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SEQUENTIAL ENTRY IN ONE-TO-ONE MATCHING MARKETS

BEATRIZ MILLÁN

Abstract. We study in one-to-one matching markets a process of sequential
entry, in which participants enter in the market one at a time, in some arbi-

trary given order. We identify a large family of orders (optimal orders) which

converge to the optimal stable matching.

1. Introduction

We study sequential entry in a marriage model. The marriage model describes a
two-sided, one-to-one matching market without money where the two sides of the
market for instance are workers and firms (job matching), or medical students and
hospitals. We use the common terminology in the literature and refer to one side of
the market as men and to the other as women. An outcome of a marriage market
is called a matching, which can simply be described by a collection of single agents
and married pairs (consisting of one man and one woman). Loosely speaking, a
matching is stable if all agents have acceptable spouses and there is no couple whose
members both like each other better than their current spouses.

Originally, Gale and Shapley [4] proved that the set of stable matchings is not
empty. Their constructive proof identifies an algorithm which starts with the empty
matching and generates a sequence of matchings where blocking pairs are matched
at each iteration. In the original Gale-Shapley algorithm men propose simultane-
ously at each iteration. McVitie and Wilson [8] observed that this can be modified
by letting —at each iteration— only one man propose to the woman he prefers
most among those who have not yet turned him down.

Knuth [6] demonstrated that starting with an arbitrary matching and itera-
tively satisfying blocking pairs will not necessarily lead to a stable matching. Roth
and Vande Vate [11], however, showed that it is always possible to reach a stable
matching from any arbitrary matching by satisfying a sequence of blocking pairs.
They do this by designing an algorithm that introduces the agents successively
into the system and lets them iteratively satisfy blocking pairs at each stage by a
decentralized system.
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2 BEATRIZ MILLÁN

Blum and Rothblum [3] consider analysis of stable matchings when a new agent
joins the market. Under such changes a stable matching may become unstable,
as the new agent may become part of new blocking pairs. They show that a
natural procedure which reflects the greedy behavior of agents leads to a stable
matching in the new (extended) market. Such process constitutes a particular case
of an equilibration mechanism studied by Blum, Roth and Rothblum [2], which
is applicable to situations where a group of (new) agents belonging to one side of
the market joins, while another group of (veteran) agents from the other side of
the market departs. They also analyze a special case of the algorithm described
by Roth and Vande Vate [11], where agents join the market sequentially. They
consider that at each stage, a new agent joins and the natural greedy correcting
procedure is applied to regain stability for the new market, with the extended
subset of agents that are present. They have shown that this procedure converges
to a stable matching and that for each agent, if the order of all other agents is
given, he or she weakly improves his or her final outcome by deferring his or her
arrival time.

Authors such as Ma [9], Biró, Cechlárová and Fleiner [1], have also considered
incremental algorithms in a similar way to Blum and Rothblum [3].

Following Roth and Vande Vate, and Blum and Rothblum [3] we suppose that
agents sequentially enter the market. We study a process of sequential entry, in
which participants enter the market one at a time, in some arbitrary given order. At
each stage, a new agent enters and the Deferred Acceptance algorithm with input
matchings is applied. Applying such algorithm re-establishes the stability, within
the subset of agents that have entered the market. This iterative process generates
a stable matching. The natural question is: what stable matchings can be obtained
from the process of sequential entry? We partially answer it, by identifying a large
family of orders (optimal orders) which converge to the optimal stable matching.
We also show, as a consequence of Blum, Roth and Rothblum’s results [2], that
given an arbitrary order, the last agent to enter the market through the process
gets his or her optimal outcome under stable matchings. Finally, we observe that
not all stable matchings can be obtained through the process of sequential entry.

This article is organized as follows. In the next section, the model is formally
described. Section 3 develops the relation between the cycles and the optimal
matching. Finally, our iterative process is presented and we also show that an
optimal order leads to the optimal stable matching in section 4.

2. Preliminaries

First we introduce the marriage market. In this market there are two finite and
disjoint sets of agents, the set M of n “men” and the set Wof p “women”. We
refer to V = M ∪ W as the set of agents and we denote a generic agent by v.
Each m ∈ M has a strict preference relation P (m) over the set W ∪ {m}, and
each w ∈ W has a strict preference relation P (w) over the set M ∪ {w}.1 The
preference relation of a man m, for instance, can be represented by an ordered

1P (m) is a complete, antireflexive, and transitive binary relation on W ∪ {m}.
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SEQUENTIAL ENTRY IN ONE-TO-ONE MATCHING MARKETS 3

list of the elements in W ∪ {m}, P (m) = w1, w3,m,w2, . . . , wk, which indicates
that m prefers w1 to w3 and he prefers remaining single to any other woman. A
preference profile is a (n+ p)-tuple of preference relations and it is represented by
P = (P (m1), . . . , P (mn), P (w1), . . . , P (wp)). We write wP (m)w′ if w is preferred
to w′ under the preference relation P (m), and wR(m)w′ if wP (m)w′ or w = w′.
Similarly we write mP (w)m′ and mR(w)m′. A woman w is acceptable to a man m
if wP (m)m. Analogously, m is acceptable to w if mP (w)w. The marriage market
is fully described by the triplet (M,W,P ).

A matching µ is a one-to-one correspondence from V to itself, such that for each
m ∈M and for each w ∈W we have µ(m) = w if and only if µ(w) = m, µ(m) 6∈W
then µ(m) = m, and similarly µ(w) = w if µ(w) 6∈ M . If µ(m) = w, then man
m and woman w are matched to one another. We say that agent v is single if
µ(v) = v. Given a matching µ, we call µ(v) the outcome for v under µ.

Given two matchings µ and µ′ and a set of agents V ′ ⊆ V we denote µ �V ′ µ′

if for each v ∈ V ′, µ(v)R(v)µ′(v), and we denote µ �V ′ µ′ if µ �V ′ µ′ and
µ(v) 6= µ′(v) for some v ∈ V ′.

A matching µ is individually rational if µ(v)R(v)v for all v ∈ V . A blocking pair
for a matching µ is a pair (m,w) ∈M×W such that mP (w)µ(w) and wP (m)µ(m).

Definition 2.1. A matching µ is stable if it is individually rational and there are
no blocking pairs for it.

We denote the set of stable matchings by S(M,W,P ). Gale and Shapley [4]
proved that a stable matching must exist. They further proved the existence of an
optimal stable matching µM for all men in the sense that no other stable matching
µ exists that gives any man m an outcome µ(m) that he prefers to µM (m), and a
(possibly different) optimal stable matching µW for all women.

For any two matchings µ and µ′ we define the correspondence µ∨M µ′ on V that
assigns to each man his more preferred outcome of µ and µ′ and to each woman
her less preferred outcome. Formally, let λ = µ∨M µ′ be defined for all m ∈M by
λ(m) = µ(m) if µ(m)P (m)µ′(m) and λ(m) = µ′(m) otherwise, and for all w ∈ W
by λ(w) = µ(w) if µ′(w)P (w)µ(w) and λ(w) = µ′(w) otherwise. Similarly, we
define the correspondence µ ∧M µ′ that gives each man his less preferred outcome
of µ and µ′ and to each woman her more preferred outcome. Analogously, we define
the correspondences µ∨W µ′ and µ∧W µ′. For an arbitrary pair of matchings those
four correspondences might fail to be matchings. But for a pair of stable matchings,
Knuth [6] credits Conway with the following theorem.

Theorem 2.1. Let µ, µ′ ∈ S(P ). Then µ∨M µ′, µ∧M µ′, µ∨W µ′, µ∧W µ′ ∈ S(P ).
Moreover, µ ∨M µ′ = µ ∧W µ′ and µ ∧M µ′ = µ ∨W µ′.

The previous theorem asserts that the set of stable matchings forms a lattice
under the partial order �M with lattice operators ∨M and ∧M . Furthermore,
this lattice is the dual of the lattice defined on S(P ) with the partial order �W
and lattice operators ∨W and ∧W . See Roth and Sotomayor [10] for a detailed
discussion.
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4 BEATRIZ MILLÁN

Let V ′ = M ′ ∪W ′ be a subset of agents and P ′ the natural restriction of P to
the members of V ′. Denote by (M ′,W ′, P ′) a reduced market of (M,W,P ). The
following theorem will be useful in coming sections.

Lemma 2.1. Let µ′ be a stable matching in (M,W,P ) and let M ′ ⊆ M . Also,
let µ be a matching defined by µ(m) = µ′(m) for all m ∈ M ′. Then µ is a stable
matching in the reduced market (M ′,W ′, P ′) where W ′ = µ′(M ′).

Proof. Assume that there exists a blocking pair (m,w) for µ. Then (m,w) ∈
M ′ × W ′ and wP ′(m)µ(m) and mP ′(w)µ(w). Since (M ′,W ′, P ′) is a reduced
market, (m,w) ∈ M ×W and wP (m)µ′(m) and mP (w)µ′(w), contradicting that
µ′ is stable for (M,W,P ). �

2.1. Deferred acceptance algorithm with arbitrary input. We will describe
the Deferred Acceptance (DA) algorithm with arbitrary input matchings following
Blum, Roth and Rothblum [2]. The algorithm starts with an arbitrary matching,
selects a single man m and its most preferred woman w (if any) then it checks
whether they form a blocking pair. If they do, this will be a maximal blocking
pair (w is the most preferred woman for m among those with whom m forms a
blocking pair), and when this blocking pair is satisfied a new matching is formed.
This process is then iterated until there is no single man who is part of a blocking
pair. Formally, the algorithm is described as follows.

Input

Let µ be an arbitrary matching.

Initial stage
(0) (i) For all m ∈M : A0

m = {w ∈W : wP (m)m} \ {µ(m)}.
(ii) µ0 = µ; i = 1.

Iteration stage
(1) If there is no m ∈M such that µi−1(m) = m and Ai−1

m 6= ∅, stop with
output µi−1.

(2) Let m be such that µi−1(m) = m and Ai−1
m 6= ∅ and set w be the most

preferred woman for m in Ai−1
m .

(3) i) If µi−1(w)P (w)m, then µi = µi−1.

ii) Otherwise,

if µi−1(w) = w, then µi(w) = m and µi(v) = µi−1(v)

for all v ∈ V \ {w,m}, and

if µi−1(w) = m∗ ∈M , then µi(w) = m, µi(m∗) = m∗

and µi(v) = µi−1(v) for all v ∈ V \ {w,m,m∗}.
(4) Aim = Ai−1

m \ {w} and for all m′ 6= m,Aim′ = Ai−1
m′

(5) i = i+ 1, go to (1).
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We denote by DAM (µ) the output of the DA algorithm with input µ and the
men proposing. By exchanging the roles of men and women, we get an alternative
algorithm to which we refer to as the female version of the DA algorithm (DAW ).
When the input is the empty matching, the above formulation corresponds to the
McVitie-Wilson [8] version of the deferred acceptance algorithm where at each step
at most one pair is satisfied.

Blum, Roth and Rothblum [2] showed that if the input of the DA algorithm is
in a class of matchings called quasi-stables, then the outcome of the DA algorithm
is always a stable matching. They provide several characterizations of such output.

Definition 2.2. A matching µ is man-quasi-stable if it is individually rational and
µ(m) = m for any blocking pair (m,w). Similarly, a matching is woman-quasi-
stable if it is individually rational and µ(w) = w for any blocking pair (m,w).

We denote by QM (M,W,P ) the set of man-quasi-stable matchings, and by
QW (M,W,P ) the set of woman-quasi-stable matchings.

The following properties were shown by Blum, Roth and Rothblum [2].

Theorem 2.2. Let µ ∈ QM (M,W,P ). Then:

1. DAM (µ) �W µ.
2. DAM (µ) = µ ∨W µM ∈ S(M,W,P ).
3. If µ(m) = m then [DAM (µ)](m) = µM (m).

Symmetrically we can obtain the dual theorem.

Theorem 2.3. Let µ ∈ QW (M,W,P ). Then:

1. DAW (µ) �M µ.
2. DAW (µ) = µ ∨M µW ∈ S(M,W,P ).
3. If µ(w) = w then [DAW (µ)](w) = µW (w).

3. Cycles of P (µ)

Irving and Leather [7] introduced the concept of cycle. The cycle can be used to
generate all the stable matchings.2 It is easy to describe a cycle in terms of certain
“reduced” preference lists obtained from the original preference lists by eliminating
some unachievable agents.

If µ is any stable matching of the model, the profile obtained through the fol-
lowing process will be called reduced preference profile and will be denoted by
P (µ).

Step 1. Remove from m’s list of acceptable women all w who are more preferred
than µ(m). Remove from w’s list of acceptable men all m who are more preferred
than µW (w).

Step 2. Remove from m’s list of acceptable women all w who are less preferred
than µW (m). Remove from w’s list of acceptable men all m less preferred than
µ(w).

2Gusfield and Irving called these cycles “rotations”. See Gusfield and Irving [5] for a detailed

description of these structures.
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6 BEATRIZ MILLÁN

Step 3. After steps 1 and 2, if m is not acceptable to w (i.e., m is not on w’s
preferences list as now modified), then remove w from m’s list of acceptable women.
Similarly, if w is not acceptable to m remove m from the w’s list of acceptable men.

Remark 3.1. It is clear from the construction of P (µ) that

1. µ(m) is the first entry of P (µ)(m) and µ(w) is the last entry of P (µ)(w).
µW (m) is the last entry of P (µ)(m) and µW (w) is the first entry of P (µ)(w).

2. m is acceptable to w if and only if w is acceptable to m under P (µ).

Definition 3.1. A set of men {a1, . . . , ar} is a cycle for the reduced preferences
profile P (µ), if

1. The second woman in P (µ)(ai) is µ(ai+1) for all i = 1, . . . , r − 1 (i.e., the
first woman in P (µ)(ai+1)).

2. The second woman in P (µ)(ar) is µ(a1) (i.e., the first woman in P (µ)(a1)).

We denote a cycle by σ = (a1, . . . , ar) and we say that ai generates cycle σ for
any i = 1, . . . , r. We denote by Σ(µ) the set of cycles for P (µ).

Example 3.1. Let M = {m1,m2,m3,m4} and W = {w1, w2, w3, w4} with prefer-
ences P given by:

P (m1) = w3, w1, w2, w4

P (m2) = w2, w4, w1, w3

P (m3) = w3, w4, w1, w2

P (m4) = w4, w3, w1, w2

P (w1) = m2,m1,m3,m4

P (w2) = m3,m1,m2,m4

P (w3) = m4,m3,m1,m2

P (w4) = m3,m4,m1

Then, µM =

(
w1 w2 w3 w4

m1 m2 m3 m4

)
and µW =

(
w1 w2 w3 w4

m2 m1 m4 m3

)
.

Step 1
P (m1) = w1, w2, w4

P (m2) = w2, w4, w1, w3

P (m3) = w3, w4, w1, w2

P (m4) = w4, w3, w1, w2

P (w1) = m2,m1,m3,m4

P (w2) = m1,m2,m4

P (w3) = m4,m3,m1,m2

P (w4) = m3,m4,m1

Step 2
P (m1) = w1, w2

P (m2) = w2, w4, w1

P (m3) = w3, w4

P (m4) = w4, w3

P (w1) = m2,m1

P (w2) = m1,m2

P (w3) = m4,m3

P (w4) = m3,m4

Step 3
P (m1) = w1, w2

P (m2) = w2, w1

P (m3) = w3, w4

P (m4) = w4, w3

P (w1) = m2,m1

P (w2) = m1,m2

P (w3) = m4,m3

P (w4) = m3,m4
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There are two cycles for P (µM ), σ1 = (m1,m2) and σ2 = (m3,m4)

Irving and Leather [7] showed the following Lemma.

Lemma 3.1. Let µ, µ′ be stable matchings such that µ �M µ′ and σ be a cycle for
P (µ). Then, either µ(m) = µ′(m) for all m ∈ σ or µ(m) 6= µ′(m) for all m ∈ σ.3

Let µ be a stable matching and σ = (a1, . . . , ar) a cycle for P (µ). Then, we can
define a matching µ′ as follows:

µ′(ai) = µ(ai+1)for all i = 1, . . . , r − 1,

µ′(ar) = µ(a1),

µ′(m) = µ(m)for all m 6∈ σ.

We refer to µ′ as a cycle matching under P (µ) and we say that σ is the cycle
associated with µ′.

Example 3.2. Let us recall that in Example 3.2 there are two cycles for P (µM ),
σ1 = (m1,m2) and σ2 = (m3,m4). We can obtain the cycle matchings µ1 and µ2

by

µ1 =

(
m1 m2 m3 m4

w2 w1 w3 w4

)
, µ2 =

(
m1 m2 m3 m4

w1 w2 w4 w3

)
.

Two stable matchings µ and µ′ are called consecutive if µ �M µ′ and there is
no stable matching µ′′ such that µ �M µ′′ �M µ′. From Roth and Sotomayor [10]
we can obtain the following lemma.

Lemma 3.2. Let µ, µ′ be consecutive stable matchings. Then µ′ is a cycle matching
under P (µ).4

We can now show that if a stable matching assigns a man belonging to each cycle
for P (µ) with its optimal result under stable matchings, then such stable matching
is the optimal stable matching for men.

Lemma 3.3. Let σ be a cycle for P (µM ). If there exists m′ ∈ σ and a stable
matching µ such that µ(m′) = µM (m′), then µ(m) = µM (m) for all m ∈ σ.

Proof. If µ = µM then the lemma is verified. Suppose now that µM �M µ. Since
by hypothesis σ is a cycle for P (µM ) and µ(m′) = µM (m′) for m′ ∈ σ, Lemma 3.1
implies that µ(m) = µM (m) for all m ∈ σ. �

From the preceeding lemmas, we obtain the following theorem.

Theorem 3.1. Let µ be a stable matching such that for each cycle σ for P (µM )
there exists m′ ∈ σ satisfying µ(m′)R(m′)µM (m′). Then µ = µM .

3See Gusfield and Irving [5, Lemma 2.5.5] for a detailed proof.
4See Roth and Sotomayor [10, p. 66] for a detailed proof.
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Proof. Assume that µM �M µ. Let µ1, µ2, . . . , µn be a sequence of stable matchings
such that µM = µ1 �M µ2 �M · · · �M µn = µ and µi, µi+1 are consecutive for all
i = 1, . . . , n − 1. By Lemma 3.2 µ2 is a cycle matching under P (µM ). Let σ′ be
the cycle for P (µM ) associated with µ2. Then by hypothesis there exists m′ ∈ σ′
such that µ(m′) = µM (m′). Hence, by Lemma 3.3

µ(m) = µM (m) for all m ∈ σ′. (1)

On the other hand, the definition of matching cycle states that µM (m)P (m)µ2(m)
R(m)µ(m) for all m ∈ σ′, which contradicts statement (1). �

4. Optimal sequential entry

In this section we study a process of sequential entry. We assume that par-
ticipants enter the market one at a time, in some arbitrary given order. At the
beginning, we assume stability and the DA algorithm with input matchings is
applied after the entry of each agent. This iterative process generates a stable
matching. We identify a large family of orders (optimal orders) which converges to
the optimal stable matching. We also show, as a consequence of Blum, Roth and
Rothblum’s results [2], that given an arbitrary order, the last agent to enter the
market through the process gets his or her optimal outcome under stable match-
ings. We finally observe that not all stable matchings can be obtained under the
process of sequential entry.

An order over the agents is a bijective function from {n ≤ |V |} to V . We denote
by Γ the set of all orders. For γ ∈ Γ, γ(i) represents the ith agent that enters the
market and v enters the market before v′ if γ−1(v) < γ−1(v′). We consider the
kth reduced market (M(k),W (k), Pk) where M(k) is the set of men that enters
the market until the kth position, i.e. M(k) = {m ∈ M : γ−1(m) ≤ k}. Similarly,
W (k) is the set of women that enters the market until the kth position.

The process of sequential entry is described as follows:

Input

Let γ ∈ Γ.

Initial stage
(0) Let (M(1),W (1), P1) be the first reduced market and µ1(γ(1)) = γ(1).

Iteration stage

For k = 2 until |V | do:
(1) Let (M(k),W (k), Pk) be the kth reduced market.

(2) µ′k−1(v) =

{
µk−1(v) if v 6= γ(k)

v if v = γ(k)
for all v ∈M(k) ∪W (k).

(3) If γ(k) ∈M , then µk = DAM(k)

(
µ′k−1

)
,

if not µk = DAW (k)

(
µ′k−1

)
.
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SEQUENTIAL ENTRY IN ONE-TO-ONE MATCHING MARKETS 9

Given any order γ we denote by µγ the matching that is obtained by the ap-
plication of the process of sequential entry with input γ. The process previously
described has a simple interpretation. Every time an agent enters, he or she pro-
poses to his or her favorite agent in the reduced market. Each agent who receives a
proposal, selects his or her most preferred agent between his present mate outcome
and those who proposed to him or her. If an agent is rejected, he or she proposes
to his or her next choice as long as there is an acceptable agent to whom he or she
has not been proposed yet.

The two theorems below are an inmediate consequence of the results shown by
Blum, Roth and Rothblum [2]. Alternative proofs have also been provided by Blum
and Rothblum [3].

Theorem 4.1. Let γ ∈ Γ. Then µγ is stable.

It is clear that the matching µ1 is stable in (M(1),W (1), P1). Then the matching
µ′1 is either man-quasi-stable or women-quasi-stable in (M(2),W (2), P2). By The-
orem 2.2 or Theorem 2.3, we have that µ2 is a stable matching in (M(2),W (2), P2).
Repeated applications of this procedure show the Theorem 4.1.

The following theorem shows that the last agent who enters the market receives
his or her optimal outcome under stable matchings.

Theorem 4.2. Let γ ∈ Γ and γ−1(|V |) = v. Then µγ(v) is the optimal outcome
for v under stable matchings.

Proof. Let µγ = µk be the last matching defined at the application of the process of
sequential entry with input γ. Assume that v = m ∈M (the case where v = w ∈W
follows from symmetric arguments). As γ(k) = m we have that µ′k−1(m) = m.
Then Theorem 2.2 implies that µγ(m) = µk(m) = [DAM (µ′k−1)](m) = µM (m). �

Theorem 4.2 shows the fact that not all stable matchings can be reached by
the process of sequential entry, since a matching that does not match any agent
with his or her optimal outcome under stable matchings cannot be generated by
the process of sequential entry. For instance, the egalitarian stable matching in
example 1 of Gale-Shapley’s paper [4].

The natural question is which stable matchings can we obtain from the process
of sequential entry. We partially answer this question by identifying a large family
of orders (optimal orders) which converges to the optimal stable matching.

For γ ∈ Γ, we define s = min{n ≤ |V | : there exists σ ∈ Σ(µM ) satisfying σ ⊆
M(n)}.

Definition 4.1. Let γ ∈ Γ. γ is an optimal order for M if:

(i) γ−1(µM (m)) < s for each m ∈M(s).
(ii) γ−1(µM (m)) < γ−1(m) for each m 6∈M(s).

Remark 4.1. Let σ1 be the first cycle for P (µM ) that is completed (i.e. the set
σ1 enters the market). Note that γ(s) is the last man of σ1 to enter the market.
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10 BEATRIZ MILLÁN

Loosely speaking, the order γ is optimal for M if a man m enters the market
before the first cycle for P (µM ) is completed, then µM (m) should also enter before
the first cycle is completed, and if a man m enters the market after the first cycle
for P (µM ) is completed, then µM (m) should enter the market before him.

The following theorem shows that an optimal order for M leads to the optimal
stable matching µM .

Theorem 4.3. Let γ be an optimal order for M . Then µγ = µM .

The following lemma is needed to prove Theorem 4.3.

Lemma 4.1. Let γ ∈ Γ and m′ ∈M which verify:

(i) µM (m′) 6= m′.
(ii) γ−1(µM (m)) < γ−1(m′) if m ∈M(γ−1(m′)).
(iii) γ−1(µM (m)) < γ−1(m) if m 6∈M(γ−1(m′)).

Then µγ(m′)R(m′)µM (m′).

Proof. For k : 1, . . . , |V |, let µk and µ′k−1 be the matchings defined at the kth
iteration of the application of the process of sequential entry with input γ.

Let k = γ(m′). First, we will show that µk(m′)R(m′)µM (m′). By Theo-
rem 4.2, µk(m′) = µM(k)(m

′), where µM(k) is the optimal stable matching for
all men in the reduced market (M(k),W (k), Pk). By conditions (ii), we can define
a matching µ in the reduced market (M(k),W (k), Pk) by µ(m) = µM (m) for all
m ∈ M(k), and µ(w) = w for all w ∈ W (k) \ µM (M(k)). Lemma 2.1 assures
that no pair that contains a non-single woman blocks µ under (M(k),W (k), Pk);
hence, µ ∈ QW (k)(M(k),W (k), Pk). Then Theorem 2.3 implies that DAW (k)(µ) ∈
S(M(k),W (k), Pk) and since µM(k) is the optimal stable matching for all men,
µM(k)(m

′)Rk(m′)[DAW (k)(µ)](m′). Furthermore, by Theorem 2.2 [DAW (k)(µ)](m′)
Rk(m′)µ(m′). Hence, as Pk is the natural restriction of P , we have that

µk(m′) = µM(k)(m
′)R(m′)µ(m′) = µM (m′) (2)

(where the last equality follows the definition of µ).
Now we will show that µk+1(m′)R(m′)µM (m′). We next consider two cases:

Case 1. γ(k + 1) = w ∈W : By Theorem 2.3 we have that

µk+1(m′) = [DAW (k+1)(µ
′
k)](m′)Rk+1(m′)µ′k(m′).

Furthermore, as m′ 6= γ(k + 1) it follows that µ′k(m′) = µk(m′). By the statement
(2) and as Pk+1 is the natural restriction of P , we conclude that

µk+1(m′)R(m′)µk(m′)R(m′)µM (m′).

Case 2. γ(k + 1) = m ∈M : By conditions (ii) and (iii), we can define a matching
µ in the reduced market (M(k+ 1),W (k+ 1), Pk+1) by µ(m) = µM (m) for all m ∈
M(k+ 1), and µ(w) = w for all w ∈W (k+ 1) \µM (M(k+ 1)). Lemma 2.1 assures
that no pair that contains a non-single woman blocks µ under (M(k + 1),W (k +
1), Pk+1). Hence, µ ∈ QW (k+1)(M(k + 1),W (k + 1), Pk+1). Then Theorem 2.3
implies that DAW (k+1)(µ) ∈ S(M(k+1),W (k+1), Pk+1) and since µM(k+1) is the
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optimal stable matching for all men, µM(k+1)(m
′)Rk+1(m′)[DAW (K+1)(µ)](m′).

Furthermore, by Theorem 2.3 [DAW (k+1)(µ)](m′)Rk+1(m′)µ(m′). Hence, as Pk+1

is the natural restriction of P , we have that

µM(k+1)(m
′)R(m′)µ(m′) = µM (m′). (3)

(where the last equality follows the definition of µ). From statement (3) and con-
ditions (i), we have that µM(k+1)(m

′)Pk+1(m′)m′. Furthermore from claim (2) of
Theorem 2.2 µk+1(m′) = [DAM(k+1)(µ

′
k)](m′) = [µ′k∨W (k+1)µM(k+1)](m

′). There-
fore, µk+1(m′) ∈ {µ′k(m′), µM(k+1)(m

′)}. If µk+1(m′) = µ′k(m′), we get from state-
ment (2) and µ′k(m′) = µk(m′) (since m′ 6= γ(k+ 1)) that µk+1(m′)R(m′)µM (m′).
Now, if µk+1(m′) = µM(k+1)(m

′), then statement (3) implies that µk+1(m′)R(m′)
µM (m′).

By iterating this procedure we conclude that µγ(m′)R(m′)µM (m′). �

Proof of Theorem 4.3. Let σ1 be the first cycle for P (µM ) that is completed. By
Remark 4.1, γ(s) = m1 ∈ σ1. As γ is an optimal order for M , we have that
γ(s) = m1 satisfies the conditions of Lemma 4.1. By the conclusion of lemma
µγ(m1)R(m1)µM (m1).

Suppose that there exists σ2 ∈ Σ(µM ) such that σ2 6= σ1. Then the assumption
that σ1 is the first cycle for P (µM ) that is completed implies that there exists
m2 ∈ σ2 such that γ−1(m2) > s. Now, let m be such that γ−1(m) ≤ γ−1(m2). If
γ−1(m) ≤ s then by condition (i) of the Definition 4.1 γ−1(µM (m)) < s < γ−1(m2),
and if γ−1(m) > s then by condition (ii) from Definition 4.1 γ−1(µM (m)) <
γ−1(m) ≤ γ−1(m2). Furthermore, let m′ be such that γ−1(m′) > γ−1(m2). Then
γ−1(m′) > s and by condition (ii) from Definition 4.1 we have that γ−1(µM (m′)) <
γ−1(m′). We established that three conditions of Lemma 4.1 are satisfied. The
conclusion of the lemma implies that µγ(m2)R(m2)µM (m2).

Hence, for every cycle σ for P (µM ) there exists m ∈ σ such that µγ(m)R(m)
µM (m). By Corollary 3.1, we conclude that µγ = µM . �

We conclude our paper with the following remarks.

Remark 4.2. The following example shows that the two conditions of Defini-
tion 4.1 are necessary for the optimal matching to be the outcome of the application
of the process of sequential entry with an optimal order as input.

Example 4.1. Let M = {m1,m2,m3} and W = {w1, w2, w3} with preferences P
given by:

P (m1) = w1, w2

P (m2) = w2, w1

P (m3) = w3, w2

P (w1) = m2,m1

P (w2) = m3,m1,m2

P (w3) = m3.
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Then, µM =

(
w1 w2 w3

m1 m2 m3

)
and µW =

(
w1 w2 w3

m2 m1 m3

)
, and P (µM ) is:

P (m1) = w1, w2

P (m2) = w2, w1

P (m3) = w3

P (w1) = m2,m1

P (w2) = m1,m2

P (w3) = m3.

The only cycle for P (µM ) is σ = {m1,m2}.

The sequence (w1,m1,m2, w2, w3,m3) does not verify the condition (i) of the
Definition 4.1 and we show that it leads to µW . When w1 enters she does not
propose. This leaves w1 single and the resulting matching is:

µ1 =

(
w1

w1

)
.

When m1 enters he proposes to w1, who accepts. Thus, the resulting matching is:

µ2 =

(
w1

m1

)
.

Next, when m2 enters he proposes to w1, who accepts. Now m1 is single and the
resulting matching is:

µ3 =

(
w1 (m1)
m2 m1

)
.

Now, when w2 enters she proposes to the single man m1, who accepts. Thus, the
resulting matching is:

µ4 =

(
w1 w2

m2 m1

)
.

Next, when w3 enters she does not propose. Thus, w3 is single and the resulting
matching is:

µ5 =

(
w1 w2 w3

m2 m1 w3

)
.

Now, when m3 enters he proposes to the single woman w3, who accepts. Thus, the
resulting matching is:

µ6 =

(
w1 w2 w3

m2 m1 m3

)
= µW .

Furthermore, the sequence (m1, w1, w2,m2,m3, w3) does not verify the condition
(ii) of the Definition 4.1 and it leads to µW .

Remark 4.3. We obtain a necessary condition on the order of entry to converge to
the optimal matching. We can think of obtaining a characterization of the orders
that converge the optimal one. This objective is very complicated because this
condition depends not only on the set of optimal matchings and its cycles but also
on the agent’s preferences. The following example shows two marriage markets
with the same set of agents, the same set of cycles and different preferences, and
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an order that converges to the optimal matching for men in a market, and to the
optimal matching for women in another one.

Example 4.2. Let M = {m1,m2,m3} and W = {w1, w2, w3} with the profile of
preferences P given by:

P (m1) = w1, w2

P (m2) = w2, w1

P (m3) = w3, w2

P (w1) = m2,m1

P (w2) = m3,m1,m2

P (w3) = m3.

Then, µM =

(
w1 w2 w3

m1 m2 m3

)
and µW =

(
w1 w2 w3

m2 m1 m3

)
, and P (µM ) is:

P (m1) = w1, w2

P (m2) = w2, w1

P (m3) = w3

P (w1) = m2,m1

P (w2) = m1,m2

P (w3) = m3.

The only cycle for P (µM ) is σ = {m1,m2}. The sequence (w1,m1, w2,m3,m2, w3)
leads to µW in the marriage market (M,W,P ).

Let M = {m1,m2,m3} and W = {w1, w2, w3} with the profile of preferences P ′

given by:
P ′(m1) = w1, w2

P ′(m2) = w2, w1

P ′(m3) = w3, w2

P ′(w1) = m2,m1

P ′(w2) = m1,m2

P ′(w3) = m3.

Then, µM =

(
w1 w2 w3

m1 m2 m3

)
and µW =

(
w1 w2 w3

m2 m1 m3

)
, and P ′(µM ) is:

P ′(m1) = w1, w2

P ′(m2) = w2, w1

P ′(m3) = w3

P ′(w1) = m2,m1

P ′(w2) = m1,m2

P ′(w3) = m3.

The only cycle for P ′(µM ) is σ = {m1,m2}. The sequence (w1,m1, w2,m3,m2, w3)
leads to µM in the marriage market (M,W,P ′).
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