxk) = x\), i. e. \((1 2)\kappa xxk(1 2) = x\). If \(\kappa\) fixes 1 and 2, take \(x = (1 2)(i_3 i_5 i_4 i_6 i_8)\) when \(r_2 \geq 4\) and \(x = (1 i_1 i_3 i_2 i_4)(j_1 j_2)\) when \(r_2 = 2\) and \(r_1 \geq 4\), \(j_1, j_2\) are fixed by \(\kappa\). If \(\kappa(1) = 2\) and \(\kappa(2) = 1\),

take \(x = (1 \ 2)(i_3 \ i_5 \ i_7 \ i_4 \ i_6 \ i_8) \) when \(r_2 \geq 4 \) and \(x = (1 \ 2)(i_3 \ i_4)(j_1 \ j_2 \ j_3) \) when \(r_2 = 2 \) and \(r_1 \geq 3 \), \(j_1, j_2, j_3 \) are fixed by \(\kappa \).

Therefore the cases where \(\mathcal{C}_\ell \) is not known to be of type D are the following

(a) \(\ell(1 \ 2) \) of type \((1^{s_1}, 2^{s_2}, \ldots, n^{s_n})\), \(s_1 \leq 1 \) and \(s_2 = 0 \) for any \(t \);
(b) \(\ell(1 \ 2) \) of type \((1^{s_1}, 2^{s_2}, 4^{s_4})\), \(s_1 \leq 2 \) or \(s_2 \geq 1 \), \(s_2 + s_4 \) odd, \(s_4 \geq 1 \) and \(t = 2 \);

and those in Table 4. Finally, from (a), (b) and Table 4 we obtain Table 2.

Table 4.

<table>
<thead>
<tr>
<th>(n)</th>
<th>Type of (\ell)</th>
<th>(\ell)</th>
<th>(t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>((1^2, 2^4))</td>
<td>involution</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>((1^3, 2^2))</td>
<td>fixing 1 and 2</td>
<td>2, odd</td>
</tr>
<tr>
<td>8</td>
<td>((1^4, 2^2))</td>
<td>odd</td>
<td>odd</td>
</tr>
<tr>
<td>10</td>
<td>((1^2, 2^4))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>((1, 2^2))</td>
<td>involution</td>
<td>2, 4</td>
</tr>
<tr>
<td>6</td>
<td>((1^2, 2^2))</td>
<td>permuting 1 and 2</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>((2^4))</td>
<td></td>
<td>odd</td>
</tr>
</tbody>
</table>

4.3. \(L = \text{sporadic group} \), \(\theta = \text{id} \). In this subsection we prove Theorem 1.4.

4.3.1. \(\ell = e \).

- If \((t, |L|) \neq 1\), with \(t \) odd or \(t \geq 6 \) even, then \(\mathcal{C}_e \) is of type D; see Table 5 for the prime numbers dividing the order of a sporadic group. In particular, if \(t \geq 6 \) even, then \(\mathcal{C}_e \) is of type D since \(|L|\) is even.
- If \(t = 2 \) or \(t = 4 \), then \(\mathcal{C}_e \) is of type D, by Proposition 3.10 (ix) and (x), since there always exists an element \(x \in L \) of order 6.

4.3.2. \(\ell \) an involution.

- By [AFGV3, Thm. II], if \(\ell \) is an involution then \(\mathcal{O}_L^\ell \) is of type D, except for the cases listed in Table 6; in particular, \(\mathcal{C}_\ell \) is of type D for all \(t \) odd, except for these cases.
- If \(t \geq 6 \) is even, then \(\mathcal{C}_\ell \) is of type D, by Proposition 3.10 (ii).
- If \(t = 2 \) or \(t = 4 \), then \(\mathcal{C}_\ell \) is of type D by Proposition 3.10 (iv) and (v), since there always exists \(x \in C_L(\ell) \) with \(\text{ord}(x) > 4 \) even. To see this we use [BR, Bo, Br, GAP, Iv, W, W+].

4.3.3. \(\text{ord}(\ell) > 2 \). The class \(\mathcal{O}_L^\ell \) is real or quasi-real, except the classes 6B, 6C of the Suzuki group \(\text{Suz} \).

- Assume that \(\ell \) does not belong to the class 6B or 6C of the Suzuki group \(\text{Suz} \). If \(t \geq 3 \) or \(t = 2 \) and \(\text{ord}(\ell) \neq 4 \), then \(\mathcal{C}_\ell \) is of type D, by Proposition 3.10 (i).
Table 5. Prime divisors of orders of sporadic groups.

<table>
<thead>
<tr>
<th>L</th>
<th>Prime divisors</th>
<th>L</th>
<th>Prime divisors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{11}, M_{12}</td>
<td>2, 3, 5, 11</td>
<td>Co_1</td>
<td>2, 3, 5, 7, 11, 13, 23</td>
</tr>
<tr>
<td>M_{22}, HS, McL</td>
<td>2, 3, 5, 7, 11</td>
<td>J_1, HN</td>
<td>2, 3, 5, 7, 11, 19</td>
</tr>
<tr>
<td>$M_{23}, M_{24}, Co_2, Co_3$</td>
<td>2, 3, 5, 7, 11, 23</td>
<td>$O'N$</td>
<td>2, 3, 5, 7, 11, 19, 31</td>
</tr>
<tr>
<td>J_2</td>
<td>2, 3, 5, 7</td>
<td>J_3</td>
<td>2, 3, 5, 17, 19</td>
</tr>
<tr>
<td>Suz, Fi_{22}</td>
<td>2, 3, 5, 7, 11, 13</td>
<td>Ru</td>
<td>2, 3, 5, 7, 13, 29</td>
</tr>
<tr>
<td>T</td>
<td>2, 3, 5, 13</td>
<td>Fi_{23}</td>
<td>2, 3, 5, 7, 11, 13, 17, 23</td>
</tr>
<tr>
<td>He</td>
<td>2, 3, 5, 7, 17</td>
<td>Fi'_{24}</td>
<td>2, 3, 5, 7, 11, 13, 17, 23, 29</td>
</tr>
<tr>
<td>Th</td>
<td>2, 3, 5, 7, 13, 19, 31</td>
<td>B</td>
<td>2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 47</td>
</tr>
<tr>
<td>J_4</td>
<td>2, 3, 5, 7, 11, 23, 29, 31, 37, 43</td>
<td>M</td>
<td>2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71</td>
</tr>
<tr>
<td>Ly</td>
<td>2, 3, 5, 7, 11, 31, 37, 67</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Classes of involutions not known of type D; those which are NOT of type D appear in bold.

<table>
<thead>
<tr>
<th>G</th>
<th>Classes</th>
<th>G</th>
<th>Classes</th>
<th>G</th>
<th>Classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>J_2</td>
<td>2A</td>
<td>Fi_{22}</td>
<td>2A</td>
<td>Co_2</td>
<td>2A</td>
</tr>
<tr>
<td>B</td>
<td>2A, 2C</td>
<td>Fi'_{24}</td>
<td>2A</td>
<td>T</td>
<td>2A</td>
</tr>
</tbody>
</table>

- Suppose that ℓ belongs to the class 6B or 6C of the Suzuki group Suz. If $t \geq 6$ even, then C_ℓ is of type D by Proposition 3.10 (ii); whereas if $t = 2$, then C_ℓ is of type D by Corollary 3.7.

4.4. $L = \text{sporadic, } \theta \neq \text{id}$. The sporadic groups with non-trivial outer automorphism group are $M_{12}, M_{22}, J_2, Suz, HS, McL, He, Fi_{22}, Fi'_{24}, O'N, J_3, T$ and HN. For these groups the outer automorphism group is $\mathbb{Z}/2$ in all cases. In Table 7 we give the orders of L^θ when $L \neq HN$; we cannot determine the order of HN^θ with our computational resources. We will assume $L \neq HN$.

Table 7. Orders of L^θ.

| L | $|L^\theta|$ | L | $|L^\theta|$ | L | $|L^\theta|$ |
|-----------|---------------|-----------|---------------|-----------|---------------|
| M_{12} | 120 | M_{22} | 1344 | J_2 | 336 |
| Suz | 1209600 | HS | 40320 | McL | 7920 |
| He | 7560 | Fi_{22} | 54 | Fi'_{24} | 4089470473293004800 |
| T | 96 | $O'N$ | 175560 | J_3 | 2448 |
We describe the case $\ell = e$. The remaining cases will be treated in a separate paper.

- If $t \geq 6$ even or $t \geq 3$ odd and $(t, |L^\theta|) \neq 1$, then C_e is of type D, by Proposition 3.10 (vii) and (viii). In particular, if $t \geq 6$ even, then C_e is of type D since $|L^\theta|$ is even.
- Assume that $t = 2$ or $t = 4$. We have checked with GAP that there exists $x \in L^\theta$ such that $\text{ord}(x) > 4$ even. Then C_e is of type D, by Proposition 3.10 (ix) and (x).

References

N. Andruskiewitsch, F. Fantino and G. A. García
Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba. CIEM – CONICET.
Medina Allende s/n
(5000) Ciudad Universitaria, Córdoba, Argentina
(andrus, fantino, ggarcia)@famaf.unc.edu.ar

F. Fantino and G. A. García
Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba.
Velez Sarsfield 1611
(5000) Ciudad Universitaria, Córdoba, Argentina

L. Vendramin
Departamento de Matemática – FCEyN,
Universidad de Buenos Aires,
Pab. I – Ciudad Universitaria
(1428) Buenos Aires – Argentina
and Instituto de Ciencias,
Universidad de Gral. Sarmiento,
J.M. Gutierrez 1150,
Los Polvorines (1653), Buenos Aires – Argentina
lvendramin@dm.uba.ar

Received: 5 de mayo de 2010
Accepted: 4 de diciembre de 2010