ABSTRACT. In this article, we consider graph painting and introduce the Borel-de Siebenthal property. We study this property on graphs of type E. We also study its applications in Hermitian symmetric spaces and hyperbolic Kac-Moody Lie algebras.

1. INTRODUCTION

A painting on a connected graph Γ is a color assignment of white (unpainted) or black (painted) on its vertices. If p is a painting on Γ and α is a black vertex, we define another painting $F_{\alpha} p$ by

$$F_{\alpha} : \text{reverse the colors of all vertices adjacent to } \alpha.$$ (1.1)

We make the convention that the adjacent vertices do not include α itself, so α remains black. We say that two paintings p, q on Γ are equivalent if there exists a sequence of paintings on Γ,

$$p = p_0 \to p_1 \to \ldots \to p_m = q$$

such that each $p_i \to p_{i+1}$ is given by some F_{α}. We always ignore the painting with all white vertices, because it is not equivalent to any other painting. For a given painting, we look for an equivalent painting with the least number of black vertices. The following terminology is motivated by a theorem of Borel and de Siebenthal [6, Thm. 6.96].

Definition 1.1.

(a) We say that Γ is a Borel-de Siebenthal graph if every painting on Γ is equivalent to a painting with a single black vertex.

(b) We say that Γ is a strictly Borel-de Siebenthal graph if every connected subgraph of Γ is Borel-de Siebenthal.

We say that a graph is of type E if it looks like Figure 1. If it has n vertices, as indicated in the figure, we call it E_n. We assume that $n \geq 6$. The indices in

2010 Mathematics Subject Classification. 05C25, 17B22.

Key words and phrases. Graph painting, Lie algebra.
Figure 1.

The following is the main result of this article.

Theorem 1.2. For all \(n \), \(E_n \) is a strictly Borel-de Siebenthal graph.

We prove the theorem in Section 2. While the theorem and its proof are purely combinatorial, they have unexpected algebraic applications in Lie theory. We discuss in Section 3 the relations of this theorem with Hermitian symmetric spaces and hyperbolic Kac-Moody Lie algebras, leading to Corollaries 3.3 and 3.4.

Acknowledgement. The author is grateful to the referee, who read the manuscript carefully and improved the presentation of this article.

2. Proof of the main theorem

In this section, we prove Theorem 1.2. Label the vertices of \(E_n \) by \(\{1, \ldots, n\} \) as in Figure 1. Let \(D_{n-1} \) be the subgraph formed by vertices \(1, \ldots, n - 1 \), and let \(A_{n-2} \) be the subgraph formed by vertices \(1, \ldots, n - 2 \). Hence \(A_{n-2} \subset D_{n-1} \subset E_n \).

Proposition 2.1. [1, Table 1] For all \(n \), \(A_n \) and \(D_n \) are Borel-de Siebenthal graphs.

To show that \(E_n \) is also a Borel-de Siebenthal graph, we introduce the following notations. Let \((i_1, \ldots, i_r) \) denote the painting on \(E_n \) whose vertices \(i_1, \ldots, i_r \) are black. If a black vertex \(\alpha \) is vertex \(i \) of Figure 1, we write \(F_i \) to denote \(F_\alpha \) of (1.1). For example if \(p = (2,3) \), then \(F_{2p} = F_2(2,3) = (1,2) \). We also underline \(i \) to denote \(F_i \), for example \((2,3) \rightarrow (1,2) \).

Proposition 2.2. On \(E_n \),

(a) \((i, n) \sim (i + 1, n - 1) \) for \(i < n - 3 \);

(b) \((i, n - 1) \sim (i + 1, n - 2) \) for \(i < n - 3 \);

(c) \((i, n - 2) \sim (i + 2) \) for \(i < n - 4 \).

Proof. For part (a), start with \((i, n) \rightarrow (i, n - 2, n) \rightarrow (i, n - 3, n - 2) \). Then apply \(F_{n-3}, F_{n-4}, \ldots, F_{i+1} \) to \((i, n - 3, n - 2) \) and get \((i + 1, n - 1) \). This proves part (a).
For part (b), apply $F_{n-1}, F_{n-3}, F_{n-4}, \ldots, F_{i+1}$ to $(i, n - 1)$ and get $(i + 1, n - 2)$. Finally for part (c),

$$(F_{i+2} \ldots F_{n-3} F_{n-2} F_n) (F_{i+1} \ldots F_{n-3} F_{n-2}) (i, n - 2)$$

$$= (F_{i+2} \ldots F_{n-3} F_{n-2} F_n) (i + 1, n - 1, n)$$

$$= (i + 2).$$

This proves the proposition.

Proposition 2.3. For all n, E_n is a Borel-de Siebenthal graph.

Proof. Let p be a painting on E_n. Let \overline{p} denote its restriction to D_{n-1}. By Proposition 2.1, $\overline{p} \sim (r)$. Hence a sequence F_{i_1}, \ldots, F_{i_m} transforms \overline{p} to (r). The same sequence transforms p to either (r) or (r, n), depending on the parity of occurrence of $n - 2$ in $\{i_1, \ldots, i_m\}$. If $p \sim (r)$, there is nothing to prove. Hence we may assume that $p \sim (r, n)$. (2.1)

We want to show that in (2.1), (r, n) is equivalent to a painting with a single black vertex. We divide the arguments into several cases depending on r.

$r = n - 1$:

$(n - 1, n) \to (n - 2, n - 1, n) \to (n - 3, n - 2, n - 1) \to (n - 4, n - 3) \to \ldots \to (1)$.

$r = n - 2$:

$(n - 2, n) \to (n)$.

$r = n - 3$:

$(n - 3, n) \to (n - 3, n - 2, n) \to (n - 2)$.

For $r = n - 4$, we have

$$(n - 4, n) \sim (n - 3, n - 1) \quad \text{by Proposition 2.2(a)}$$

$$\sim (n - 1) \quad \text{by } F_{n-1}.$$

For $r = n - 5$, we have

$$(n - 5, n) \sim (n - 4, n - 1) \quad \text{by Proposition 2.2(a)}$$

$$\sim (n - 3, n - 2) \quad \text{by Proposition 2.2(b)}$$

$$\sim (n - 2, n) \sim (n) \quad \text{by } F_{n-2} \text{ and } F_n.$$

For $r = n - 6$, we start with $(n - 6, n) \sim (n - 5, n - 1) \sim (n - 4, n - 2)$ by Proposition 2.2(a,b). This is followed by

$$(n - 4, n - 2) \to (n - 4, n - 3, n - 2, n) \to (n - 3, n - 1, n)$$

$$\to (n - 3, n - 2, n - 1, n) \to (n - 2, n - 1) \to (n - 3, n - 2, n - 1).$$

Then $(n - 3, n - 2, n - 1) \sim (n - 4, n - 3) \sim \ldots \sim (1)$ by $F_{n-3}, F_{n-4}, \ldots, F_1$.
Finally let $r \leq n - 7$. Since r is sufficiently far from the right end of the graph, we can apply the general arguments of Proposition 2.2 by

\[(r, n) \sim (r + 1, n - 1) \quad \text{by Proposition 2.2(a)} \]
\[\sim (r + 2, n - 2) \quad \text{by Proposition 2.2(b)} \]
\[\sim (r + 4) \quad \text{by Proposition 2.2(c)} \]

We have shown that in all cases of r in (2.1), (r, n) is equivalent to a painting with a single black vertex. This proves Proposition 2.3. \(\square\)

Proof of Theorem 1.2: Any connected subgraph of E_n is A_k, D_k or E_k. Propositions 2.1 and 2.3 say that A_k, D_k and E_k are all Borel-de Siebenthal graphs. Hence E_n is a strictly Borel-de Siebenthal graph. \(\square\)

Remark 2.4. In view of Theorem 1.2, the equivalence classes of paintings on E_n can be parametrized by paintings with one black vertex. However, the classification of equivalence classes is a nontrivial matter, and various n have different results. We list a few cases here:

- E_6 has 2 equivalence classes, parametrized by (1) and (5).
- E_7 has 3 equivalence classes, parametrized by (1), (2) and (6).
- E_8 has 2 equivalence classes, parametrized by (1) and (8).
- E_9 has 3 equivalence classes, parametrized by (1), (2) and (9).

The above results on E_6, E_7 and E_8 are given in [1, p. 23-24], and the result on E_9 is given in [2, p. 115]. These examples show that the situation varies greatly among various E_n. It will be interesting to systematically solve this problem for all E_n.

3. Applications in Lie Theory

In this section, we discuss the significance of Theorem 1.2 for $n = 9$ and $n = 10$. A finite dimensional complex simple Lie algebra \mathfrak{g} is said to be *simply-laced* if its root system contains only one root length. The simply-laced Lie algebras are A_n, D_n, E_6, E_7 and E_8 [6, Appendix C], so their Dynkin diagrams Γ are just graphs in the usual sense. Recall the notion of Borel-de Siebenthal graph and strictly Borel-de Siebenthal graph in Definition 1.1.

Theorem 3.1. Every simply-laced Dynkin diagram is a strictly Borel-de Siebenthal graph.

Proof. By a theorem of Borel and de Siebenthal [6, Thm. 6.96], every simply-laced Dynkin diagram is a Borel-de Siebenthal graph (the theorem also works for non-simply-laced diagrams, by modifying (1.1) suitably). Every subset of a simple system is itself a simple system of a smaller root system, so every subdiagram of
a Dynkin diagram is a Dynkin diagram. It follows that all Dynkin diagrams are strictly Borel-de Siebenthal.

The theorem of Borel and de Siebenthal provides an indirect proof for our theorem, in the sense that it does not explicitly show how any given painting is simplified to a painting with one black vertex. The explicit simplification process is given in [1], as summarized in [1, Cor. 5.2]. □

The natural question is the converse of Theorem 3.1, namely whether every strictly Borel-de Siebenthal graph is a Dynkin diagram. If this were true, it would provide an equivalent definition of the simply-laced Dynkin diagrams. In [1, §5], the authors state without proof that E_9 is strictly Borel-de Siebenthal though it is not Dynkin. The proof is now given by Theorem 1.2 confirming that “strict Borel-de Siebenthal is weaker that simply-laced Dynkin.”

Corollary 3.2.

$$\{\text{strictly Borel-de Siebenthal graphs}\} = \{\text{simply-laced Dynkin diagrams}\} \cup \{E_9, E_{10}, \ldots\}.$$

Proof. The \supset part of Corollary 3.2 follows from Theorems 1.2 and 3.1. It remains to prove its \subset part.

We first introduce some terminologies and notations. The degree of a vertex of a graph is the number of edges joint to it. The vertex is said to be a branch point if its degree is ≥ 3. If a graph has a unique branch point p of degree 3, it can be expressed as (a, b, c), where $a \leq b \leq c$ are positive integers which describe the lengths of the “legs” joint to p. For example, E_6 is $(1, 2, 2)$ and E_7 is $(1, 2, 3)$.

We recall that in [1, §5] it is stated that E_9 is a Borel-de Siebenthal graph, however the other non-Dynkin diagrams in [1, (5.1)] fail to be Borel-de Siebenthal graph because the paintings given in [1, (5.2)] are not equivalent to paintings with a single black vertex. Since the first graph of [1, (5.1)] is not Borel-de Siebenthal, it implies that a strictly Borel-de Siebenthal graph is acyclic, i.e. it cannot contain any loop. Since the second graph of [1, (5.1)] is not Borel-de Siebenthal, it implies that a strictly Borel-de Siebenthal graph cannot contain any branch point with degree ≥ 4. Since the third graph of [1, (5.1)] is not Borel-de Siebenthal, it implies that a strictly Borel-de Siebenthal graph can have at most one branch point. Hence a strictly Borel-de Siebenthal graph is either A_n or contains a unique branch point with degree 3. Assume the latter and express it as (a, b, c) as described above. Since the fourth graph of [1, (5.1)] is not Borel-de Siebenthal, it implies that a strictly Borel-de Siebenthal graph (a, b, c) satisfies $a = 1$. Since the fifth graph of [1, (5.1)] is not Borel-de Siebenthal, it implies that a strictly Borel-de Siebenthal
graph \((1, b, c)\) satisfies \(b < 3\). So we get either \((1, 1, c)\) or \((1, 2, c)\). The former is \(D_n\) and the latter is \(E_n\). We conclude that a strictly Borel-de Siebenthal graph is \(A_n\), \(D_n\) or \(E_n\). This proves the \(\subset\) part of Corollary 3.2. \(\square\)

The graphs in [1] (5.1) are actually all extended simply-laced Dynkin diagrams \(\widetilde{A}_n, \widetilde{D}_n, \widetilde{E}_6, \widetilde{E}_7\) and \(\widetilde{E}_8\) [4] Ch. X-5 Table 1] [5] Ch. 4 Table Aff 1]. In other words,
\[
\begin{array}{l}
(a) \quad \widetilde{A}_n, \widetilde{D}_n, \widetilde{E}_6, \widetilde{E}_7 \text{ are not Borel-de Siebenthal;}
(b) \quad \widetilde{E}_8 \text{ is Borel-de Siebenthal.}
\end{array}
\]

We now discuss the algebraic significance of (3.1) in terms of symmetric spaces.

Let \(G\) be a real simple Lie group with Lie algebra \(\mathfrak{g}\). Let \(K\) be a maximal compact subgroup of \(G\). Then \(G/K\) is a Riemannian symmetric space [4] Ch. IV]. We say that \(G\) is of Hermitian type if the \(G\)-invariant Riemannian structure on \(G/K\) is Hermitian.

Corollary 3.3. \(E_8\) is the only simply-laced Lie algebra without any real form of Hermitian type.

Proof. Let \(G\) be a real simple Lie group with Lie algebra \(\mathfrak{g}\). Let \(L = \mathfrak{g} \otimes \mathbb{C}\). Let \(\Gamma\) be the extended Dynkin diagram of \(L\), and suppose that it is simply-laced.

Let \(\theta\) be a Cartan involution of \(\mathfrak{g}\), extended by complex linearity to \(L\). Then \(\theta\) is represented by a painting \(p\) on \(\Gamma\). Furthermore, \(G\) is of Hermitian (resp. non-Hermitian) type if and only if \(p\) is a painting with two (resp. one) black vertices, and in that case \(L^\theta\) has a 1-dimensional center (resp. \(L^\theta\) is semisimple) [3] §2]. Here \(L^\theta\) denotes the fixed points of \(\theta\). If \(q\) is another painting on \(\Gamma\) with a single black vertex, then \(q\) represents an \(L\)-automorphism \(\sigma\) such that \(L^\sigma\) is semisimple [4] Ch. X-5 Thm. 5.15(ii)][5] Ch. 8 Prop. 8.6]. Therefore, \(\mathfrak{g}\) is of Hermitian type if and only if \(\theta\) is not conjugate to such \(\sigma\), namely \(p\) is not equivalent to such \(q\).

In [1] (5.2)], there are paintings with two black vertices on \(\widetilde{A}_n, \widetilde{D}_n, \widetilde{E}_6, \widetilde{E}_7\) which are not equivalent to paintings with a single black vertex, so each of them represents a real form of Hermitian type. Such a painting does not exist on \(E_0 = \widetilde{E}_8\), so \(E_8\) has no real form of Hermitian type. This proves the corollary. \(\square\)

The vertices of an extended Dynkin diagram are equipped with positive integers, known as their labels [4] Ch. X-5 Table 1] [5] Ch. 4 Table Aff 1]. When \(\mathfrak{g}\) is represented by a painting with two black vertices, the black vertices occur on vertices with label 1. The list of extended Dynkin diagrams shows that \(\widetilde{E}_8\) is the only simply-laced diagram without a pair of vertices with label 1. This explains why it does not accept a painting of two black vertices that is not equivalent to a single black vertex.

Next we consider another application of Theorem [1,2] by setting \(n = 10\). Here \(E_{10}\) is the Dynkin diagram of a hyperbolic Kac-Moody Lie algebra of highest rank.
We denote the Lie algebra of E_{10} by \mathfrak{g}. Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g}, and let $\Pi \subset \mathfrak{h}^*$ be a simple system of roots. Let θ be a \mathfrak{g}-involution. We say that θ preserves \mathfrak{h} and Π if $\theta(\mathfrak{h}) = \mathfrak{h}$, and θ maps a simple root space to another simple root space.

Corollary 3.4. Let \mathfrak{g} be the hyperbolic Kac-Moody Lie algebra of E_{10}, and let θ be a \mathfrak{g}-involution which preserves \mathfrak{h} and a simply system Π. Then there exists another simple system Π' such that $\theta = -1$ on one simple root space of Π' and $\theta = 1$ on the remaining root spaces.

Proof. Suppose that θ preserves \mathfrak{h} and Π. Let \mathfrak{g}_α be the root space of α. Then θ leads to a permutation d on Π by $\theta\mathfrak{g}_\alpha = \mathfrak{g}_{d\alpha}$ for all $\alpha \in \Pi$. The Dynkin diagram of E_{10} does not have nontrivial diagram symmetry, hence d is trivial. It follows that θ preserves each root space. Since θ has order 2, it acts as ± 1 on each root space.

If we represent Π by the vertices of E_{10}, we obtain a painting p where a vertex is white (resp. black) if and only if $\theta = 1$ (resp. $\theta = -1$) on the corresponding root space. This is the motivation for Vogan diagrams [6, Ch. VI-8]. Suppose that α is a black vertex and \mathfrak{g}_α is its reflection map on the root system. Then the new painting which represents θ with respect to $r_\alpha \Pi$ is $F_\alpha p$, where F_α is given by (1.1). By Theorem 1.2 there exists a sequence of some F_α such that $q = F_{\alpha_1} \cdots F_{\alpha_m} p$ has a single black vertex. Let $\Pi' = r_{\alpha_1} \cdots r_{\alpha_m} \Pi$, so that q represents θ with respect to Π'. Since $\alpha \in \Pi'$ is white (resp. black) with respect to q if and only if $\theta = 1$ (resp. $\theta = -1$) on the corresponding root space, Π' is our desired simple system. □

References

Department of Computer Science and Information Engineering, Minghsin University of Science and Technology, Taiwan

hsein@must.edu.tw

Received: May 12, 2012

Accepted: December 28, 2012