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FIVE BASIC LEMMAS FOR SYMMETRIC TENSOR PRODUCTS

OF NORMED SPACES

DANIEL CARANDO∗ AND DANIEL GALICER∗∗

Abstract. We give the symmetric version of five lemmas which are essential for the theory of
tensor products (and norms). These are: the approximation, extension, embedding, density and
local technique lemma. Some applications of these tools to the metric theory of symmetric tensor
products and to the theory of polynomials ideals are given.

Introduction

Grothendieck, in his “Résumé de la théorie métrique des produits tensoriels
topologiques” [25], created the basis of what was later known as ‘local theory’,
and exhibited the importance of the use of tensor products in the theory of Banach
spaces and operator ideals. Tensor products had appeared in functional analysis
since the late thirties, in works of Murray, Von Neumann and Schatten (see [32]).
But it was Grothendieck who realized the local nature of many properties of tensor
products, and this allowed him to establish a very useful theory of duality. In 1968,
Grothendieck’s Résumé was fully appreciated when Lindenstrauss and Pełczyński
[28] presented important applications to the theory of absolutely p-summing op-
erators, translating ideas written in terms of tensor norms by Grothendieck, into
properties of operator ideals. By the same time, a general theory of operator ideals
on the class of Banach spaces was developed by Pietsch and his school, without the
use of tensor norms [29]. As stated by Defant and Floret in their book [14], “both
theories, the theory of tensor norms and of norm operator ideals, are more easily
understood and also richer if one works with both simultaneously”.

In 1980, Ryan introduced symmetric tensor products of Banach spaces, as a
tool for the study of polynomials and holomorphic mappings [30]. Since then, many
steps were given towards a metric theory of symmetric tensor products and a theory
of polynomial ideals. As in the linear case, both theories influence and contribute
to each other. In his survey [17], Floret presented the algebraic basics of symmetric
tensor products, together with a thorough account of fundamental metric results
for the two extreme tensor norms: the symmetric projective tensor norm πs and the
symmetric injective tensor norm εs. Unfortunately, there is not such a treatise on
general symmetric tensor norms, although the theory of symmetric tensor products

2000 Mathematics Subject Classification. 46M05, 46G25, 47L22.
Key words and phrases. Symmetric tensor products, homogenous polynomials.
∗The first author was partially supported by UBACyT Grant X038 and CONICET PIP 0624.
∗∗The second author was partially supported by UBACyT Grant X218, CONICET PIP 0624

and a doctoral fellowship from CONICET.

35



36 DANIEL CARANDO AND DANIEL GALICER

and polynomial ideals steadily evolved in the last decades, as we can see in the
(rather incomplete) list [2, 3, 4, 5, 7, 8, 9, 13, 18, 19, 20, 21, 22]. This note aims to
contribute to a systematic development of the theory of symmetric tensor products
of Banach spaces and polynomial ideals.

In the theory of full 2-fold tensor norms, “The Five Basic Lemmas” (see Sec-
tion 13 in Defant and Floret’s book [14]) are rather simple results which turn out
to be “basic for the understanding and use of tensor norms”. Namely, they are
the Approximation Lemma, the Extension Lemma, the Embedding Lemma, the
Density Lemma and the Local Technique Lemma. Applications of these lemmas
can be seen throughout the book. We present here the analogous results for the
symmetric setting. We also exhibit some applications as example of their potential.
In order to obtain our five basic lemmas and their applications, we combine new
and known results in a methodic way, following the lines of [14]. Although some
proofs are similar to the 2-fold case, the symmetric nature of our tensor products
introduces some difficulties, as we can see, for example, in the symmetric version
of the Extension Lemma 2.2, whose proof is much more complicated than that of
its full 2-fold version.

The article is organized as follows. In Section 1 we give the definitions and some
general results that will be used in the sequel. In Section 2 we state and prove the
five basic lemmas, together with some direct consequences. Applications are given
in Sections 3 and 4. Section 3 collects those given on the metric theory of symmetric
tensor norms. In Section 4 we consider applications to Banach polynomial ideals.
In particular, we reformulate some results of the previous sections in terms of
polynomial ideals.

We refer to [14, 31] for the theory of tensor norms and operator ideals, and to
[17, 18, 20, 22] for symmetric tensor products and polynomial ideals.

1. Preliminaries

Throughout the paper E and F will be real or complex normed spaces, E′ will
denote the dual space of E, κE : E −→ E′′ the canonical embedding of E into its
bidual, and BE will be the closed unit ball of E. We will denote by FIN(E) the
class of all finite dimensional subspaces of E and COFIN(E) will stand for the
class of all finite codimensional closed subspaces of the space E.

A surjective mapping T : E → F is called a metric surjection if

‖T (x)‖F = inf{‖y‖E : T (y) = x},

for all x ∈ E. As usual, a mapping I : E → F is called isometry if ‖Ix‖F = ‖x‖E

for all x ∈ E. We use the notation
1
։ and

1
→֒ to indicate a metric surjection or an

isometry, respectively. We also write E
1
= F whenever E and F are isometrically

isomorphic spaces (i.e., there exists a surjective isometry I : E → F ). For a Banach

space E with unit ball BE , we call the mapping QE : ℓ1(BE)
1
։ E given by

QE

(
(ax)x∈BE

)
=

∑

x∈BE

axx (1.1)
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the canonical quotient mapping. Also, we consider the canonical embedding IE :
E → ℓ∞(BE′) given by

IE(x) =
(
x′(x)

)
x′∈BE′

. (1.2)

A normed space E has the λ-bounded approximation property if there is a net
(Tη)η of finite rank operators in L(E,E) with norm bounded by λ such that Tη

converges to IdE (the identity operator on E) uniformly on compact subsets of
E. The space E has the metric approximation property if it has the 1-bounded
approximation property.

For a normed space E, we denote by ⊗nE the n-fold tensor product of E. For
simplicity, ⊗n,sx will stand for the elementary tensor x⊗ · · · ⊗ x. The subspace of
⊗nE consisting of all tensors of the form

∑r
j=1 λj ⊗

n,s xj , where λj is a scalar and
xj ∈ E for all j, is called the symmetric n-fold tensor product of E and is denoted
by ⊗n,sE. When E is a vector space over C, the scalars are not needed in the
previous expression. For convenience, we use the complex notation, although our
results hold for real and complex spaces.

Given a normed space E and a continuous operator T : E → F , the symmetric
n-tensor power of T (or the tensor operator of T ) is the mapping from ⊗n,sE to
⊗n,sF defined by (

⊗n,s T
)
(⊗n,sx) = ⊗n,s(Tx)

on the elementary tensors and extended by linearity.
For an n-fold symmetric tensor z ∈ ⊗n,sE, the symmetric projective norm of z

is given by

πs(z) = inf






r∑

j=1

‖xj‖
n




 ,

where the infimum is taken over all the representations of z of the form
∑r

j=1⊗
n,sxj .

On the other hand the symmetric injective norm of z is defined by

εs(z) = sup
x′∈BE′

∣∣∣∣∣∣

r∑

j=1

x′(xj)
n

∣∣∣∣∣∣
,

where
∑r

j=1⊗
n,sxj is any fixed representation of z. For properties of these two

classical norms (εs and πs) see [17].

Symmetric tensor products linearize homogeneous polynomials. Recall that a
function p : E → K is said to be a (continuous) n-homogeneous polynomial if there
exists a (continuous) symmetric n-linear form

A : E × · · · × E︸ ︷︷ ︸
n times

→ K

such that p(x) = A(x, . . . , x) for all x ∈ E. In this case, A is called the symmetric
n-linear form associated to p. Continuous n-homogeneous polynomials are those
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bounded on the unit ball, and the norm of such p is given by

‖p‖ = sup
‖x‖≤1

|p(x)|.

If we denote by Pn(E) the Banach space of all continuous n-homogeneous polyno-
mials on E endowed with the sup norm, we have the isometric identification

Pn(E)
1
=

(
⊗n,s

πs
E
)′
. (1.3)

We say that α is an s-tensor norm of order n if α assigns to each normed space
E a norm α

(
. ;⊗n,sE

)
on the n-fold symmetric tensor product ⊗n,sE such that

(1) εs ≤ α ≤ πs on ⊗n,sE.
(2) ‖ ⊗n,s T : ⊗n,s

α E → ⊗n,s
α F‖ ≤ ‖T ‖n for each operator T ∈ L(E,F ).

Condition (2) will be referred to as the metric mapping property. We denote by
⊗n,s

α E the tensor product ⊗n,sE endowed with the norm α
(
. ;⊗n,sE

)
, and we

write ⊗̃
n,s

α E for its completion.
An s-tensor norm α is called finitely generated if for every normed space E and

z ∈ ⊗n,sE, we have:

α(z,⊗n,sE) = inf{α(z,⊗n,sM) : M ∈ FIN(E), z ∈ ⊗n,sM}.

The norm α is called cofinitely generated if for every normed space E and z ∈
⊗n,sE, we have:

α(z,⊗n,sE) = sup{α
(
(⊗n,sQE

L)(z),⊗
n,sE/L

)
: L ∈ COFIN(E)},

where QE
L : E

1
։ E/L is the canonical mapping.

If α is an s-tensor norm of order n, then the dual tensor norm α′ is defined on
FIN (the class of finite dimensional spaces) by

⊗n,s
α′ M :

1
=

(
⊗n,s

α M ′
)′

(1.4)

and on NORM (the class of normed spaces) by

α′(z,⊗n,sE) := inf{α′(z,⊗n,sM) : z ∈ ⊗n,sM},

the infimum being taken over all of finite dimensional subspaces M of E whose
symmetric tensor product contains z. By definition, α′ is always finitely generated.

Given a tensor norm α its finite hull −→α is defined by the following way. For
z ∈ ⊗n,sE, we set

−→α (z,⊗n,sE) := inf{α(z;⊗n,sM) : M ∈ FIN(E), z ∈ ⊗n,sM}.

An important remark is in order: since α and α′′ coincide on finite dimensional
spaces we have
−→α (z;⊗n,sE) = inf{α′′(z;⊗n,sM) : M ∈ FIN(E), z ∈ ⊗n,sM} = α′′(z;⊗n,sE),

where the second equality is due to the fact that dual norms are always finitely
generated. Therefore,

−→α = α′′ (1.5)

and α = α′′ if and only if α is finitely generated.
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The cofinite hull ←−α is given by
←−α (z;⊗n,sE) := sup{α

(
(⊗n,sQE

L )(z);⊗
n,sE/L

)
: L ∈ COFIN(E)},

where QE
L : E

1
։ E/L is the canonical quotient mapping.

Is not hard to see that the “finite hull” −→α (the “cofinite hull” ←−α ) is the unique
finitely generated s-tensor norm (cofinitely generated s-tensor norm) that coin-
cides with α on finite dimensional spaces. Note also that, by the metric mapping
property, it is enough to take cofinally many M (or L) in the definitions of the
finite (or cofinite) hull. An important relation between an s-tensor norm and its
finite/cofinite hulls (which follows again by the metric mapping property) is the
following:

←−α ≤ α ≤ −→α .

Since any s-tensor norm satisfies α ≤ πs, we have a dense inclusion

⊗n,s
α E →֒ ⊗n,s

π E.

As a consequence, any p ∈
(
⊗n,s

α E
)′

identifies with a n-homogeneous polynomial
on E. Different s-tensor norms α give rise, by this duality, to different classes of
polynomials (see Section 4).

2. The Lemmas

In this section we give in full detail the symmetric analogues to the five basic
lemmas that appear in [14, Section 13]. The first of them states that for normed
spaces with the bounded approximation property, it is enough to check dominations
between s-tensor norms on finite dimensional subspaces.

Lemma 2.1 (Approximation Lemma). Let β and γ be s-tensor norms, E a
normed space with the λ-bounded approximation property and c ≥ 0 such that

α ≤ cβ on ⊗n,s M,

for cofinally many M ∈ FIN(E). Then

α ≤ λncβ on ⊗n,s E.

Proof. Take (Tη)η a net of finite rank operators with ‖Tη‖ ≤ λ and Tηx→ x for all
x ∈ E. Fix z ∈ ⊗n,sE and take ε > 0. Since the mapping x 7→ ⊗nx is continuous
from E to ⊗n,s

α E, we have α(z − Tη(z),⊗
n,sE) < ε for some η large enough. If we

take M ⊃ Tη(E) satisfying the hypothesis of the lemma, by the metric mapping
property of the s-tensor β we have

α(z;⊗n,sE) ≤ α(z −⊗n,sTη(z);⊗
n,sE) + α(⊗n,sTη(z);⊗

n,sE)

≤ ε+ α(⊗n,sTη(z);⊗
n,sM)

≤ ε+ cβ(⊗n,sTη(z);⊗
n,sM)

≤ ε+ c‖Tη : E →M‖nβ(⊗n,sz;⊗n,sE)

≤ ε+ λncβ(⊗n,sz;⊗n,sE).

Since this holds for every ε > 0, we have α(z;⊗n,sE) ≤ λncβ(z;⊗n,sE). �
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Now we devote our efforts to give a symmetric version of the Extension Lemma [14,
6.7]. A bilinear form ϕ on E×F can be canonically extended to a bilinear form ϕ∧

on E × F ′′ and to a bilinear for ∧ϕ on E′′ × F [14, 1.9]. Aron and Berner showed
in [1] (see also [34]) how to extend continuous polynomials (and some holomorphic
functions) defined on a Banach space E to the bidual E′′. The Aron-Berner exten-
sion can be seen as a symmetric (or polynomial) version of the canonical extensions
ϕ∧ and ∧ϕ. In order to show that some holomorphic functions defined on the unit
ball of E can be extended to the ball of E′′, Davie and Gamelin [12] proved that
this extension preserves the norm of the polynomial. If we look at the duality
between polynomials and symmetric tensor products in (1.3), Davie and Gamelin’s

result states that for p in (⊗̃
n,s

πs
E
)′

, its Aron-Berner extension AB(p) belongs to

(⊗̃
n,s

πs
E′′

)′
, and has the same norm as p. A natural question arises: if a polynomial

p belongs to
(
⊗̃

n,s
α E

)′
for some s-tensor norm α, does its Aron-Berner extension

AB(p) belong to
(
⊗̃

n,s

α E′′
)′

? And what about their norms? The answer is given
in the following result.

Lemma 2.2 (Extension Lemma). Let α be a finitely generated s-tensor norm

and p ∈
(
⊗̃

n,s

α E
)′

a polynomial. The Aron-Berner extension AB(p) of p to the

bidual E′′ belongs to
(
⊗̃

n,s
α E′′

)′
and

‖p‖(
⊗̃

n,s

α E
)
′ = ‖AB(p)‖(

⊗̃
n,s

α E′′

)
′ .

In [8] we used ultrapower techniques to prove this lemma. We give here a direct
proof using standard tools. First, we recall the following.

Theorem 2.3 (The Principle of Local Reflexivity). For each M ∈ FIN(E′′),
N ∈ FIN(E′) and ε > 0, there exists an operator R ∈ L(M,E) such that

(1) R is an ε-isometry; that is, (1− ε)‖x′′‖ ≤ ‖R(x′′)‖ ≤ (1 + ε)‖x′′‖;
(2) R(x′′) = x′′ for every x′′ ∈M ∩ E;
(3) x′(R(x′′)) = x′′(x′) for x′′ ∈M and x′ ∈ N .

Let A be a symmetric multilinear form. For each fixed j, 1 ≤ j ≤ n, x1, . . . , xj−1 ∈
E, and x′′j , x

′′
j+1, . . . x

′′
n ∈ E′′, it is easy to see that

A(x1, . . . , xj−1, x
′′
j , x
′′
j+1, . . . , x

′′
n) = lim

αj

A(x1, . . . , xj−1, x
(j)
αj

, x′′j+1, . . . , x
′′
n),

where A is the iterated extension of A to E′′ and (x
(j)
αj ) ∈ E such that w∗ −

limαj
x
(j)
αj = x′′j .

Now, we imitate the procedure used by Davie and Gamelin in [12]. From now
on A will be the symmetric n-linear form associated to p. We have the following
lemma.

Lemma 2.4. Let M ∈ FIN(E′′) and x′′1 , . . . , x
′′
r ∈M . For a given natural number

m, and ε > 0 there exist operators R1, . . . , Rm ∈ L(M,E) with norm less than or
equal to 1 + ε such that

A(x′′k , . . . , x
′′
k) = A(Ri1x

′′
k , . . . , Rinx

′′
k) (2.1)
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for every i1, . . . , in distinct indices between 1 and m, and every k = 1, . . . , r.

Proof. Since A is symmetric, in order to prove the lemma it suffices to obtain (2.1)
for i1 < · · · < in. We select the operator R1, . . . , Rm inductively by the following
procedure: let N1 := [A(·, x′′k , . . . , x

′′
k) : 1 ≤ k ≤ r] ⊂ E′, by the Principle of Local

Reflexivity 2.3, there exist an operator R2 ∈ L(M,E) with norm less than or equal
to 1 + ε such that x′(R1(x

′′)) = x′′(x′) for x′′ ∈M and x′ ∈ N1. In particular,

A(R1(x
′′
k), x

′′
k , . . . , x

′′
k) = x′′k(A(·, x

′′
k , . . . , x

′′
k)) = A(x′′k , x

′′
k, . . . , x

′′
k),

for every 1 ≤ k ≤ r.
Now, let N2 := [A( · , x′′k , . . . , x

′′
k) : 1 ≤ k ≤ r] ⊕ [A(R1x

′′
k , · , x

′′
k , . . . , x

′′
k) :

1 ≤ k ≤ r] ⊂ E′. Again, by the Principle of Local Reflexivity 2.3, there exist an
operator R1 ∈ L(M,E) with norm less than or equal to 1 + ε such that

A(R2(x
′′
k), x

′′
k , . . . , x

′′
k) = A(x′′k , x

′′
k , . . . , x

′′
k)

and

A(R1(x
′′
k), R2(x

′′
k), x

′′
k . . . , x

′′
k) = A(x′′k , x

′′
k , . . . , x

′′
k),

for all k = 1, . . . , r. Proceeding in this way we obtain the stated result. �

Lemma 2.5. Let M ∈ FIN(E′′) and x′′1 , . . . , x
′′
r ∈M , p : E → K a continuous n-

homogeneous polynomial, and ε > 0. There exist m ∈ N and operators (Ri)1≤i≤m
in L(M,E) with norm less than or equal to 1 + ε, satisfying

∣∣
r∑

k=1

AB(p)
(
x′′k

)
−

r∑

k=1

p
( 1

m

m∑

i=1

Rix
′′
k

)∣∣ < ε.

Proof. For ε > 0, fix m large enough and choose R1, . . . , Rm as in the previous
Lemma, such that

A(Ri1x
′′
k , . . . , Rinx

′′
k) = A(x′′k , . . . , x

′′
k) (2.2)

for every i1, . . . , in distinct indices between 1 and m and every k = 1, . . . , r. We
have

∣

∣AB(p)(x′′

k)− p(
1

m

m
∑

i=1

Rix
′′

k)
∣

∣ =
∣

∣

1

mn

m
∑

i1,...,in=1

[A(x′′

k , . . . , x
′′

k)− A(Ri1x
′′

k , . . . , Rinx
′′

k)]
∣

∣

≤
∣

∣Σk
1

∣

∣+ |Σk
2 |,

where Σk
1 is the sum over the n-tuples of non-repeated indices, which is zero by

(2.2), and Σk
2 is the sum over the remaining indices. It is easy to show that there

are exactly mn−
∏n−1

j=0 (m−j) summands in Σk
2 , each bounded by a constant C > 0,

which we can assume to be independent of k. Thus we have

∣∣Σk
2 | ≤

1

mn

(
mn −

n−1∏

j=0

(m− j)
)
C =

[
1− (1−

1

m
) . . . (1−

n− 1

m
)
]
C.

Taking m sufficiently large this is less than ε/r. �

Now we are ready to prove the Extension Lemma 2.2.
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Proof. (of Lemma 2.2) Let w ∈ ⊗n,sM , where M ∈ FIN(E′′). Since α is finitely
generated, we only have to check that

|〈AB(p), w〉| ≤ ‖p‖(
⊗̃

n,s

α E
)
′ α(w,⊗n,sM).

Now write w =
∑r

k=1⊗
nx′′k with x′′k ∈M . Given ε > 0, by Lemma 2.5, there exist

m ∈ N and operators (Ri)1≤i≤m with ‖Ri‖L(M,E) ≤ 1 + ε such that

∣∣
r∑

k=1

AB(p)
(
x′′k

)
−

r∑

k=1

p
( 1

m

m∑

i=1

Rix
′′
k

)∣∣ < ε.

Therefore,

∣∣〈AB(p), w〉
∣∣ =

∣∣
r∑

k=1

AB(p)
(
x′′k

)∣∣ ≤
∣∣

r∑

k=1

AB(p)
(
x′′k

)
−

r∑

k=1

p
( 1

m

m∑

i=1

Rix
′′
k

)∣∣

+
∣∣

r∑

k=1

p
( 1

m

m∑

i=1

Rix
′′
k

)∣∣

≤ ε+
∣∣〈p,

r∑

k=1

⊗n 1

m

m∑

i=1

Rix
′′
k〉
∣∣

≤ ε+ ‖p‖(
⊗̃

n,s

α E
)
′α(

r∑

k=1

⊗n 1

m

m∑

i=1

Rix
′′
k ; ⊗n,sE)

≤ ε+ ‖p‖(
⊗̃

n,s

α E
)
′α
(
(⊗n,sR)(

r∑

k=1

x′′k) ; ⊗
n,sE

)
,

where R = 1
m

∑m
i=1 Ri (note that ‖R‖L(M,E) ≤ 1+ε since each ‖Ri‖L(M,E) ≤ 1+ε).

By the metric mapping property of α and the previous inequality we get

∣∣〈AB(p), w〉
∣∣ ≤ ε+ (1 + ε)n‖p‖(

⊗̃
n,s

α E
)
′α(

r∑

k=1

⊗nx′′k ; ⊗n,sM),

which ends the proof. �

As a consequence of the Extension Lemma 2.2 we also obtain a symmetric version
of [14, Lemma 13.3], which shows that there is a natural isometric embedding from
the symmetric tensor product of a normed space and that of its bidual. This lemma
appears in [8] for finitely generated s-tensor norms.

Lemma 2.6 (Embedding Lemma). If α is a finitely or cofinitely generated
tensor norm, then the natural mapping

⊗n,s κE : ⊗n,s
α E −→ ⊗n,s

α E′′

is an isometry for every normed space E.

Proof. If z ∈ ⊗n,sE, by the metric mapping property we have

α(⊗n,sκE(z);⊗
n,sE′′) ≤ α(z;⊗n,sE).
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Suppose α is finitely generated and let p be a norm one polynomial in (⊗n,s
α E)′

such that α(z;⊗n,sE) = 〈p, z〉. Now notice that 〈p, z〉 = 〈AB(p),⊗n,sκEz〉 which,
by the Extension Lemma 2.2, is less than or equal to α(⊗n,sκE(z);⊗

n,sE′′). This
shows the reverse inequality for finitely generated tensor norms.

Suppose now that α is cofinitely generated and let L ∈ COFIN(E). Then L00

(the biannihilator in E′′) is in COFIN(E′′) and the mapping

κE/L : E/L→ (E/L)′′ = E′′/L00

is an isometric isomorphism. Moreover, we have QE′′

L00 ◦ κE = κE/L ◦Q
E
L .

Thus,

α(⊗n,sQE
L (z);⊗

n,sE/L) = α(⊗n,s(κF/L ◦Q
E
L )(z);⊗

n,s(E/L)′′)

= α((⊗n,sQE′′

L00 ◦ ⊗n,sκE)(z);⊗
n,sE′′/L00)

≤ α(⊗n,sκE(z),⊗
n,sE′′).

If we take supremum over all L ∈ COFIN(E) we obtain the desired inequality. �

Since E and its completion Ẽ have the same bidual, the Embedding Lemma 2.6
shows that finitely generated and cofinitely generated s-tensor norms respect dense
subspaces. More precisely, we have the following.

Corollary 2.7. Let α be a finitely or cofinitely generated s-tensor norm, E a

normed space and Ẽ its completion. Then,

⊗n,s
α E → ⊗n,s

α Ẽ

is an isometric and dense embedding.

We obtain as a direct consequence the symmetric version of the Density lemma
[14, Lemma 13.4.].

Lemma 2.8 (Density Lemma). Let α be a finitely or cofinitely generated tensor
norm, E a normed space and E0 a dense subspace of E. If p is an n-homogeneous
continuous polynomial such that

p|⊗n,sE0
∈ (⊗n,s

α E0)
′,

then p ∈ (⊗n,s
α E)′ and ‖p‖(⊗n,s

α E)′ = ‖p‖(⊗n,s
α E0)′ .

Before we state the fifth lemma, we need some definitions. For 1 ≤ p ≤ ∞ and
1 ≤ λ < ∞ a normed space E is called an Lgp,λ-space, if for each M ∈ FIN(E)

and ε > 0 there are R ∈ L(M, ℓmp ) and S ∈ L(ℓmp , E) for some m ∈ N factoring the

embedding IEM such that ‖S‖‖R‖ ≤ λ+ ε:

M � � IM
E //

R

  ❆
❆❆

❆❆
❆❆

❆ E

ℓmp

S

??⑦⑦⑦⑦⑦⑦⑦⑦

. (2.3)
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E is called an Lgp-space if it is an Lgp,λ-space for some λ ≥ 1. Loosely speaking, Lgp-

spaces share many properties of ℓp, since they locally look like ℓmp . The spaces C(K)

and L∞(µ) are Lg∞,1-spaces, while Lp(µ) are Lgp,1-spaces. For more information and

properties of Lgp-spaces see [14, Section 23].
Now we state and prove our fifth basic lemma.

Lemma 2.9 (Lp-Local Technique Lemma). Let α and β be s-tensor norm and
c ≥ 0 such that

α ≤ cβ on ⊗n,s ℓmp ,

for every m ∈ N. If E is an Lgp,λ normed space then

α ≤ λnc
−→
β on ⊗n,s E.

Proof. For M ∈ FIN(E), we take a factorization as in (2.3) with ‖R‖‖S‖ ≤
λ(1 + ε). Then, for every z ∈ ⊗n,sM we have

α(z;⊗n,sM) = α(⊗n,s(S ◦R)(z),⊗n,sM) ≤ ‖S‖α(⊗n,sR(z),⊗n,sℓmp )

≤ ‖S‖ncβ(⊗n,sR(z),⊗n,sℓmp ) ≤ c‖S‖n‖R‖nβ(z;⊗n,sM).

Taking infimum over all finite dimensional subspaces M such that z ∈ ⊗n,sM , we
obtain

α ≤ λnc
−→
β ,

as desired. �

3. Applications to the metric theory of symmetric tensor products

In this section we present applications of the five basic lemmas to the study of
symmetric tensor norms, specifically to their metric properties. The first applica-
tion of the lemmas that we get relates the finite hull of an s-tensor norm with its
cofinite hull on ⊗n,sE when E has the bounded approximation property.

Proposition 3.1. Let α be an s-tensor norm and E be a normed space with the
λ-bounded approximation property. Then

←−α ≤ α ≤ −→α ≤ λn←−α on ⊗n,s E.

In particular, ←−α = α = −→α on ⊗n,sE if E has the metric approximation property.

Proof. Is a direct consequence of the Approximation Lemma 2.1 and the fact that
←−α = α = −→α on ⊗n,sM for every M ∈ FIN(E) �

This proposition give the following corollary, which should be compared to the
Embedding Lemma 2.6. Note that the assumptions on the s-tensor norm α in the
Embedding Lemma are now substituted by assumptions on the normed space E.

Corollary 3.2. Let α be an s-tensor norm and E be a normed space with the
metric approximation property. Then

⊗n,s κE : ⊗n,s
α E −→ ⊗n,s

α E′′

is an isometry.
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Proof. If z ∈ ⊗n,sE, by the metric mapping property

α(⊗n,sκEz;⊗
n,sE′′) ≤ α(⊗n,sz;⊗n,sE).

On the other hand, since E has the metric mapping property, Proposition 3.1
asserts that α =←−α on ⊗n,sE. We then have

α(⊗n,s
z;⊗n,s

E) =←−α (⊗n,s
z;⊗n,s

E) =←−α (⊗n,s
κEz;⊗

n,s
E

′′) ≤ α(⊗n,s
κEz;⊗

n,s
E

′′),

where the second equality is due to the Embedding Lemma 2.2 applied to the
cofinitely generated s-tensor norm ←−α . �

For a finite dimensional space M we always have the isometric isomorphism

⊗n,s
α M ′

1
= (⊗n,s

α′ M)′. (3.1)

The next theorem and its corollary show the behaviour of the mappings in (1.4)
and (3.1) in the infinite dimensional framework.

Theorem 3.3 (Duality Theorem). Let α be an s-tensor norm. For every normed
space E the following natural mappings are isometries:

⊗n,s
←−α

E →֒ (⊗n,s
α′ E

′)′, (3.2)

⊗n,s
←−α

E′ →֒ (⊗n,s
α′ E)′. (3.3)

Proof. Let us prove that the first mapping is an isometry. Observe that

FIN(E′) = {L0 : L ∈ COFIN(E)}.

Now, by the duality relation for finite dimensional spaces (3.1) we obtain

←−α (z;⊗n,sE) = sup
L∈COFIN(E)

α(QE
L (z);⊗

n,sE/L)

= sup
L∈COFIN(E)

sup{〈QE
L (z), u〉 : α

′(u;⊗n,sL0) ≤ 1}

= sup{〈QE
L(z), u〉 :

−→
α′(u;⊗n,sE′) ≤ 1}

= sup{〈QE
L(z), u〉 : α

′(u;⊗n,sE′) ≤ 1},

and this shows (3.2).
For the second mapping, note that the following diagram commutes

⊗n,s
←−α

E′
� � 1 //

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗
(⊗n,s

α′ E′′)′ ∋ AB(p)

(⊗n,s
α′ E)′
?�

1

OO

∋ p

OO
O�
O�
O�

. (3.4)

Then, the Extension Lemma 2.2 gives the isometry ⊗n,s
←−α

E′ →֒ (⊗n,s
α′ E)′, so we have

(3.3). �
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Corollary 3.4. Let α be an s-tensor norm. For every normed space the mappings

⊗n,s
α E →֒ (⊗n,s

α′ E
′)′ (3.5)

⊗n,s
α E′ →֒ (⊗n,s

α′ E)′ (3.6)

are continuous and have norm one.
If E′ has the metric approximation property or α is cofinitely generated, then

both mappings are isometries.
If E has the metric approximation property the mapping in (3.5) is an isometry.

Proof. Since ←−α ≤ α, continuity and that the norm of both mappings is one follow
from the Duality Theorem 3.3. If E′ has the metric approximation property, by
Proposition 3.1), ←−α = α on ⊗n,sE and on ⊗n,sE′, so the conclusion follows again
from the Duality Theorem (the same happens if α is cofinitely generated). �

The isometry (3.6) for the case of E′ having the metric approximation property
can also be obtained also from [18, Corrollary 5.2 and Proposition 7.5]. Note also
that if E (respectively, E′) has the λ-approximation property, then the mapping
(3.5) (respectively, (3.6)) is an isomorphism onto its range.

Let α be an s-tensor norm of order n. We say that α is projective if, for every

metric surjection Q : E
1
։ F , the tensor product operator

⊗n,sQ : ⊗n,s
α E → ⊗n,sF

is also a metric surjection. On the other hand we say that α is injective if, for every

I : E
1
→֒ F isometric embedding, the tensor product operator

⊗n,sI : ⊗n,s
α E → ⊗n,s

α F,

is an isometric embedding.
The two extreme s-tensor norms, πs and εs, are examples of the last two defini-

tion: πs is projective and εs is injective.
We now define the projective and injective associates of an s-tensor norm. The

projective associate of α, denoted by \α/, will be the (unique) smallest projective
s-tensor norm greater than α. If E ∈ BAN (the class of all Banach spaces), we
can proceed as in [14, Theorem 20.6.] to obtain it in the following explicit form:

⊗n,sQE : ⊗n,s
α ℓ1(E)

1
։ ⊗n,s

\α/E,

where QE : ℓ1(BE) ։ E is the canonical quotient mapping defined in (1.1).
The injective associate of α, denoted by /α\, will be the (unique) greatest

injective s-tensor norm smaller than α. As in [14, Theorem 20.7] we can describe
it explicitly as

⊗n,sIE : ⊗n,s
/α\ E

1
→֒ ⊗n,s

α ℓ∞(BE′),

where IE is the canonical embedding (1.2).
The existence of the projective and injective associates as well as their explicit

representations are shown in [23].
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An s-tensor norm found in the literature which comes from this construction is
the norm η [26, 6], which coincides with /πs\. This norm is the predual s-tensor
norm of the ideal of extendible polynomials Pn

e (a definition is given in the next
section).

The next result shows that an s-tensor norm coincides with its projective asso-
ciate on the symmetric tensor product of ℓ1(I), where I is any index set.

Proposition 3.5. Let α be an s-tensor norm, then

α = \α/ on ⊗n,s ℓ1(I),

for every index set I.

Proof. Let Q : ℓ1
(
Bℓ1(I)

) 1
։ ℓ1(I) the natural quotient mapping. Since ℓ1(I) is

projective then there is a lifting T : ℓ1(I)→ ℓ1
(
Bℓ1(I)

)
of idℓ1(I) (i.e. Q◦T = idℓ1(I))

having norm less than or equal to ‖T ‖ ≤ 1 + ε. Thus, by the diagram

⊗n,s
α ℓ1(I)

id //❴❴❴❴❴❴❴

⊗n,sT

))❙❙❙
❙❙❙

❙❙❙
❙❙❙

❙❙❙
⊗n,s
\α/ℓ1(I)

⊗n,sℓ1
(
Bℓ1(I)

)
⊗n,sQ

OOOO
,

we have \α/ ≤ (1+ ε)α. Since α ≤ \α/ always holds, we have the desired equality.
�

A Banach space space E is called injective if for every Banach space F , every

subspace G ⊂ F and every T ∈ L(G,E) there is an extension T̃ ∈ L(F,E) of T .
The space E has the λ-extension property if there is a constant λ ≥ 1 such that

‖T̃‖ ≤ λ‖T ‖. It is easy to prove that every Banach space with the λ-extension
property is λ-complemented in ℓ∞(BE′). Using this fact we therefore have the
following.

Proposition 3.6. Let α be an s-tensor norm and E be a Banach space with the
λ-extension property, then

/α\ ≤ α ≤ λn/α\ on ⊗n,s E.

In particular
α = /α\ on ⊗n,s ℓ∞(I),

for every index set I.

A particular but crucial case of Proposition 3.5 and Proposition 3.6 is obtained
with I a finite set. In this case we get for every s-tensor norm α and every m ∈ N,

α = \α/ on ⊗n,s ℓm1 ,

α = /α\ on ⊗n,s ℓm∞.

The previous equalities allow us to use the Lp-Local Technique Lemma 2.9 to give
the following.

Corollary 3.7. Let α an s-tensor norm
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(1) If E is Lg1,λ-space, then

α ≤ \α/ ≤ λn−→α on ⊗n,s E.

(2) If E is Lg∞,λ-space, then

α ≤ /α\ ≤ λn−→α on ⊗n,s E.

The next result shows the relation between finite hulls, cofinite hulls, projective
associates, injective associates and duality.

Proposition 3.8. For an s-tensor norm α we have the following relations:

(1) /α\ = /(−→α )\ =
−−→
/α\,

(2) /α\ = /(←−α )\ =
←−−
/α\,

(3) \α/ = \(−→α )/ =
−−→
\α/,

(4) \α/ = \(←−α )/,
(5) (\α/)′ = /α′\ and (/α\)′ = \α′/.

It is important to remark that the identity \←−α / =
←−−
\α/ fails to hold in general.

To see this, notice that ←−πs = πs on ⊗n,sℓm1 . Then, by Lemma 3.11 we have
\←−πs/ = \πs/ = πs (since πs is projective). But πs is not cofinitely generated [18,
2.5]. Thus,

\←−πs/ = \πs/ = πs 6=
←−πs =

←−−
\πs/.

To prove Proposition 3.8 we make use the following three lemmas.

Lemma 3.9. Let α be an s-tensor norm such that α is finitely generated on BAN
(α = −→α on BAN) then α is also finitely generated (α = −→α on NORM). Moreover,

⊗n,s
α E

1
→֒ ⊗n,s

α Ẽ for every normed space E,

where Ẽ denotes the completion of E.

Proof. Let E be a normed space and z ∈ ⊗n,sE; by the metric mapping property
we have

−→α (z;⊗n,sẼ) = α(z;⊗n,sẼ) ≤ α(z;⊗n,sE) ≤ −→α (z;⊗n,sE).

Let M ∈ FIN(Ẽ), such that z ∈ ⊗n,sM and

α(z;⊗n,sM) ≤ (1 + ε)−→α (z;⊗n,sẼ).

By the Principle of Local Reflexivity (Theorem 2.3) we can find an operator T ∈
L(M,E) such that ‖T ‖ ≤ 1 + ε verifying Tx = x for every x ∈M ∩ E. Thus,

−→α (z;⊗n,sE) ≤ α(z;⊗n,sTM) ≤ (1 + ε)α(z;⊗n,sM) ≤ (1 + ε)2α(z;⊗n,sẼ).

�

Lemma 3.10. (1) Every projective s-tensor norm is finitely generated.
(2) If α and β are projective and coincide on BAN then α = β.
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Proof. (1) Let α be a projective s-tensor norm. By Lemma 3.9, we only have to
check that α = −→α on ⊗n,sE for every E ∈ BAN . Consider the quotient mapping

Q : ℓ1(BE) ։ E.

Since ℓ1(BE) has the metric approximation property, by the Approximation Lemma
2.1 we have α = −→α on ⊗n,sℓ1(BE); thus, for each element z ∈ ⊗n,sE and each
ε > 0 there are M ∈ FIN(ℓ1(BE)) and w ∈ ⊗n,sM with ⊗n,sQ(w) = z and

α(w;⊗n,sM) ≤ (1 + ε)α(z;⊗n,sE).

Therefore,

α(z;⊗n,sE) ≤ −→α (z;⊗n,sE)

≤ α(z;⊗n,sQ(M))

≤ α(w;⊗n,sM)

≤ (1 + ε)α(z;⊗n,sE).

Since this holds for arbitrary ε, we have α = −→α on ⊗n,sE.
(2) By (1) both norms are finitely generated. Since they coincide on finite

dimensional spaces (which are Banach spaces) the result follows. �

Lemma 3.11. Let α and β be s-tensor norms.

(1) The equality α = β holds on ⊗n,sℓm1 for every m ∈ N if and only if \α/ =
\β/.

(2) The equality α = β holds on ⊗n,sℓm∞ for every m ∈ N, if and only if
/α\ = /β\.

Proof. (1) Suppose that ⊗n,s
α ℓm1

1
= ⊗n,s

β ℓm1 for every m.

If E is a Banach space and QE : ℓ1(BE) ։ E is the canonical quotient mapping
defined in equation (1.1), we have

⊗n,sQE : ⊗n,s
α ℓ1(E)

1
։ ⊗n,s

\α/E,

⊗n,sQE : ⊗n,s
β ℓ1(E)

1
։ ⊗n,s

\β/E.

Since ℓ1(BE) has the metric approximation property, by the Lp-Local Technique
Lemma 2.9 and Propositon 3.1 we have α = β on ⊗n,sℓ1(BE). As a consequence,
we have

\α/ = \β/ on ⊗n,s E.

Therefore, \α/ = \β/ on BAN , now Lemma 3.10 (2) applies.
The converse is a direct consequence of Proposition 3.5.
(2) Suppose α = β on ⊗n,sℓm∞ for every m. Again by the Lp-Local Technique

Lemma 2.9 and Propositon 3.1, we have α = β on ℓ∞(BE′). To finish the proof we
just use the isometric embeddings

⊗n,sIE : ⊗n,s
/α\ E

1
→֒ ⊗n,s

α ℓ∞(BE′),

⊗n,sIE : ⊗n,s
/β\ E

1
→֒ ⊗n,s

β ℓ∞(BE′).
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The converse follows from Proposition 3.6. �

Now we are ready to prove Proposition 3.8.

Proof. (of Proposition 3.8)
(1) Since α = −→α on ⊗n,sℓm∞, for every m, by the Lemma 3.11 we have

/α\ = /(−→α )\ on ⊗n,s E.

To prove that /α\ =
−−→
/α\, we first note that if z ∈ ⊗n,sM with M ∈ FIN(E),

/α\ being injective we have

/α\(z;⊗n,sM) = /α\(z;⊗n,sE).

As a consequence,
−−→
/α\(z;⊗n,sE) = inf{/α\(z;⊗n,sM) : z ∈ ⊗n,sM and M ∈ FIN(E)}

= inf{/α\(z;⊗n,sE)}

= /α\(z;⊗n,sE).

(2) Since α =←−α on ⊗n,sℓm∞ for every m, the equality

/α\ = /(←−α )\ (3.7)

on ⊗n,sE follows Lemma 3.11. On the other hand, Proposition 3.1 gives
←−−
/α\ ≤ /α\.

To show the reverse inequality, note that

/α\ = /(/α\)\ = /(
←−−
/α\)\,

where the second equality is just (3.7) applied to /α\. Since by definition of the

injective associate we have /µ\ ≤ µ for every s-tensor norms µ, taking µ =
←−−
/α\ we

get /(
←−−
/α\)\ ≤

←−−
/α\, which gives de desired inequality.

(3) The equality \α/ = \(−→α )/ is again a consequence of Lemma 3.11. That

\α/ =
−−→
\α/ follows from Lemma 3.10 (1).

(4) Is a direct consequence of Lemma 3.11.
(5) Let us see first that (\α/)′ is injective. Consider an isometric embedding

E
1
→֒ F and z ∈ ⊗n,sM , where M is a finite dimensional subspace of E. Fix ε > 0,

since (\α/)′ is finitely generated we can take N ∈ FIN(F ) such that z ∈ ⊗n,sN
and

(\α/)′(z;⊗n,sN) ≤ (\α/)′(z;⊗n,sF ) + ε.

Denote by S the finite dimensional subspace of F given by M+N and i : M → S

the canonical inclusion. Observe that ⊗n,si′ : ⊗n,s
\α/S

′ 1
։ ⊗n,s

\α/M
′ is a quotient

mapping since the s-tensor norm \α/ is projective. Therefore, its adjoint

(⊗n,si′)′ :
(
⊗n,s
\α/ M

′
)′ 1
→֒

(
⊗n,s
\α/ S

′
)′
,

is an isometric embedding. Using the definition of the dual norm on finite dimen-
sional spaces and the right identifications, it is easy to show that the following
diagram commutes
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⊗n,s
(\α/)′M

⊗n,si // ⊗n,s
(\α/)′S

(
⊗n,s
\α/ M

′
)′ � � (⊗n,si′)′ //

(
⊗n,s
\α/ S

′
)′

. (3.8)

Therefore ⊗n,si : ⊗n,s
(\α/)′M → ⊗

n,s
(\α/)′S is also an isometric embedding. With this

(\α/)′(z;⊗n,sM) = (\α/)′(z;⊗n,sS). Now,

(\α/)′(z;⊗n,sE) ≤ (\α/)′(z;⊗n,sM) ≤ (\α/)′(z;⊗n,sS)

≤ (\α/)′(z;⊗n,sN) ≤ (\α/)′(z;⊗n,sF ) + ε.

Since this holds for every ε > 0, we obtain (\α/)′(z;⊗n,sE) ≤ (\α/)′(z;⊗n,sF ).
The other inequality always holds, so (\α/)′ is injective.

We now show that (\α/)′ coincides with /α′\. Note that for m ∈ N,

⊗n,s
(\α/)′ℓ

m
∞ =

(
⊗n,s
\α/ ℓ

m
1

)′
=

(
⊗n,s

α ℓm1
)′

= ⊗n,s
α′ ℓ

m
∞ = ⊗n,s

/α′\ℓ
m
∞.

Therefore, the s-tensor norms (\α/)′ and /α′\ coincide in ⊗n,sℓm∞ for every m ∈ N

and, by Lemma 3.11, their corresponding injective associates coincide. But both
(\α/)′ and /α′\ are injective, which means that they actually are their own injective
associates, therefore (\α/)′ and /α′\ are equal.

Let us finally prove that (/α\)′ = \α′/. We already showed that (\β/)′ = /β′\
for every tensor norm β. Thus, for β = α′ we have (\α′/)′ = /α′′\ = /−→α \ = /α\,
where the third equality comes from (1). Thus, by duality, the fact that \α′/ is
finitely generated (by (2)) and equation (1.5) we have

\α′/ =
−−→
\α′/ = (\α′/)′′ =

(
(\α′/)′

)′
= (/α\)′,

which is what we wanted to prove. �

As a consequence of Proposition 3.8 we obtain the following.

Corollary 3.12. Let α be an s-tensor norm. The following assertions hold.

(1) If α is injective then it is finitely and cofinitely generated.
(2) If α is finitely or cofinitely generated then: α is injective if and only if α′

is projective.

Proof. Note that (1) is a consequence of (1) of Proposition 3.8.
Let us show (2). If α is injective, we have α = /α\. Thus, we can use (5) of

Proposition 3.8 to take dual norms:

α′ = (/α\)′ = \α′/.

Since the last s-tensor norm is projective, so is α′. Note that for this implication
we have not used the fact that α is finitely or cofinitely generated.

Suppose now that α is finitely generated and α′ is projective (i.e. α′ = \α′/).
Thus, by (5) in Proposition 3.8 we have

α′′ = (\α′/)′ = /α′′\.
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Since α is finitely generated, we have α = α′′, see equation (1.5). Thus, α = /α\,
which asserts that α is injective.

Finally, suppose that α is cofinitely generated and α′ is projective. Consider an

isometric embedding i : E
1
→֒ F . Since α′ is projective, ⊗n,si′ : ⊗n,sF ′

1
։ ⊗n,sE′

is a quotient mapping and, therefore, its adjoint (⊗n,si′)′ is an isometry. Consider
the commutative diagram

⊗n,s
α E = ⊗n,s

←−α
E

⊗n,si

��✤
✤

✤

� � 1 //
(
⊗n,s

α′ E′
)′

(⊗n,si′)′

��
⊗n,s

α F = ⊗n,s
←−α

F � � 1 //
(
⊗n,s

α′ F ′
)′

. (3.9)

By the Duality Theorem 3.3 the horizontal arrows are isometries. This forces ⊗n,si
to be also an isometry, which means that α respects subspaces isometrically. In
other words, α is injective. �

4. Applications to the theory of polynomial ideals

In this section we compile some consequences of the previous results to the
theory of polynomial ideals. Let us recall some definitions from [20]: a Banach
ideal of continuous scalar valued n-homogeneous polynomials is a pair (Q, ‖ · ‖Q)
such that:

(i) Q(E) = Q ∩ Pn(E) is a linear subspace of Pn(E) and ‖ · ‖Q is a norm
which makes the pair (Q, ‖ · ‖Q) a Banach space.

(ii) If T ∈ L(E1, E), p ∈ Q(E) then p ◦ T ∈ Q(E1) and

‖p ◦ T ‖Q(E1) ≤ ‖p‖Q(E)‖T ‖
n.

(iii) z 7→ zn belongs to Q(K) and has norm 1.

Let (Q, ‖ · ‖Q) be the Banach ideal of continuous scalar valued n-homogeneous
polynomials and, for p ∈ Pn(E), define ‖p‖Qmax(E) := sup{‖p|M‖Q(M) : M ∈
FIN(E)} ∈ [0,∞]. The maximal hull of Q is the ideal given by Qmax := {p ∈ Pn :

‖p‖Qmax < ∞}. An ideal Q is said to be maximal if Q
1
= Qmax. It is immediate

that for each space E , we have Q(E) ⊂ Qmax(E). Moreover,

‖p‖Qmax(E) ≤ ‖p‖Q(E) for every p ∈ Q(E).

The minimal kernel of Q is defined as the composition idealQmin := Q◦F, where
F stands for the ideal of approximable operators. In other words, a polynomial p
belongs to Qmin(E) if it admits a factorization

E
p //

T

��❅
❅❅

❅❅
❅❅

❅ K

F

q
??⑦⑦⑦⑦⑦⑦⑦⑦

, (4.1)

where F is a Banach space, T : E → F is an approximable operator and q is in
Q(F ). The minimal norm of p is given by ‖p‖Qmin := inf{‖q‖Q(F )‖T ‖

n}, where
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the infimum runs over all possible factorizations as in (4.1). An ideal Q is said to

be minimal if Q
1
= Qmin. For more properties about maximal and minimal ideals

of homogeneous polynomials and examples see [22, 18] and the references therein.
If Q is a Banach polynomial ideal, its associated s-tensor norm is the unique

finitely generated tensor norm α satisfying

Q(M)
1
= ⊗n,s

α M,

for every finite dimensional space M . Notice that Q, Qmax andQmin have the same
associated s-tensor norm since they coincide isometrically on finite dimensional
spaces. The Polynomial Representation Theorem [22, 3.2] asserts that, if Q is
maximal, then we have

Q(E)
1
=

(
⊗̃

n,s
α′ E

)′
, (4.2)

for every space E.
A natural question is whether a polynomial ideal is closed under the Aron-Berner

extension and, also, if the ideal norm is preserved by this extension. Positive an-
swers for both questions were obtained for particular polynomial ideals in [6, 11, 27]
among others. However, some polynomial ideals are not closed under Aron-Berner
extension (for example, the ideal of weakly sequentially continuous polynomials).
Since the dual s-tensor norm α′ is finitely generated, we can rephrase the Extension
Lemma 2.2 in terms of maximal polynomial ideals and give a positive answer to
the question for ideals of this kind.

Theorem 4.1 (Extension lemma for maximal polynomial ideals). Let Q be
a maximal ideal of n-homogeneous polynomials and p ∈ Q(E), then its Aron-Berner
extension is in Q(E′′) and

‖p‖Q(E) = ‖AB(p)‖Q(E′′).

Floret and Hunfeld showed in [22] that there is another extension to the bidual,
the so called uniterated Aron-Berner extension, which is an isometry for maximal
polynomial ideals. The isometry and other properties of the uniterated extension
are rather easy to prove. However, this extension is hard to compute, since its
definition depends on an ultrafilter. On the other hand, the Aron-Berner extension
is not only easier to compute, but also has a simple characterization that allows to
check if a given extension of a polynomial is actually its Aron-Berner extension [33].
Moreover, the iterated nature of the Aron-Berner extension makes it more appro-
priate for the study of polynomials and analytic functions. The next result shows
that the Aron-Berner extension is also an isometry for minimal polynomial ideals.

Theorem 4.2 (Extension lemma for minimal polynomial ideals). Let Q
be a minimal ideal. For p ∈ Q(E), its Aron-Berner extension AB(p) belongs to
Q(E′′) and

‖p‖Q(E) = ‖AB(p)‖Q(E′′).

Proof. Since p ∈ Q(E)
1
=

(
(Qmax)min

)
(E) (see [18, 3.4]), given ε > 0 there exist

a Banach space F , an approximable operator T : E → F and a polynomial q ∈
Qmax(F ) such that p = q◦T (as in (4.1)) such that ‖q‖Qmax(F )‖T ‖

n ≤ ‖p‖Q(E)+ε.
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Notice that AB(p) = AB(q) ◦ T ′′. By Theorem 4.1 we have ‖q‖Qmax(F ) =
‖AB(q)‖Qmax(F ). Since T is approximable, so is T ′′. With this we conclude that
AB(p) belongs to Q(E′′) and

‖AB(p)‖Q(E′′) ≤ ‖AB(q)‖Qmax(F ′′)‖T
′′‖n

= ‖q‖Qmax(F )‖T ‖
n

≤ ‖p‖Q(E) + ε,

for every ε. The reverse inequality is immediate. �

The next statement is a polynomial version of the Density Lemma 2.8.

Lemma 4.3 (Density lemma for maximal polynomial ideals). Let Q be a
polynomial ideal, E a Banach space, E0 a dense subspace and C ⊂ FIN(E0) a
cofinal subset. Then

‖p‖Qmax(E) = sup{‖p|M‖Q(M) : M ∈ C}.

Proof. For α the s-tensor norm associated to Q, by the Representation Theorem
[22, 3.2] we have as in (4.2):

Qmax(E) = (⊗n,s
α′ E)′.

Using the Density Lemma 2.8 (since α′ is finitely generated) we get

‖p‖Qmax(E) = ‖p‖(⊗n,s

α′
E)′ = ‖p‖(⊗n,s

α′
E0)′ = ‖p‖Qmax(E0).

On the other hand, by the very definition of the norm in Qmax, we have

‖p‖Qmax(E0) = sup{‖p|M‖Q(M) : M ∈ C},

which ends the proof. �

From the previous Lemma we obtain the next useful result: in the case of a
Banach space with a Schauder basis, a polynomial belongs to a maximal ideal if
and only if the norms of the the restrictions of the polynomial to the subspaces
generated by the first elements of the basis, are uniformly bounded.

Corollary 4.4. Let Q a maximal polynomial ideal, E a Banach space with Schauder
basis (ek)

∞
k=1 and Mm the finite dimensional subspace generated by the first m el-

ements of the basis, i.e. Mm := [ek : 1 ≤ k ≤ m]. A polynomial p belongs to Q(E)
if and only if supm∈N ‖p|Mm

‖Q(Mm) <∞. Moreover,

‖p‖Q(E) = sup
m∈N
‖p|Mm

‖Q(Mm).

As a consequence of the Duality Theorem 3.3 we have the following.

Theorem 4.5 (Embedding Theorem). Let Q be the maximal polynomial ideal
associated to the s-tensor norm α. Then the relations

⊗n,s
←−α

E →֒ Q(E′)

⊗n,s
←−α

E′ →֒ Q(E),

hold isometrically.
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In particular, the extension

⊗̃
n,s
α E′ → Q(E)

of ⊗n,s
α E′ → Q(E) is well defined and has norm one.

The following result shows how dominations between s-tensor norms translate
into inclusions between maximal polynomial ideals, and viceversa.

Proposition 4.6. Let Q1 and Q2 be maximal polynomial ideals with associated
tensor norms α1 and α2 respectively, E be a normed space and c ≥ 0. Consider
the following conditions

(1) α′2 ≤ cα′1 on ⊗n,sE;
(2) Q2(E) ⊂ Q1(E) and ‖ ‖Q1

≤ c ‖ ‖Q2
;

(3) ←−α1 ≤ c←−α2 on ⊗n,sE′.

Then

(a) (1)⇔ (2)⇒ (3).
(b) If E′ has the metric approximation property then (1), (2) and (3) are equiv-

alent.

Proof. (a) The statement (1)⇔ (2) can be easily deduced from the Representation
Theorem (see (4.2) above).

Let us show (2) ⇒ (3). Let z ∈ ⊗n,sE′. By the Embedding Theorem 4.5 we
have:

⊗n,s
←−α1

E′
1
→֒ Q1(E),

⊗n,s
←−α2

E′
1
→֒ Q2(E).

Denote by pz ∈ P(
nE) the polynomial that represents z. Thus,

←−α1(z) = ‖pz‖Q1(E) ≤ c‖pz‖Q2(E) = c←−α2(z).

(b) Since E′ has the metric approximation property, so does E [14, Corollary 1

in 16.3.]. Thus, by Proposition 3.1, for i = 1, 2 we have −→αi = αi and
←−
α′i = α′i on

⊗n,sE′ and ⊗n,sE respectively. Condition (3) states that the mapping (∗∗) in the
following diagram has norm at most c.

⊗n,s
α′

1

E = ⊗n,s
←−
α′

1

E

(∗)

��✤
✤

✤

� � 1 // (⊗n,s
α′′

1

E′)′ = (⊗n,s
−→α1

E′)′ = (⊗n,s
α1

E′)′

(∗∗)

��
⊗n,s

α′

2

E = ⊗n,s
←−
α′

2

E � � 1 // (⊗n,s
α′′

2

E′)′ = (⊗n,s
−→α2

E′)′ = (⊗n,s
α2

E′)′

, (4.3)

Since the diagram commutes we can conclude that the mapping (∗) is continuous
with norm ≤ c. Therefore (3) implies (1). �

The previous proposition is a main tool for translating results on s-tensor norms
into results on polynomial ideals. As an example, we have the following polynomial
version of the Lp-Local Technique Lemma 2.9.
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Theorem 4.7 (Lp-Local Technique Lemma for Maximal ideals). Let Q1 and
Q2 be polynomial ideals with Q1 maximal and let c > 0. Consider the following
assertions.

(a) ‖ ‖Q1(ℓmp ) ≤ c ‖ ‖Q2(ℓmp ) for all m ∈ N.

(b) Q2(ℓp) ⊂ Q1(ℓp) and ‖ ‖Q1(ℓp) ≤ c ‖ ‖Q2(ℓp).

Then (a) and (b) are equivalent and imply that

Q2(E) ⊂ Q1(E) and ‖ ‖Q1(E) ≤ cλn ‖ ‖Q2(E)

for every Lgp,λ normed space E.

Proof. Using Corollary 4.4 we easily obtain that (a) implies (b).
On the other hand, since the subspace spanned by the first m canonical vectors

in ℓp is a 1-complemented subspace isometrically isomorphic to ℓmp , we get that (b)
implies (a) by the metric mapping property.

Let us show that (a) implies the general conclusion. Denote by α1 and α2

the s-tensor norms associated to Q1 and Q2 respectively. By (a) and the Rep-
resentation Theorem for maximal polynomial ideals (4.2), we have α′1 ≤ c α′2 on
⊗n,sℓmp . Using the Lp-Local Technique Lemma 2.9 we get α′2 ≤ cλnα′1 on ⊗n,sE.
Notice that α2 is also associated with (Q2)

max, thus by Proposition 4.6 we ob-
tain (Q2)

max(E) ⊂ Q1(E) and ‖ ‖Q1(E) ≤ cλn ‖ ‖(Q2)max(E). Since Q2(E) ⊂
(Q2)

max(E) and ‖ ‖(Q2)max(E) ≤ ‖ ‖Q2(E), we finally obtain Q2(E) ⊂ Q1(E) with
‖; ‖Q1(E) ≤ cλn ‖ ‖Q2(E). �

For the case p =∞, ℓp in assertion (b) should be replaced by c0. Moreover, ℓ∞
is a Lg∞,1-space and ℓn∞ is 1-complemented in ℓ∞ for each n. So, in particular, we
have: two maximal ideals coincide on c0 if and only if they coincide on ℓ∞. Let us
introduce a polynomial ideal for which the last remark applies.

A polynomial p ∈ Pn is extendible [26] if for any Banach space F containing
E there exists p̃ ∈ Pn(F ) an extension of p. We denote the space of all such
polynomials by Pn

e (E). For p ∈ Pn
e (E), its extendible norm is given by

‖p‖Pn
e (E) = inf{C > 0 : for all F ⊃ E there is an extension of p to F

with norm ≤ C}.

With this definition, every polynomial on ℓ∞ is extendible, since ℓ∞ is an in-
jective Banach space. Therefore, although c0 is not injective, we get that every
polynomial on c0 is extendible (by our previous comment). We remark that the
extendibility of polynomials on c0 is a known fact, and that it can also be obtained
from the Extension Lemma.

Since Hilbert spaces are Lgp for any 1 < p < ∞ (see Corollary 2 in [14, 23.2]),
we also obtain the following.

Corollary 4.8. Let Q1 and Q2 be polynomial ideals, Q1 maximal. If for some
1 < p <∞ we have Q2(ℓp) ⊂ Q1(ℓp), then we also have Q2(ℓ2) ⊂ Q1(ℓ2).

As a consequence, if two maximal polynomial ideals do not coincide on ℓ2, then
they are different in every ℓp with 1 < p <∞.

Rev. Un. Mat. Argentina, Vol 52–2, (2011)



THE FIVE BASIC LEMMAS 57

Proposition 4.6, Theorem 4.7 and Corollary 4.8 have their analogues for minimal
ideals. For Theorem 4.7 and Corollary 4.8, the hypothesis on maximality of Q1

should be changed for the requirement that Q2 be minimal.

We end this note with a few words about accessibility of s-tensor norms and
polynomial ideals. We say that an s-tensor norm α is accessible if −→α = α = ←−α .
For example, item (1) of Corollary 3.12 implies that every injective s-tensor norm
is accessible.

The definition of accessible polynomial ideals is less direct. By Pn
f we denote

the class of finite type polynomials. We say that a polynomial ideal Q is accessible
(a term coined in [18, 3.6]) if the following condition holds: for every normed space
E, q ∈ Pn

f (E) and ε > 0, there is a closed finite codimensional space L ⊂ E and

p ∈ Pn(E/L) such that q = p ◦QE
L (where QE

L is the canonical quotient map) and
‖p‖Q ≤ (1 + ε) ‖q‖Q.

In [18, Proposition 3.6] it is shown that, if Q is accesible, then

Qmin(E)
1
→֒ Q(E) and Qmin(E) = Pn

f (E)
Q
,

for every Banach space E. Or, in other words,

⊗̃
n,s
α E′ = Qmin(E)

1
→֒ Q(E),

where α is the s-tensor associated to Q. This ‘looks like’ the embedding Theorem
4.5.

One may wonder how the definition of accessibility of a polynomial ideal relates
with the one for its associated s-tensor norm. The next proposition sheds some
light on this question.

Proposition 4.9. Let Q be a polynomial ideal and let α be its associated s-tensor
norm. Then, α is accessible if and only if Qmax is, in which case Q is also acces-
sible.

Proof. Suppose that α is accessible. Then α is finitely and cofinitely generated.
Fix E a normed space, q ∈ Pn

f (E) and ε > 0. Let z ∈ ⊗n,s
α E′ the representing

tensor of the polynomial q. Since α is cofinitely generated, by the Duality Theorem
3.3 and the Representation Theorem (4.2) we have

⊗n,s
α E′

1
→֒ (⊗n,s

α′ E)′ = Qmax(E).

Thus, α(z;⊗n,sE′) = ‖q‖Qmax(E). Using that α is finitely generated we can find
M ∈ FIN(E′) such that z ∈ ⊗n,sM and

α(z;⊗n,sM) ≤ (1 + ε)‖q‖Qmax(E).

Let L := M0 ⊂ E, identifying M ′ with E/L and denote p the representing poly-
nomial of the tensor z ∈ ⊗n,sM defined in E/L. Therefore ‖p‖Qmax(E/L) =

α(z;⊗n,sM) ≤ (1 + ε)‖q‖Qmax(E) and obviously q = p ◦QE
L where QL

E : E → E/L
is the natural quotient mapping.
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For the converse we must show that α( · ;⊗n,sE) = ←−α ( · ,⊗n,sE). By the
Embedding Lemma 2.6 it is sufficient to prove that α( · ,⊗n,sE′′) =←−α ( · ,⊗n,sE′′).
We denote E′ by F , let z ∈ ⊗n,sF ′ and ε > 0. By the Duality Theorem 3.3

⊗n,s
←−α

F ′
1
→֒ (⊗n,s

α′ F )′ = Qmax(F ).

Denote by q the polynomial that represents z in Qmax(F ); by hypothesis there
exist a subspace L ∈ COFIN(F ) and a polynomial p ∈ Qmax(F/L) such that
q = p ◦ QF

L with ‖p‖Qmax(F/L) ≤ (1 + ε)‖q‖Qmax(F ). If w is the tensor that

represents p in ⊗n,sL0 = ⊗n,s(F/L)′, we have (⊗n,sQF
L)(w) = z. By the metric

mapping property,

α(z;⊗n,sF ) ≤ α(w;⊗n,sF/L)

= ‖p‖Qmax(F/L)

≤ (1 + ε)‖q‖Qmax(F )

= (1 + ε)←−α (z;⊗n,sF ),

which proves that α is accessible.
Finally, we always have ‖ · ‖Qmax ≤ ‖ · ‖Q, with equality in finite dimensional

spaces. The definition of accessibility then implies that, if Qmax is accessible, then
so is Q. �
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