A COMBINATORIAL IDENTITY AND APPLICATIONS

MARIANO FERRARI AND PABLO A. PANZONE

ABSTRACT. An identity for the finite sum $\sum_{1}^{N}\frac{z^{n}}{q^{n}-r}$ is given. Related sums (or series) were studied by Scherk, Clausen, Ramanujan, Shanks, Andrews, and others. We use such identity to give new formulas for $\sum_{1}^{\infty}\frac{z^{n}}{q^{n}-r}$, the Riemann zeta function and the Euler–Mascheroni constant. An irrationality result is also proved.

1. Introduction and results

The aim of this paper is to prove a finite sum identity for the sum $\sum_{n=1}^{N} \frac{z^n}{q^n - r}$, which seems to be new, and to give some applications of it. Related sums have been investigated by several authors. A related accelerated series has been given by Clausen (proved in print by Scherk): If |q| > 1,

$$\sum_{k=1}^{\infty} \frac{1}{q^k - 1} = \sum_{k=1}^{\infty} \frac{q^k + 1}{q^{k^2}(q^k - 1)}.$$

Ramanujan has discovered this and other related ones, see [4], pp. 147–149. D. Shanks developed an acceleration method in [9] in which he considered sums of the above type. In [2] G. E. Andrews used the little q-Jacobi polynomials to explain and extend Shanks' observations.

In another direction, P. Erdös proved in 1948 the irrationality of $\sum_{n=1}^{\infty} 1/(q^n-1)$, $1 < q \in \mathbb{N}$. In [5, 6] P. Borwein proved irrationality results for $\sum_{n=1}^{\infty} 1/(q^n-r)$ using the Padé approximants and later this was extended by D. Duverney [7] and M. Prevost [8] to other similar series.

The following identity, which we believe is new, is the key to obtain all the results in this paper.

Theorem 1. Define, for $1 \le k \le n$,

$$\epsilon_{n,k} = \epsilon_{n,k}(q,r,z) := \frac{(-1)^k z^{n+1} r^{k-1}}{(q^n - r) \cdots (q^{n-k+1} - r)} \cdot \frac{(q^{k-1} - 1) \cdots (q-1)}{(q^k - z) \cdots (q-z)}.$$

²⁰¹⁰ Mathematics Subject Classification. 05A19, 11J72, 11M06.

 $Key\ words\ and\ phrases.$ Combinatorial identity; irrationalities; Riemann zeta function; Euler–Mascheroni constant.

Supported in part by Universidad Nacional del Sur and CONICET.

Then, if 2 < N, one has

$$-\sum_{n=2}^{N-1} \frac{z^n}{q^n - r} + \frac{z^N q}{(q^N - r)(z - q)} + \frac{z^2}{(q - z)(q - r)}$$

$$= \sum_{n=2}^{N-1} \frac{(-z)^n r^{n-1} q^n}{(q^n - z) \cdots (q - z)} \cdot \frac{(q^{n-1} - 1) \cdots (q - 1)}{(q^n - r) \cdots (q - r)} - \sum_{k=2}^{N-1} \epsilon_{N,k}$$

$$+ \frac{(-z)^N r^{N-1}}{(q^N - r) \cdots (q - r)} \cdot \frac{(q^{N-1} - 1) \cdots (q - 1)}{(q^{N-1} - z) \cdots (q - z)}.$$

For the next corollary we write, as usual, γ for the Euler–Mascheroni constant and $\zeta(s)$ for the Riemann zeta function. We give some easy applications of this theorem. In what follows, as usual, $(q^{n-1}-1)\cdots(q-1)$ is equal to 1 if n=1.

Corollary 1. i) Let 1 < |q|, |z| < |q| and $q^n \neq r, q^n \neq z$ for all $n = 1, 2, 3, \ldots$. Then

$$\sum_{n=1}^{\infty} \frac{z^n}{q^n-r} = -\sum_{n=1}^{\infty} \frac{(-z)^n r^{n-1} q^n}{(q^n-z)\cdots (q-z)} \cdot \frac{(q^{n-1}-1)\cdots (q-1)}{(q^n-r)\cdots (q-r)}.$$

ii)

$$1 - \gamma = \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \frac{2^n}{(2^n - 1)} \cdot \frac{(-1)^{j+1} j^{n-1}}{(2^n + j)(2^{n-1} + j) \cdots (2 + j)}.$$

iii) If $\operatorname{Re} s > 1$ and 0 < r < 1 then

$$\Gamma(s)\zeta(s)\sum_{n=1}^{\infty}\frac{r^{n-1}}{n^s}=\int_0^{\infty}\Big\{\sum_{n=1}^{\infty}\frac{(-1)^{n+1}r^{n-1}}{(1-e^{-nt})}\cdot\frac{1}{(e^{nt}-r)\cdots(e^t-r)}\Big\}t^{s-1}dt.$$

It is immediate using the series in the right hand side of i) that, with fixed q, 1 < |q|, the sum $\sum_{n=1}^{\infty} \frac{z^n}{q^n - r}$ can be continued analytically for $z \in \mathbb{C}$; $z, r \neq q^n$. This is a well-known fact.

Also from the above formula i) one has the following corollary.

Corollary 2. Let f be a real or complex function defined at natural numbers. Let 1 < |q| and $q^n \neq r, z$ for all $n = 1, 2, 3, \ldots$ Also let $|f(n)| = O(\beta^n)$, for some $0 < \beta$. If

$$g(n) := g(q, r, n) = \frac{r^{n-1}q^n(q^{n-1} - 1)\cdots(q - 1)}{(q^n - r)\cdots(q - r)},$$

then

$$\sum_{n=1}^{\infty} \frac{z^n}{q^n - r} \Big\{ \sum_{m=1}^{\infty} \frac{f(m)z^m}{q^{nm}(q^m - z) \cdots (q - z)} \Big\}$$

$$= \sum_{k=2}^{\infty} \frac{(-z)^k}{(q^k - z) \cdots (q - z)} \Big\{ \sum_{m=1}^{k-1} (-1)^{m+1} f(m)g(k - m) \Big\}.$$

Finally we apply Theorem 1 to prove an irrationality result. We define for 2 < N < M:

$$\alpha_{N,M} = \alpha_{N,M}(q,r,z)$$

$$:= \sum_{n=N}^{M-1} \frac{z^n}{q^n - r} + \frac{q}{q - z} \left\{ -\frac{z^N}{q^N - r} + \frac{z^M}{q^M - r} \right\} - \sum_{k=2}^{M-1} \epsilon_{M,k} + \sum_{k=2}^{N-1} \epsilon_{N,k},$$

where $\epsilon_{n,k}$ is defined in Theorem 1.

Theorem 2. Let r, q, z be non zero integers such that $1 < |q|, q^n \neq r, z$ for all $n = 1, 2, 3, \ldots$ Assume that:

i) there exists a fixed number $\delta > 0$ such that $2 < N_{j-1} < M_{j-1} < N_j$ and $(\sqrt{2} + \delta)M_{j-1} \le N_j$, for $j \ge j_0 \ge 2$.

ii) $N_j = o(M_{i-1}^2)$ as $j \to \infty$.

iii) $f(i): \mathbb{N} \to \mathbb{Z}$ is a bounded function such that there exist infinitely many indices i such that $f(i) \neq 0$.

Then

$$\sum_{i=1}^{\infty} f(i) \, \alpha_{N_i, M_i}$$

is an irrational number.

Example. Let $\delta > 0$ be a fixed number. Let $[\cdot], \mu(\cdot)$ denote the nearest integer function and the Möbius function, respectively. Set

$$M_j := [(\sqrt{2} + 3\delta)^j],$$

 $N_j := [M_{j-1}(\sqrt{2} + 2\delta)],$
 $f(i) := \mu(i).$

Then it easy to see that the hypotheses of Theorem 2 hold. Thus if r, q, z are non zero integers such that $1 < |q|, q^n \neq r, z$ for all $n = 1, 2, 3, \ldots$, then

$$\sum_{i=1}^{\infty} \mu(i) \, \alpha_{N_i, M_i}$$

is an irrational number.

2. Proofs

Proof of Theorem 1. One has

$$\frac{1}{x} - \frac{b_1 \cdots b_K}{x(x+a_1) \cdots (x+a_K)} = \sum_{k=1}^K \frac{b_1 \cdots b_{k-1} \{x+a_k - b_k\}}{x(x+a_1) \cdots (x+a_k)}.$$

This follows by writing $A_k = \frac{b_1 \cdots b_k}{x(x+a_1)\cdots(x+a_k)}$; $A_0 = 1/x$, where the left hand side of this formula is $A_0 - A_K$ and each summand on the right is $A_{k-1} - A_k$.

In the above formula set $x := q^n - r$, $a_k := r - rq^k$, $b_k := b_k(q, r, z) = \frac{rq^k(q^k - 1)}{z - q^k}$ with the convention that $b_1 \cdots b_{k-1} = 1$ if k = 1 and K := n - 1. Multiply by z^n and add from n = 2 to N to give

$$\sum_{n=2}^{N} \frac{z^{n}}{q^{n} - r} - \sum_{n=2}^{N} \frac{z^{n} b_{1} \cdots b_{n-1}}{(q^{n} - r)(q^{n} - qr) \cdots (q^{n} - q^{n-1}r)}$$

$$= \sum_{n=2}^{N} \sum_{k=1}^{n-1} \frac{z^{n} b_{1} \cdots b_{k-1} (q^{n} - q^{k}r - b_{k})}{(q^{n} - r)(q^{n} - qr) \cdots (q^{n} - q^{k}r)}. \quad (1.1)$$

But $\frac{z^nb_1\cdots b_{k-1}(q^n-q^kr-b_k)}{(q^n-r)(q^n-qr)\cdots (q^n-q^kr)}=\epsilon_{n,k}-\epsilon_{n-1,k},\ (k>1),$ if $\epsilon_{n,k}$ is defined as in the theorem. Thus

$$\sum_{n=2}^{N} \sum_{k=1}^{n-1} \frac{z^n b_1 \cdots b_{k-1} (q^n - q^k r - b_k)}{(q^n - r)(q^n - q r) \cdots (q^n - q^k r)}$$

$$= \sum_{n=3}^{N} \sum_{k=2}^{n-1} \epsilon_{n,k} - \epsilon_{n-1,k} + \sum_{n=2}^{N} \frac{z^n (q^n - q r - b_1)}{(q^n - r)(q^n - q r)}$$

$$= \sum_{k=2}^{N-1} \epsilon_{N,k} - \epsilon_{k,k} + \sum_{n=2}^{N} \frac{z^n (q^n - q r - b_1)}{(q^n - r)(q^n - q r)}.$$

And (1.1) is equal to

$$\sum_{n=2}^{N} \frac{z^n}{q^n - r} - \sum_{n=2}^{N} \frac{z^n b_1 \cdots b_{n-1}}{(q^n - r)(q^n - qr) \cdots (q^n - q^{n-1}r)}$$

$$= \sum_{k=2}^{N-1} \epsilon_{N,k} - \epsilon_{k,k} + \sum_{n=2}^{N} \frac{z^n (q^n - qr - b_1)}{(q^n - r)(q^n - qr)}.$$

This gives, after some slight simplification, the identity:

$$\begin{split} \frac{qr(1-q)}{(z-q)} \sum_{n=2}^{N} \frac{z^n}{(q^n-qr)(q^n-r)} \\ &= \sum_{n=2}^{N-1} \frac{(-z)^n r^{n-1} q^n}{(q^n-z)\cdots(q-z)} \cdot \frac{(q^{n-1}-1)\cdots(q-1)}{(q^n-r)\cdots(q-r)} - \sum_{k=2}^{N-1} \epsilon_{N,k} \\ &+ \frac{(-z)^N r^{N-1}}{(q^N-r)\cdots(q-r)} \cdot \frac{(q^{N-1}-1)\cdots(q-1)}{(q^{N-1}-z)\cdots(q-z)}. \end{split}$$

But the left hand side formula is

$$\frac{qr(1-q)}{(z-q)} \sum_{n=2}^{N} \frac{z^n}{(q^n - qr)(q^n - r)}$$

$$= \frac{q}{(z-q)} \sum_{n=2}^{N} \left(\frac{z^n}{(q^n - r)} - \frac{z}{q} \frac{z^{n-1}}{(q^{n-1} - r)} \right)$$

$$= -\sum_{n=2}^{N-1} \frac{z^n}{q^n - r} + \frac{z^N q}{(q^N - r)(z-q)} + \frac{z^2}{(q-z)(q-r)}.$$

This ends our proof.

Proof of Corollary 1. (i) Our identity follows from Theorem 1 letting $N \to \infty$ and noticing that $\sum_{k=2}^{N-1} \epsilon_{N,k} \to 0$, $\frac{(-z)^N r^{N-1}}{(q^N-r)\cdots(q-r)} \cdot \frac{(q^{N-1}-1)\cdots(q-1)}{(q^{N-1}-z)\cdots(q-z)} \to 0$, if $N \to \infty$. (ii) We use the well-known formula:

$$\gamma = \int_0^1 \frac{\sum_{1}^{\infty} x^{2^n - 1}}{1 + x} dx = \sum_{j=0}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^j}{2^n + j} = 1 + \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-1)^j}{2^n + j}.$$

In the last double sum use (i) of this corollary, with $q=2,\,r=-j,\,z=1.$

(iii) Expanding $\frac{1}{e^{nt}-r}$ into a geometric series and integrating with respect to t yields:

$$\Gamma(s)\zeta(s)\sum_{n=1}^{\infty}\frac{r^{n-1}}{n^s}=\int_0^{\infty}\sum_{n=1}^{\infty}\frac{t^{s-1}}{e^{nt}-r}dt.$$

In the last sum use (i) of this corollary, with $q = e^t$, z = 1, r = r.

This ends our proof.

Proof of Theorem 2. Write

$$\beta_n = \beta_n(q, r, z) := \frac{(-z)^n r^{n-1} q^n}{(q^n - z) \cdots (q - z)} \cdot \frac{(q^{n-1} - 1) \cdots (q - 1)}{(q^n - r) \cdots (q - r)},$$

and

$$\theta := \sum_{i=1}^{\infty} f(i) \, \alpha_{N_i, M_i}.$$

If one subtracts the identity in Theorem 1 from the same identity with the parameter N replaced by M one gets

$$\alpha_{N,M} = -\sum_{n=N}^{M-1} \beta_n + \frac{(q^N - z)}{q^N} \beta_N - \frac{(q^M - z)}{q^M} \beta_M.$$

Therefore,

$$\theta = \sum_{i=1}^{\infty} f(i) \left\{ -\sum_{n=N_i}^{M_i-1} \beta_n + \frac{(q^{N_i} - z)}{q^{N_i}} \beta_{N_i} - \frac{(q^{M_i} - z)}{q^{M_i}} \beta_{M_i} \right\}.$$

Next we show that for each natural number $j \geq j_0$ such that $f(j) \neq 0$, there exist two integers A_j , B_j such that $0 < |B_j\theta - A_j| = o(1)$ as $j \to \infty$. This implies the irrationality of θ .

Take

$$B_i := (q^{M_{j-1}} - z) \cdots (q - z)(q^{M_{j-1}} - r) \cdots (q - r).$$

Thus

$$B_{j}\theta = B_{j}\sum_{i=1}^{j-1} f(i) \left\{ -\sum_{n=N_{i}}^{M_{i}-1} \beta_{n} + \frac{(q^{N_{i}}-z)}{q^{N_{i}}} \beta_{N_{i}} - \frac{(q^{M_{i}}-z)}{q^{M_{i}}} \beta_{M_{i}} \right\}$$

$$+ B_{j}\sum_{i=j}^{\infty} f(i) \left\{ -\sum_{n=N_{i}}^{M_{i}-1} \beta_{n} + \frac{(q^{N_{i}}-z)}{q^{N_{i}}} \beta_{N_{i}} - \frac{(q^{M_{i}}-z)}{q^{M_{i}}} \beta_{M_{i}} \right\} =: A_{j} + \epsilon_{j}.$$

From the definitions of B_j , β_n it is immediate that A_j , B_j are integer numbers. To show that $0 \neq \epsilon_j = B_j \theta - A_j = o(1)$ we need first to observe that

$$\beta_n = (-z)^n r^{n-1} q^{-\frac{n^2}{2} - \frac{n}{2}} \{ c_0 + o(1) \},$$

$$B_j = q^{M_{j-1}(M_{j-1}+1)} \{ c_1 + o(1) \},$$
(1.2)

where c_0 , c_1 are non-zero constants. Also

$$\frac{\beta_{n+1}}{\beta_n} = -zrq^{-n-1}\{1 + O(q^{-n})\},
\frac{\beta_{n+m}}{\beta_n} = (-zr)^m q^{-(nm + \frac{m(m+1)}{2})}\{1 + O(q^{-n})\}.$$
(1.3)

Here the O symbol depends on q, r, z but does not depend on n or m.

Therefore using (1.3) one sees that

$$-\sum_{n=N_i}^{M_i-1} \beta_n + \frac{(q^{N_i}-z)}{q^{N_i}} \beta_{N_i} - \frac{(q^{M_i}-z)}{q^{M_i}} \beta_{M_i} = \beta_{N_i} \frac{z}{q^{N_i}} \left\{ \frac{r}{q} - 1 + O(q^{-N_i}) \right\},$$

(consider the terms β_{N_i} , β_{N_i+1} ; other terms go into the O symbol) and therefore

$$\epsilon_j = B_j \sum_{i=j}^{\infty} f(i) \, \beta_{N_i} \frac{z}{q^{N_i}} \left\{ \frac{r}{q} - 1 + O(q^{-N_i}) \right\}.$$

Recall that f is a bounded function; using again (1.3) yields

$$\sum_{i=j}^{\infty} f(i) \frac{\beta_{N_i}}{q^{N_i}} = f(j) \frac{\beta_{N_j}}{q^{N_j}} \left(1 + \frac{f(j+1)\beta_{N_{j+1}}}{f(j)\beta_{N_j} q^{N_{j+1} - N_j}} + \frac{f(j+2)\beta_{N_{j+2}}}{f(j)\beta_{N_j} q^{N_{j+2} - N_j}} + \dots \right)$$

$$= f(j) \frac{\beta_{N_j}}{q^{N_j}} (1 + o(1)),$$

and in a similar way

$$\sum_{i=j}^{\infty} f(i) \frac{\beta_{N_i}}{q^{N_i}} O(q^{-N_i}) = f(j) \frac{\beta_{N_j}}{q^{N_j}} o(1).$$

Using these expressions and (1.2), our term ϵ_i is

$$\epsilon_{j} = B_{j} f(j) \frac{\beta_{N_{j}}}{q^{N_{j}}} z \left\{ \frac{r}{q} - 1 + o(1) \right\}$$

$$= f(j) (-z)^{N_{j}} r^{N_{j} - 1} q^{-\frac{N_{j}^{2}}{2} - \frac{3N_{j}}{2} + M_{j-1}(M_{j-1} + 1)} z \left\{ c_{o} c_{1} \left(\frac{r}{q} - 1 \right) + o(1) \right\}.$$

From the hypothesis one has that $(\sqrt{2} + \delta)M_{j-1} < N_j$, which gives

$$M_{j-1}^2 - \frac{N_j^2}{2} < -\delta \left(\sqrt{2} + \frac{\delta}{2}\right) M_{j-1}^2.$$

Therefore the hypothesis $N_j = o(M_{i-1}^2)$ yields

$$(-z)^{N_j} r^{N_j - 1} q^{-\frac{N_j^2}{2} - \frac{3N_j}{2} + M_{j-1}(M_{j-1} + 1)} = O(q^{-\delta' M_{j-1}^2})$$

for some positive δ' . Therefore $0 \neq \epsilon_j = o(1)$ as $j \to \infty$, if $f(j) \neq 0$. This ends the proof.

Proof of Corollary 2. Using Corollary 1 (i) one can prove that, for $m = 0, 1, 2, 3, \ldots$ one has

$$\sum_{n=1}^{\infty} \frac{z^{n+m}}{q^{nm}(q^n-r)} \cdot \frac{1}{(q^m-z)\cdots(q-z)} = \sum_{n=1}^{\infty} \frac{(-z)^{n+m}(-1)^{m+1}}{(q^{n+m}-z)\cdots(q-z)} g(n).$$

To prove this, notice that for m=0 this equality is Corollary 1 (i). By induction assume that this is true for m, the inductive parameter. Make the change $z \to z/q$ and multiply everything by $\frac{z}{q-z}$. This gives the above formula for m replaced by m+1.

Finally, to prove our formula, multiply the above by f(m) and add from m equal to 1 to infinity. This yields the formula summing over k = n + m in the second sum, that is,

$$\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{(-z)^{n+m} (-1)^{m+1}}{(q^{n+m} - z) \cdots (q-z)} g(n) f(m)$$

$$= \sum_{k=2}^{\infty} \frac{(-z)^k}{(q^k - z) \cdots (q-z)} \Big\{ \sum_{m=1}^{k-1} (-1)^{m+1} f(m) g(k-m) \Big\}. \quad \Box$$

References

- G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and its applications, vol. 2, Addison-Wesley, Reading, Mass., 1976.
- [2] G. Andrews, I.P. Goulden and D. Jackson, Shanks' convergence acceleration transform, Padé approximants and partitions, J. Combin. Theory, Ser. A 43 (1986), 70–84.
- [3] G. E. Andrews, R. Askey and R. Roy, Special functions. Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999.
- [4] B. Berndt, Ramanujan Notebooks Part I, Springer-Verlag, Birkhäuser, 1990.
- [5] Peter B. Borwein, On the irrationality of $\sum (1/(q^n + r))$, J. Number Theory **37** (1991), 253–259.

- [6] Peter B. Borwein, On the irrationality of certain series, Math. Proc. Camb. Phil. Soc. 112 (1992), 141–146.
- [7] D. Duverney, Sur l'irrationalité de $\sum_{n=1}^{\infty} r^n/(q^n-r)$, C. R. Acad. Sci. Paris Sér. I Math. **320** (1995), 1–4.
- [8] M. Prevost, On the irrationality of $\sum \frac{t^n}{A\alpha^n + B\beta^n}$, J. Number Theory 73 (1998) 139–161.
- [9] D. Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. and Phys. 34 (1955), 1–42.

M. Ferrari

Universidad Nacional de la Patagonia San Juan Bosco and Centro Nacional Patagónico Boulevard Brown 2915, U9120ACD Puerto Madryn, Chubut, Argentina ferrari@cenpat.edu.ar

P. Panzone

Departamento e Instituto de Matemática, Universidad Nacional del Sur Av. Alem 1253, B8000CPB Bahía Blanca, Argentina ppanzone@uns.edu.ar

Received: August 17, 2011 Accepted: November 23, 2012