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TRIALITY AND THE NORMAL SECTIONS OF CARTAN’S

ISOPARAMETRIC HYPERSURFACES

CRISTIÁN U. SÁNCHEZ

Abstract. The present paper is devoted to study the algebraic sets of normal
sections of the so called Cartan’s isoparametric hypersurfaces MR, MC, MH

and MO of complete flags in the projective planes RP 2, CP 2, HP
2 and OP

2. It
presents a connection between “normed trialities” and the polynomial defining
the algebraic sets of normal sections of these hypersurfaces. It contains also a
geometric and topological description of these algebraic sets by means of the
isotropy actions of the isoparametric hypersurfaces.

1. Introduction

In the present paper we indicate some properties of the algebraic sets of normal
sections of the so called Cartan’s isoparametric hypersurfaces on spheres (see [10]
for background on the subject). In general, isoparametric hypersurfaces in spheres
are interesting as geometric objects due to their many remarkable properties that
have been rather profoundly studied by several authors (see the survey article [11]
and references therein). Our interest in these objects comes from the possibility
of using them as testing ground in the study of normal sections of submanifolds of
Euclidean spaces. The study of submanifolds of Euclidean spaces by their normal
sections is by no means a new method in Differential Geometry but for homogeneous
submanifolds its interest was renewed by the well known result of B. Y. Chen, [4]
(see also [10]).

The unit tangent vectors defining planar normal sections at a point p of an arbi-
trary compact spherical (i.e. contained in a sphere) submanifold Mn of a Euclidean

space Rn+k form a real algebraic set X̂p [M ] of the unit sphere in the tangent space
of Mn at p and alternatively in the real projective space RP (Tp (M

n)). This set
was previously studied, for certain submanifolds (natural embedded manifolds of
complete flags of a compact simple Lie group G) in several papers. These results
have been summarized in the survey article [6].

In [10] the consideration of general isoparametric submanifolds was initiated
and new results were obtained in the particular setting of isoparametric hypersur-
faces of spheres (or equivalently isoparametric submanifolds of rank 2 in Euclidean
spaces). A particularly interesting feature of isoparametric submanifolds is the
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fact that they are defined by polynomial functions which simplifies the problem of
finding the equations defining the algebraic sets of normal sections. The reason
for restricting our attention to homogeneous (in fact extrinsically homogeneous)
isoparametric submanifolds is that, for them, the algebraic sets of normal sections
associated to each point are in fact “independent” of the chosen point and so be-
came objects associated to the manifold globally. Also in [10] the study is extended
to the consideration of all normal sections of these submanifolds. It is shown there,
that the tangent unit sphere at a given point is divided into algebraic sets deter-
mined by the “nature” of the normal section that they define. In particular, for
the isoparametric hypersurfaces in the spheres known as Cartan’s isoparametric
hypersurfaces it is proven that the algebraic sets of tangent unit vectors defining
non-planar normal sections are smooth submanifolds of the unit tangent spheres.
It is then possible to separate normal sections at p (in fact their unit tangent vec-
tors) into a one parameter family of submanifolds of the unit tangent sphere with
three singular members, one of which is the algebraic set of planar normal sections.

In the present paper we continue the study of these one parameter families
for Cartan’s isoparametric hypersurfaces obtaining a better understanding of their
structure and properties. We observe that the algebraic sets of normal sections of
these submanifolds, are defined by the rather special “normed trialities” described
in [1, p. 35 ; Ch. 14-16] (see also [2, p. 159-163]). This seems to be an interesting
fact that connects the normal sections of the four Cartan’s hypersurfaces with the
rather special phenomenon of triality. The transitive groups of Cartan’s hypersur-
faces (which are also those of the projective planes RP 2, CP 2, HP 2 and OP 2) are
the connected components of the groups of automorphisms of the Jordan algebras
H3 (F ) (F = R,C,H,O) [8, p. 24] (see Section 3.1) and the isotropy subgroups are
related to the corresponding groups of automorphisms of the trialities associated
to the algebras R,C,H and O.

The algebraic sets of non-planar normal sections of Cartan’s hypersurfaces have
natural cohomogeneity 2 actions of the isotropy subgroups and they all have the
same quotient spaces which allows us to describe with great detail their structure.
The mentioned one-parameter family of these algebraic sets (in this particular case
and in general for isoparametric hypersurfaces of spheres) seems to be an object
that deserves attention and may be studied either in the sphere or considering its
image in the associated real projective space. In some sense, they are a weak (or
more general) version of isoparametric families.

The contents of the present paper are the following. In the next section we
indicate basic facts from [10] required to describe the new results. In Section 3
we recall Cartan’s isoparametric submanifolds and in its subsection 3.1 we present
the construction of these submanifolds in a subspace of the Jordan algebras H3 (F )
describing their Cartan-Münzner polynomial. We also recall the polynomial P (X)
defining the algebraic set of unit vectors in tangent space which generate planar
normal sections and Theorem 5 obtained in [10]. In Section 4 we mention basic facts
from [1], [2] about trialities indicating the connection between normed trialities and
the polynomial P (X) defining our algebraic sets. We recall in Subsection 4.1 an
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interesting theorem due to B. Wilking (Theorem 6) [12] and describe some of its
consequences relevant here (see(16)). It follows from these facts that the problem
of describing the structure of the level sets P−1 (d) for the manifolds MH and MO

is reduced to study those in MC (notation in Section 3). The next three sections,
which constitute the core of the present paper, are devoted to the study of the level
sets for MC. In Section 5 we indicate some particular notation to be used in the

study of MC and in Section 6 we study the algebraic set X̂E [MC] = P−1 (0) by
means of the action of the torus, obtaining a description of its nature. In Section
7 we use similar methods to study the submanifolds P−1 (d) ⊂ S5, for d ∈ (0,mo).

We present in Section 8 the case of MR which is rather particular and in Section
9 the situation of MO and MH. Finally in Section 10 we see that the highest (and
lowest) level sets consist of a single orbit of the corresponding isotropy groups.

For any unexplained notation or terminology we refer the reader to [10].
Acknowledgment: We thank Professor Burkward Wilking for enlightening com-

ments concerning Theorem 6 and to the referee for some important suggestions to
improve the presentation of this paper.

2. Normal Sections

By definition, normal sections are the curves obtained by cutting a submanifold
Mn of R

n+k with the affine subspace generated by a unit tangent vector and
the normal space, at a given point p of Mn. This curve can be given a C∞

parametrization around p which is regular and can therefore be locally parametrized
by arc-length. These curves are normal sections only at the point p = γ (0) because
as soon as we leave p and move to γ (s), the curve is, in general, no longer a normal
section at γ (s).

Let us recall that

Definition 1. A curve γ (s) parametrized by arc-length in the submanifold Mn ⊂
Rn+k is said to be planar at p if p = γ (0) and its first three derivatives γ′ (0),
γ′′ (0) and γ′′′ (0) are linearly dependent in Tp

(
Rn+k

)
.

Let α denote the second fundamental form ofMn in Rn+k and let
(
∇Y α

)
denote

its usual covariant derivative. One can prove the following basic fact ([10]):

Lemma 2. Let Mn be a compact submanifold of the sphere Sn+k−1 ⊂ Rn+k. The
normal section γ of M at p in the direction of X ∈ Tp (M) is planar at p if and only
if the covariant derivative of the second fundamental form vanishes on the vector
X = γ′ (0). That is, if and only if X satisfies the equation

(
∇Xα

)
(X,X) = 0.�

Given a point p ∈ M we shall denote as in [10], [6],

X̂p [M ] := {X ∈ S (Tp (M)) : ‖X‖ = 1, γX is planar at p}
or equivalently

X̂p [M ] =
{
Y ∈ Tp (M) : ‖Y ‖ = 1,

(
∇Y α

)
(Y, Y ) = 0

}
. (1)

This is then a real algebraic set. We call this the algebraic set of planar normal

sections of M . Furthermore if X ∈ X̂p [M ] then clearly (−X) defines a planar
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normal section (the same curve in opposite direction) then one may identify X
with (−X) and so obtain an algebraic set in the real projective space RP (Tp (M))
which we denote by Xp [M ]. In principle this gives us a way to study sections
planar at p.

We assume that M is compact and extrinsically homogeneous [3, p.35] that is,
for any two points p, q ∈ M there is an isometry g of Rn+k such that g (M) = M

and g(p) = q. Then, X̂p [M ] does not “depend” on the point p. In fact if p and
q are two points in Mn and g is an isometry of Rn+k such that g (M) = M and
g(p) = q. Then

(
∇( g∗|pX)

α
)(

g∗|p X, g∗|p X
)
= g∗|p

(
∇Xα

)
(X,X) ,

and we clearly have that

X̂q [M ] = X̂g(p) [M ] = g∗|p
(
X̂p [M ]

)

and we may free ourselves from the point p. This isomorphism obviously goes to
the projective space.

In order to study the normal sections of Mn in Rn+k, it is convenient to consider
the polynomials

Pj (X) =
〈
ωj ,
(
∇Xα

)
(X,X)

〉
, j = 1, 2, . . . , k. (2)

where {ω1, . . . , ωk} is any basis of the normal space Tp (M)⊥ at p. Obviously they

define the algebraic set X̂p [M ] by the conditions

Pj (X) = 0, j = 1, 2, . . . , k ‖X‖ = 1.

These polynomials make sense on Tp (M) but since, by definition, normal sections
are generated by unit vectors we consider them, generally, on the unit sphere
S (Tp (M)).

We restrict our considerations to isoparametric hypersurfaces in spheres. A more
general setting can be found in [10]. Let Mn be an isoparametric hypersurface in
Sn+1 ⊂ Rn+2. Form the theory of isoparametric hypersurfaces in spheres it follows
that there exists a so called Cartan-Münzner polynomial f : Sn+1 → R such that

M = f−1 (0) .

The reader is referred to the survey by G. Thorbergsson [11] where the develop-
ment of the theory is described, indicating the sources in the abundant literature
on the subject. Alternatively we may consider M as a compact rank 2 isopara-
metric submanifold of Rn+2 then M is spherical [9, 6.3.11 p.123], [3, 5.2.10] and
we may think that the sphere has center 0 ∈ Rn+k and radius 1. M is a regular
level set of an isoparametric polynomial map H : Rn+2 → R2 which has com-
ponents H = (h1, h2), where usually one takes h1 (X) =

∥∥X2
∥∥ − 1 and h2 the

Cartan-Münzner polynomial f : Rn+2 → R (i.e. h2 = f) and then one takes
Mn = H−1 (0, 0). The main reason of the importance of isoparametric submani-
folds for our study is that the gradients {∇h1,∇h2} provide a ∇⊥-parallel frame
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of the normal bundle of M (see for instance [3, p.142-3]) We shall use this natural
basis of the normal space instead of {ω1, ω2}.

Then in this case our polynomials become:

Pj (X) =
〈
∇hj (p) ,

(
∇Xα

)
(X,X)

〉
, j = 1, 2

and they define X̂p [M ] by the conditions

Pj (X) = 0, j = 1, 2, ‖X‖ = 1.

We have another simple fact of great importance ([10]):

Lemma 3. Let Mn be a compact submanifold of the sphere Sn+k−1 ⊂ Rn+k and
p a point in Mn. Then, for a unitary X ∈ Tp (M) we have〈(
∇Xα

)
(X,X) , p

〉
= 0.�

Since ∇h1 (p) = 2p this says that the first polynomial P1 (X) is identically zero
on Tp (M) and the second one is

P2 (X) =
〈
∇h2 (p) ,

(
∇Xα

)
(X,X)

〉
=
〈
gradSn+1 (h2) ,

(
∇Xα

)
(X,X)

〉

=
〈
(∇h2 (p)− 〈∇h2 (p) , p〉 p) ,

(
∇Xα

)
(X,X)

〉

This says that all we need to define the algebraic set X̂p [M ] is the polynomial

P2 (X) =
〈
∇h2 (p) ,

(
∇Xα

)
(X,X)

〉
. (3)

The action of the isotropy subgroup of the point p ∈ Mn (i.e. the group of
extrinsic isometries. g such that g (M) = M and g (p) = p) is trivial on the normal

space Tp (M)
⊥
, hence the polynomial (3) is invariant by the isotropy group of the

orbit M at p and hence so are all their level sets.
Then we need to care only about the polynomial P2 (X) which we shall denote

simply by P (X) from now on. The reader is referred to [10] for a description of
the method to get P (X). For extrinsic homogeneous isoparametric hypersurfaces

it is relatively “easy” to compute explicitly the single polynomial defining X̂p [M ].
Furthermore for these spaces we have a general fact that it is convenient to mention
[10].

Proposition 4. Let Mn ⊂ R
n+2 be an extrinsic homogeneous isoparametric hyper-

surface in a sphere. Let X ∈ Tp (M) be a unit tangent vector at a point p ∈ Mn and
let γ (s) be the normal section of Mn at p generated by X (γ is a curve contained

in the three dimensional Euclidean space Span
{
X,Tp (M)⊥

}
). Let κ = κ (X)

and τ = τ (X) be respectively the curvature and torsion of γ at p. Then for the
polynomial (3) there is a constant A such that P (X) = Aκ2τ.�

This Proposition indicates that the polynomial P (X) does not just define the

algebraic set X̂p [M ] of normal sections planar at p, it can also be used to produce
some sort of “classification” of the other normal sections at p. In fact, the level set

P−1 (a) = {X ∈ S (Tp (M)) : P (X) = a} (4)
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(which is also an algebraic set in S (Tp (M))) contains all unit tangent vectors X
which generate normal sections with the same value of the product κ2τ .

It is important to recall that in order to consider the Frenet frame and the
torsion of a curve γ (s) in R3 at a particular point (say p = γ (0)) the curve is
required to be regular in an open interval (−ε, ε) containing s = 0 and also must
have positive Frenet curvature κ on (−ε, ε). This condition is satisfied here. In fact
since our submanifold Mn is compact it contains a point q where, ∀X ∈ Tq (M),
X 6= 0, αq (X,X) 6= 0 [7, p.27]; but since it is homogeneous this happens at every
point. Then

κ (X) = ‖αp (X,X)‖ > 0, ∀X ∈ Tq (M) , X 6= 0, ∀p ∈ M

Let us notice also that if a unit vector X ∈ P−1 (a) then (−X) ∈ P−1 (−a)
which corresponds to the same section in opposite direction. These two sets are in-
terchanged by the antipodal map of the sphere S (Tp (M)) and therefore they go to
a single algebraic set in the projective space RP (Tp (M)). These sets with Xp [M ]
form a one-parameter family of algebraic sets in RP (Tp (M)) for the parameter
a ∈ [0, d] where d is the maximum value of P (X) on the sphere S (Tp (M)). It is
rather natural then to study this one-parameter family naturally associated to our
space Mn or, as we rather do, to study the family in (4) defined for a ∈ [−d, d].

An interesting problem that arises here is what can be said about the smoothness
of the algebraic sets P−1 (a) ⊂ S (Tp (M)). In this respect it is important to notice

that it is clear at this point that the algebraic set X̂p [M ] = P−1 (0) is never smooth
[10, Prop. 4.1].

We shall concentrate here on the so called Cartan’s isoparametric hypersurfaces
that are described in the next section.

3. Cartan’s isoparametric submanifolds

The so called Cartan’s isoparametric submanifolds are the manifolds of complete
flags in the projective planes RP 2, CP 2, HP 2 and OP 2 (real, complex, quaternionic
and Cayley projective planes). We shall denote them by MR, MC, MH and MO

respectively. A complete flag in any of the projective planes is a pair (p, l) where
p is a point in the plane and l a line (real, complex, quaternionic or octonionic)
containing the point p. In each projective plane, the group of isometries. acts
transitively on flags which yields the homogeneous representations

MR = SO (3) / (Z2 × Z2)

MC = SU (3) /T 2

MH = Sp (3) / (Sp (1))
3

MO = F4/Spin (8) .

The dimensions of these manifolds are, respectively, 3, 6, 12 and 24. They are
easily seen to be tubes over the corresponding projective planes RP 2, CP 2, HP 2

and OP 2 and MR ⊂ MC ⊂ MH ⊂ MO.
By taking any homogeneous (invariant) metric on MO and the induced one on

the other manifolds, each one is totally geodesic in those containing it. These
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manifolds are isoparametric submanifolds of rank 2 in some Euclidean spaces. We
briefly recall their definition in the next subsection.

3.1. The simple formally real Jordan algebras H3 (F ) and the manifolds

MR ⊂ MC ⊂ MH ⊂ MO. To describe the Cartan-Münzner polynomials that define
our isoparametric families, we recall some well known facts (see, for instance, the
presentation in [8]). Let F = R, C, H, or O and denote by M3 (F ) the 3 × 3
matrices with entries in F . Let H3 (F ) =

{
u ∈ M3 (F ) : ut = u

}
where x 7→ x

denotes conjugation in F . An element u ∈ H3 (F ) is called a Hermitian matrix and
will be denoted by

u =




ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3


 , ξj ∈ R, xj ∈ F. (5)

Naturally H3 (R) ⊂ H3 (C) ⊂ H3 (H) ⊂ H3 (O).
They are real Jordan Algebras with the product

u ◦ v =
1

2
(uv + vu) ,

In the first three cases, each algebra is part of a family of “special” Jordan algebras
Hn (F ) (F = R,C,H) [1, p. 119] and H3 (O) is an exceptional Jordan algebra
[1, p.120]. We consider the algebra H3 (O), on the others everything works by
restriction.

One has in this algebra three natural functions, [1, p.113], namely

ℓ (A) = tr (A)
b (A,B) = ℓ (A ◦B)
T (A,B,C) = b (A ◦B,C)

(6)

which are determined by the product [1, p.113]. The group of automorphisms of
this algebra is isomorphic to F4, [1, 16.7,(i)]. The functions (6) are invariant by
this action [1, 16.5].

Let us consider the subspace U = {u ∈ H3 (F ) : ℓ (u) = tr(u) = 0}. The group
F4 preserves U and this defines the 26-dimensional irreducible real representation
of F4. The restriction of the above action preserves the restriction of the functions.

Let us consider in U the inner product

〈u, v〉 = 1

2
b (u, v) . (7)

This subspace U with the inner product (7) will be our ambient Euclidean space
for the manifolds MR, MC, MH and MO. Note that dimR (U) = 5, 8, 14, 26 for
F = R,C,H,O, respectively. Consider now on U the function defined by

f (u) =

(√
3

2

)
T (u, u, u)

and its restriction to the unit sphere S ⊂ U . This is the Cartan-Münzner polyno-
mial. To simplify notation we use also M to indicate MF when there is no need to
specify which is the F under consideration.
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The point
E = diag (−1, 0, 1) (8)

is a point in M = f−1 (0). The point E belongs to MF for all F .
Let us consider in U the subspace:

a =



diag (ξ1, ξ2, ξ3) :

∑

j

ξj = 0



 . (9)

It is not hard to see that the normal space to all MF at E is the same for all F

namely TE (MF )
⊥
= a and the tangent spaces at E satisfy TE (MR) ⊂ TE (MC) ⊂

TE (MH) ⊂ TE (MO) and so the tangent space at E is just the affine subspace

TE (MF ) = E +








0 x3 x2

x3 0 x1

x2 x1 0


 , xj ∈ F



 .

These manifolds have the interesting property [10] that the polynomial P (X)
associated to the normal sections of M as in Section 2 is just the restriction of the
function f to the tangent space i.e.

P (X) = f (X) , X ∈ TE (M) .

Then it is easy to see that the polynomial P (X) takes the form

P (X) = 3
√
3t (x1x2x3) , t (x1x2x3) = 2Re ((x1x2)x3) . (10)

The trilinear function Re ((x1x2)x3) has the following properties:

Re ((ab) c) = Re (a (bc)) ,
Re ((ab) c) is invariant by cyclic permutation

(11)

Then we have our four Cartan Hypersurfaces MF (for each F = R,C,H,O) as:

MF = {u ∈ S (U) : f (u) = 0} .
We may consider that all tangent spaces TE (MF ) (translated to the origin) coincide
with the subspaces a⊥ in each case. If we denote an u ∈ H3 (F ) as in (5) by
u = (ξ1, ξ2, ξ3, x1, x2, x3) then we have

a⊥ = {(0, 0, 0, x1, x2, x3) : xj ∈ F} ,
TE (MF ) = E + a⊥.

and our polynomial P (X) is given by (10) in a⊥. The normal section γ at the
point E of MF defined by X = (0, 0, 0, x1, x2, x3) ∈ a⊥ is a planar normal section
if and only if the vector X satisfies the equations

‖X‖ = 1, P (X) = 0.

For F = R,C,H,O, it was proven in [10] that

Theorem 5. The polynomial P (X) has only three critical values on the unit sphere
S
(
a⊥
)
in a⊥ namely 0, its maximum (mo) and its minimum (−mo). Hence the

level sets P−1 (r) for r ∈ (−mo, 0) ∪ (0,mo) are smooth submanifolds (hypersur-
faces) of the sphere S

(
a⊥
)
.�
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If there is need to indicate which F = R,C,H,O is under consideration, we may
eventually use the notations PF (X) and tF (x1x2x3) for the polynomials P (X)
and t (x1x2x3) respectively. In all cases the value of mo is mo = 2.

4. Triality

We want to bring ”triality” into the picture so we recall a few required facts
about it, referring the reader to [1] and [2, p.159-64] for the omitted details.

Let V1, V2 and V3 be three real vector spaces with inner product and corre-
sponding norms ‖∗‖j , a normed triality is a trilinear map ϕ : V1 × V2 × V3 −→ R

which satisfies

|ϕ (v1, v2, v3)| ≤ ‖v1‖1 ‖v2‖2 ‖v3‖3 (12)

and fixing any two variables there exists a non-zero value of the third one where the
bound (12) is attained. In [2, p. 162] it is observed that normed division algebras
go hand in hand with normed trialities and with H3 (F ) (for F = R,C,H or O).
The relevance of these objects here, comes from the following observation:

Remark 1. [1, Th. 15.14] For F = R,C,H or O the trilinear map

ϕ (x1, x2, x3) =
1

2
tF (x1x2x3)

is a normed triality.

The action of the isotropy groups of the four isoparametric hypersurfaces MR ⊂
MC ⊂ MH ⊂ MO at the common point E on the tangent spaces TE (MR) ⊂
TE (MC) ⊂ TE (MH) ⊂ TE (MO) is intimately related to this phenomenon of tri-

ality. The corresponding isotropy groups are respectively Z2
2 ⊂ T 2 ⊂ (Sp (1))

3 ⊂
Spin (8). As mentioned above, it follows from the definition of the polynomial
P (X) that it is invariant by the action of the corresponding isotropy group on
the tangent spaces. In this fashion the isotropy groups of our four manifolds are
related to the corresponding groups of automorphisms of the trialities associated
to the algebras R,C,H and O.

An automorphism of a normed triality ϕ is a triple of orthogonal maps (f1, f2, f3)
(fi : Vi → Vi, i = 1, 2, 3) which satisfies:

ϕ (f1 (v1) , f2 (v2) , f3 (v3)) = ϕ (v1, v2, v3) , ∀vi ∈ Vi. (13)

The triples (f1, f2, f3) form a group with the composition which is denoted by
Aut (ϕ).

A word should be said about the actions of (O (1))
3
, (U (1))

3
, (Sp (1))

3
and

Spin (8) on the space F 3 = a⊥ where the trialities are defined. By [1, (5.7), (15.14),
(15.15)] Aut (tO) coincides with the group Spin (8) and the actions of the subgroups

(O (1))
3
, (U (1))

3
, (Sp (1))

3
of Spin (8) are the restrictions of that action. The way

in which the subgroup (Sp (1))3 is contained in Spin (8) is the following. Since

Sp (1) consists of quaternions of norm 1 we may define for (a1, a2, a3) ∈ (Sp (1))
3

a triad of orthogonal maps (each : H → H) as

(a1, a2, a3) (x1, x2, x3) =
(
a1x1a

−1
2 , a2x2a

−1
3 , a3x3a

−1
1

)
. (14)
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This triad is in Spin (8) since it preserves the triality ϕ restricted to H3 ⊂ O3.
In fact, for xj ∈ H, j = 1, 2, 3,

Re ((x1x2)x3) = Re
((
a1x1a

−1
2 a2x2a

−1
3

)
a3x3a

−1
1

)
.

Note that the triads (1, 1, 1) and (−1,−1,−1) act trivially and one has (as indicated
in [2, p. 162]):

Aut (tH) ≃ (Sp (1))3 / {±Id} .
Now the groups O (1), U (1) are the sets of unit elements in the corresponding

algebrasR, and C. We are interested in the subgroups (O (1))
3
, (U (1))

3
of (Sp (1))

3

so note that, as a result of restricting the action (14) to (U (1))3, we get
(
eis1 , eis2 , eis3

)
(x1, x2, x3) =

(
ei(s1−s2)x1, e

i(s2−s3)x2, e
i(s3−s1)x3

)
. (15)

and since (s1 − s2) + (s2 − s3) + (s3 − s1) = 0, the resulting action is that of
{
(g1, g2, g3) ∈ U (1)

3
: g1g2g3 = 1

}
≃ T 2,

and similarly, for O (1)
3
, we get

{
(g1, g2, g3) ∈ O (1)

3
: g1g2g3 = 1

}
≃ (Z2)

2
.

4.1. The nature of these actions. Thanks to the following result, due to B.
Wilking, [12] we have a basic tool to study the above actions of the isotropy groups
and also to describe the structure of the level sets P−1 (r) of our polynomial (10)
on the spheres S (TE (M)) = S

(
a⊥
)
for r ∈ [−mo,mo]. The interval [−mo,mo] is

the image by P of that sphere.

Theorem 6. (B. Wilking) Given the point E ∈ MC and a vector (v1, v2, v3) ∈
TE (MO) there is an element (h1, h2, h3) of the isotropy subgroup of MO at E,
namely Spin (8), that moves (v1, v2, v3) to Tp (MC) ⊂ TE (MO) that is:

(h1, h2, h3) (x1, x2, x3) ∈ TE (MC) .

Furthermore if (v1, v2, v3) ∈ TE (MH) ⊂ TE (MO) then the element (h1, h2, h3) can

be taken in the isotropy group (Sp (1))3 of MH at E.�

It may be of interest to the reader to see how this theorem may be proven in the
case where (x1, x2, x3) ∈ H

3. By the theorem of Cayley, [5, p. 215], we can take
unit quaternions (a1, a2, 1) such that a1x1a

−1
2 is real. Acting with this triad on

(x1, x2, x3) we get
(
r1, a2x2, x3a

−1
1

)
(r1 ∈ R). Now we can take the triad (b, b, b3)

such that b (a2x2) b
−1
3 = r2 is also real. Then applying the two triads we get

(b, b, b3) ((a1, a2, 1) (x1, x2, x3)) =
(
r1, r2, b3

(
x3a

−1
1

)
b−1
)
= (r1, r2, y3) .

Now we write the third component y3, as y3 = r3 + u3 with r3 real and u3 a
pure quaternion (u3 ∈ Im (H)). By the Theorem of Hamilton [5, p. 216] we may
find a unit quaternion a such that au3a

−1 = qi (q ∈ R, i the imaginary unit in
C ⊂ H) then the triad (a, a, a) takes (r1, r2, y3) to (r1, r2, r3 + qi). The composition
(a, a, a) ◦ (b, b, b3) ◦ (a1, a2, 1) gives the desired result.
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Remark 2. It is then clear that we may take any tangent vector X = (x1, x2, x3)
(xj ∈ O,H,C, ∀j) to one of the form (r1, r2, y3), with rj ∈ R and y3 ∈ C.

As a consequence of this theorem we have now a first description of the structure
of the level sets P−1 (r) for MH and MO, in terms of those of MC. We may write:

(i) P−1
O

(d) = Spin (8)P−1
C

(d) ,

(ii) P−1
O

(0) = Spin (8)P−1
C

(0) ,

(iii) P−1
H

(d) = (Sp (1))
3
P−1
C

(d) ,

(iv) P−1
H

(0) = (Sp (1))
3
P−1
C

(0) .

(16)

This fact shows that in order to understand these algebraic sets we may reduce
our study to the manifold M = MC. Then our objective is to describe the structure

of the sets P−1
C

(0) = X̂E [MC] and P−1
C

(d).

5. The case of MC

We concentrate then on the manifold M = MC = SU (3) /T 2. We need to fix
some notation for the tangent space TE (MC). We have here X = (x1, x2, x3) such
that x1, x2, and x3 are complex numbers. Then we write them as

x1 = (a1 + ia2) , x2 = (b1 + ib2) , x3 = (c1 + ic2) (17)

or alternatively as

X = (a (cos η + i sin η) , b (cosα+ i sinα) , c (cosβ + i sinβ)) (18)

a = |x1| , b = |x2| , c = |x3| .
The function t (x1x2x3), with the notation (17), takes the form:

t (x1x2x3) = 2 (a1b1c1 − a1b2c2 − a2b1c2 − a2b2c1)

and in terms of (18) it is

t (x1x2x3) = 2abc cos (η + α+ β) .

In turn, the polynomial P (X) in notation (18), looks like

P (X) = 3
√
3t (x1x2x3) = 6

√
3abc cos (η + α+ β) . (19)

Recall that we consider our polynomial P (X) defined on the unit sphere S
(
a⊥
)
≃

S5 so we also have the condition

1 = a2 + b2 + c2. (20)

The action of the isotropy group T 2 at E is, as noted above, given by (15). So,
in notation (18), we have

g (X) = (x′
1, x

′
2, x

′
3)

x′
1 = a (cos ((s1 − s2) + η) + i sin ((s1 − s2) + η))

x′
2 = b (cos ((s2 − s3) + α) + i sin ((s2 − s3) + α))

x′
3 = c (cos ((s3 − s1) + β) + i sin ((s3 − s1) + β)) .

(21)

Notice that, by Remark 2 and (21), we can take any X in (18) to a vector of the
form

X = (a, b, c (cos (η + α+ β) + i sin (η + α+ β))) . (22)
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The following two sections are devoted to the study of the level sets P−1 (r) (r ∈
[−mo,mo]) for MC.

6. The algebraic set X̂E [MC] = P−1
C

(0)

The form (19) of the polynomial of the normal sections, suggests that we may

consider in X̂E [MC] = P−1
C

(0) the following two subsets such that X̂E [MC] =
Ωo ∪ Ω1.

Ωo =
{
X ∈ X̂ [MC] : a or b or c is zero

}
(23)

Ω1 =
{
X ∈ X̂ [MC] : a 6= 0, b 6= 0, c 6= 0

}
(24)

The set Ωo consists of three totally geodesic spheres S3 in S5 and each one of them
is invariant by the action of the torus. These three spheres intersect, in pairs, in
unit circles given, respectively, by:

a = 1, b = 1, c = 1 (25)

which are themselves orbits of the torus. These three one dimensional spheres

form the singular set of X̂E [MC] (the set where the gradient of P vanishes) and
these are also the singular orbits of the torus, where the isotropy subgroups are
one dimensional tori. The other orbits on the totally geodesic spheres S3 in S5 are
2-dimensional tori.

We study now the orbits of the points in Ω1. If (a, b, c) 6= (a1, b1, c1) then X
and X1 are not in the same orbit of T 2, so we may consider inside Ω1 the subsets
determined by the moduli namely

Ω1 (a, b, c) = {X ∈ Ω1 : |x1| = a, |x2| = b, |x3| = c}
and study the orbits of T 2 on these sets. Consider the point X (notation as in (18))
in Ω1 (a, b, c). In this situation we must have cos (η + α+ β) = 0 or equivalently
η + α+ β = (2k + 1) π

2 , and then, by of the action of the torus, we can take X to
the point with components

(a, b, ci sin (η + α+ β)) = (a, b, ci sin (γ)) . (26)

Since sin
(
(2k + 1) π

2

)
= (−1)k, there are two possibilities for this point namely

X2 = (a, b, ic) , X ′
2 = (a, b,−ic) . (27)

These two points are not in the same orbit of T 2. In fact, if γ = (2k + 1) π
2 and

there is a g ∈ T 2 such that g (X2) = X ′
2 then

sin ((s3 − s1) + γ) = − sin (γ)

but since
(s1 − s2) = 2k1π
(s2 − s3) = 2k2π

}
⇒ (s3 − s1) = 2hπ

we get a contradiction and then in each set Ω1 (a, b, c) there are two different orbits
namely those of X2 and X ′

2 respectively. Any point X ∈ Ω1 (a, b, c) can be taken
either to X2 or to X ′

2.
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Since, by definition, in Ω1 all the moduli a, b, c are greater than zero and each
triple of moduli (a, b, c) determines two orbits we see that the orbit space of the
action of the torus on Ω1 “essentially” consists of two copies of the open set

A =
{
(a, b, c) ∈ S2 : a, b, c > 0

}
(28)

in S2 (the third axis is the imaginary one in R × R × C). The boundary of this
open set is, of course, the spherical triangle with sides

(a = 0, b > 0, c > 0), (a > 0, b = 0, c > 0), (a > 0, b > 0, c = 0) (29)

and vertices

(1, 0, 0) , (0, 1, 0) , (0, 0, 1) . (30)

The points on this boundary, correspond to the orbits on Ωo. Note that each
triad (a, b, c) with either a = 0 or b = 0 or c = 0 determines a single orbit. Hence
the two closed sets A are glued by their boundaries with the identity mapping.
The singular set corresponds to the vertices (1, 0, 0), (0, 1, 0), (0, 0, 1). Since this

set is connected, it is also clear that P−1 (0) = X̂E [MC] is connected.
The set formed by the two copies of A identifying their boundaries, is clearly

homeomorphic to the sphere S2 and we may, roughly, describe the structure of the

algebraic set X̂E [MC]. We see that X̂E [MC] “looks” like T 2×S2 with three fibers
where the torus T 2 is replaced by T 1.

7. The submanifolds P−1
C

(d) ⊂ S5, d ∈ (0,mo)

Now we study the submanifold P−1 (d) ⊂ S5. In this section we keep fixed
d ∈ (0,mo).

A point X ∈ P−1 (d) may be written as (18) and we have in (19) the form of
the polynomial P (X).

Recall that we consider our polynomial P (X) defined on the unit sphere S5 so

P−1 (d) =
{
X ∈ S5 : P (X) = d

}
⊂ S5.

We fix the notation

k =
d

6
√
3
<

mo

6
√
3
= ko. (31)

Notice that, as was indicated above, mo = 2 and so ko = 1
3
√
3
=

√
3
9 .

It is important to consider the “real” points in P−1 (d) that is those that, in the
notation (18), have η = α = β = 0. We denote this set by Real

(
P−1 (d)

)
. We

have the following Proposition whose proof is left to the reader.

Proposition 7. Real
(
P−1 (d)

)
is a smooth 1-dimensional submanifold of S2 whose

four connected components are smooth simple closed curves in S2 One of these
components is contained in the open set A ⊂ S2 (28).�

For k as in (31), we denote by Ck ⊂ Real
(
P−1 (d)

)
the component contained

in the open set A ⊂ S2 (28).
It is important to indicate here, that the other three components ofReal

(
P−1 (d)

)

are images of of Ck by elements of the torus.
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Let us consider , for each r such that k ≤ r ≤ ko, the smooth curves Cr (note
that Cko

reduces to the point qo = 1√
3
(1, 1, 1)) and define, associated to each Cr,

two particular angles by

θ+r = cos−1

(
k

r

)
, θ+r ∈

[
0,

π

2

)
, θ−r = −θ+r .

If r = k then θ+r = 0 while for r = ko

θ+ko
= cos−1

(
3
√
3k
)
= cos−1

(
d

2

)
, 0 <

d

2
< 1.

If (a, b, c) ∈ Cr the two points

X
(
a, b, c, θ±r

)
=
(
a, b, c

(
cos θ±r + i sin θ±r

))

belong to the manifold P−1 (d) because

P
(
X
(
a, b, c, θ±r

))
= 6

√
3abc cos

(
θ±r
)
= 6

√
3r cos

(
± cos−1

(
k

r

))

= 6
√
3r

(
k

r

)
= 6

√
3

d

6
√
3
= d.

Then associated to each curve Cr (for k < r ≤ ko) we have two opposite angles,
namely θ±r , while for r = k the curve Ck has only one θ±k = 0. We may define then
the following two subsets of S5

Θ+
d =

{
X
(
a, b, c, θ+r

)
∈ S5 : (a, b, c) ∈ Cr, k ≤ r ≤ ko

}

Θ−
d =

{
X
(
a, b, c, θ−r

)
∈ S5 : (a, b, c) ∈ Cr, k ≤ r ≤ ko

}

Setting now these two pieces together we define

Θd = Θ+
d ∪Θ−

d , (32)

and it is clear that we have:

Ck = Θ+
d ∩Θ−

d .

It is also clear that both Θ+
d and Θ−

d are homeomorphic to the closed unit disk in
R2 (the boundary is the simple closed curve Ck) and then in turn, the union (32) is
homeomorphic to the sphere S2. Note that on the curve Ck ⊂ Θd the points are all
real (xj ∈ R, j = 1, 2, 3) but the other points on Θd have one complex component.

In particular the “central” point in Θ+
d is X

(
1√
3
, 1√

3
, 1√

3
, θ+ko

)
and similarly in Θ−

d

it is X
(

1√
3
, 1√

3
, 1√

3
,−θ+ko

)
.

Furthermore, any point X1 ∈ P−1 (d) ⊂ S5 can be taken, by the action of the
torus T 2, to one and only one point in Θd from which it follows that P−1 (d) is
connected.

We have then:

Theorem 8. For d ∈ (−mo, 0)∪ (0,mo), the smooth hypersurface P−1 (d) ⊂ S5 is
connected and homeomorphic to T 2 × S2.�
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8. The case M = MR

It follows from the above comments that, for MR = SO (3) / (Z2 × Z2), the

algebraic set X̂E [MR] = P−1 (0) consists of the three circles in S2 ⊂ R3 given by
a = 0, b = 0 and c = 0 respectively. It is connected since it is the union of three unit
spheres of dimension one joined by the points (±1, 0, 0), (0,±1, 0), (0, 0,±1). On
the other hand the smooth submanifold P−1 (d) ⊂ S3, for d ∈ (−mo, 0) ∪ (0,mo),
consists of four copies of the curve Ck (k in (31)) and so it is not connected. Indeed
for d ∈ (0,mo) the smooth curve Ck is in P−1

2 (d) but there are also the images of
Ck by (Z2 × Z2) ⊂ T 2 which are:

C
(3)
k =

{
(a, b, c) ∈ S2 : a, b < 0, c > 0 and abc = k

}
,

C
(2)
k =

{
(a, b, c) ∈ S2 : a, c < 0, b > 0 and abc = k

}
,

C
(1)
k =

{
(a, b, c) ∈ S2 : b, c < 0, a > 0 and abc = k

}
.

9. The case M = MO,MH

It follows now from the facts described in Sections 6, 7 and also from (16) that:

Corollary 9. X̂ [MO], P
−1
O

(d), X̂ [MH] and P−1
H

(d) are connected.�

10. The top level sets P−1 (±mo)

Here the set Θmo
consists only of the point X

(
1√
3
, 1√

3
, 1√

3
, 0
)
and so P−1 (mo)

is, in each case, the orbit of this point by each one of the groups (Z2 × Z2), T
2,

(Sp (1))
3
and Spin (8). Notice that, as was indicated above, mo = 2. For instance,

in the first case (that of MR) P−1 (mo) consists of the four points 1√
3
(1, 1, 1),

1√
3
(−1,−1, 1), 1√

3
(−1, 1,−1), 1√

3
(1,−1,−1)). They are the points of the orbit of

1√
3
(1, 1, 1) by (Z2 × Z2). The same is true for Θ−mo

.
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