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GRAPH PAINTING AND THE

BOREL-DE SIEBENTHAL PROPERTY

CHING-I HSIN

Abstract. In this article, we consider graph painting and introduce the

Borel-de Siebenthal property. We study this property on graphs of type E.

We also study its applications in Hermitian symmetric spaces and hyperbolic

Kac-Moody Lie algebras.

1. Introduction

A painting on a connected graph Γ is a color assignment of white (unpainted)

or black (painted) on its vertices. If p is a painting on Γ and α is a black vertex,

we define another painting Fαp by

Fα : reverse the colors of all vertices adjacent to α. (1.1)

We make the convention that the adjacent vertices do not include α itself, so α

remains black. We say that two paintings p, q on Γ are equivalent if there exists a

sequence of paintings on Γ,

p = p0 → p1 → . . .→ pm = q

such that each pi → pi+1 is given by some Fα. We always ignore the painting with

all white vertices, because it is not equivalent to any other painting. For a given

painting, we look for an equivalent painting with the least number of black vertices.

The following terminology is motivated by a theorem of Borel and de Siebenthal

[6, Thm. 6.96].

Definition 1.1.

(a) We say that Γ is a Borel-de Siebenthal graph if every painting on Γ is

equivalent to a painting with a single black vertex.

(b) We say that Γ is a strictly Borel-de Siebenthal graph if every connected

subgraph of Γ is Borel-de Siebenthal.

We say that a graph is of type E if it looks like Figure 1. If it has n vertices,

as indicated in the figure, we call it En. We assume that n ≥ 6. The indices in
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Figure 1.

the figure are assigned for future reference. The following is the main result of this

article.

Theorem 1.2. For all n, En is a strictly Borel-de Siebenthal graph.

We prove the theorem in Section 2. While the theorem and its proof are purely

combinatorial, they have unexpected algebraic applications in Lie theory. We dis-

cuss in Section 3 the relations of this theorem with Hermitian symmetric spaces

and hyperbolic Kac-Moody Lie algebras, leading to Corollaries 3.3 and 3.4.

Acknowledgement. The author is grateful to the referee, who read the man-

uscript carefully and improved the presentation of this article.

2. Proof of the main theorem

In this section, we prove Theorem 1.2. Label the vertices of En by {1, . . . , n}
as in Figure 1. Let Dn−1 be the subgraph formed by vertices 1, . . . , n− 1, and let

An−2 be the subgraph formed by vertices 1, . . . , n− 2. Hence An−2 ⊂ Dn−1 ⊂ En.

Proposition 2.1. [1, Table 1] For all n, An and Dn are Borel-de Siebenthal graphs.

To show that En is also a Borel-de Siebenthal graph, we introduce the following

notations. Let (i1, . . . , ir) denote the painting on En whose vertices i1, . . . , ir are

black. If a black vertex α is vertex i of Figure 1, we write Fi to denote Fα of (1.1).

For example if p = (2, 3), then F2p = F2(2, 3) = (1, 2). We also underline i to

denote Fi, for example (2, 3)→ (1, 2).

Proposition 2.2. On En,

(a) (i, n) ∼ (i+ 1, n− 1) for i < n− 3;

(b) (i, n− 1) ∼ (i+ 1, n− 2) for i < n− 3;

(c) (i, n− 2) ∼ (i+ 2) for i < n− 4.

Proof. For part (a), start with (i, n)→ (i, n− 2, n)→ (i, n− 3, n− 2). Then apply

Fn−3, Fn−4, . . . , Fi+1 to (i, n− 3, n− 2) and get (i+ 1, n− 1). This proves part (a).
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For part (b), apply Fn−1, Fn−3, Fn−4, . . . , Fi+1 to (i, n−1) and get (i+1, n−2).

Finally for part (c),

(Fi+2 . . . Fn−3Fn−2Fn)(Fi+1 . . . Fn−3Fn−2)(i, n− 2)

= (Fi+2 . . . Fn−3Fn−2Fn)(i+ 1, n− 1, n)

= (i+ 2).

This proves the proposition. �

Proposition 2.3. For all n, En is a Borel-de Siebenthal graph.

Proof. Let p be a painting on En. Let p denote its restriction to Dn−1. By

Proposition 2.1, p ∼ (r). Hence a sequence Fi1 , . . . , Fim transforms p to (r). The

same sequence transforms p to either (r) or (r, n), depending on the parity of

occurrence of n− 2 in {i1, . . . , im}. If p ∼ (r), there is nothing to prove. Hence we

may assume that

p ∼ (r, n). (2.1)

We want to show that in (2.1), (r, n) is equivalent to a painting with a single

black vertex. We divide the arguments into several cases depending on r.

r = n− 1 :

(n− 1, n)→ (n− 2, n− 1, n)→ (n− 3, n− 2, n− 1)→ (n− 4, n− 3)→ . . .→ (1).

r = n− 2 : (n− 2, n)→ (n).

r = n− 3 : (n− 3, n)→ (n− 3, n− 2, n)→ (n− 2).

For r = n− 4, we have

(n− 4, n) ∼ (n− 3, n− 1) by Proposition 2.2(a)

∼ (n− 1) by Fn−1.

For r = n− 5, we have

(n− 5, n) ∼ (n− 4, n− 1) by Proposition 2.2(a)

∼ (n− 3, n− 2) by Proposition 2.2(b)

∼ (n− 2, n) ∼ (n) by Fn−2 and Fn.

For r = n − 6, we start with (n − 6, n) ∼ (n − 5, n − 1) ∼ (n − 4, n − 2) by

Proposition 2.2(a,b). This is followed by

(n− 4, n− 2)→ (n− 4, n− 3, n− 2, n)→ (n− 3, n− 1, n)

→ (n− 3, n− 2, n− 1, n)→ (n− 2, n− 1)→ (n− 3, n− 2, n− 1).

Then (n− 3, n− 2, n− 1) ∼ (n− 4, n− 3) ∼ · · · ∼ (1) by Fn−3, Fn−4, . . . , F1.
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Finally let r ≤ n− 7. Since r is sufficiently far from the right end of the graph,

we can apply the general arguments of Proposition 2.2 by

(r, n) ∼ (r + 1, n− 1) by Proposition 2.2(a)

∼ (r + 2, n− 2) by Proposition 2.2(b)

∼ (r + 4). by Proposition 2.2(c)

We have shown that in all cases of r in (2.1), (r, n) is equivalent to a painting with

a single black vertex. This proves Proposition 2.3. �

Proof of Theorem 1.2: Any connected subgraph of En is Ak, Dk or Ek. Proposi-

tions 2.1 and 2.3 say that Ak, Dk and Ek are all Borel-de Siebenthal graphs. Hence

En is a strictly Borel-de Siebenthal graph. �

Remark 2.4. In view of Theorem 1.2, the equivalence classes of paintings on En
can be parametrized by paintings with one black vertex. However, the classification

of equivalence classes is a nontrivial matter, and various n have different results.

We list a few cases here:

E6 has 2 equivalence classes, parametrized by (1) and (5).

E7 has 3 equivalence classes, parametrized by (1), (2) and (6).

E8 has 2 equivalence classes, parametrized by (1) and (8).

E9 has 3 equivalence classes, parametrized by (1), (2) and (9).

The above results on E6, E7 and E8 are given in [1, p. 23-24], and the result on

E9 is given in [2, p. 115]. These examples show that the situation varies greatly

among various En. It will be interesting to systematically solve this problem for

all En.

3. Applications in Lie Theory

In this section, we discuss the significance of Theorem 1.2 for n = 9 and n = 10.

A finite dimensional complex simple Lie algebra g is said to be simply-laced if its

root system contains only one root length. The simply-laced Lie algebras are An,

Dn, E6, E7 and E8 [6, Appendix C], so their Dynkin diagrams Γ are just graphs

in the usual sense. Recall the notion of Borel-de Siebenthal graph and strictly

Borel-de Siebenthal graph in Definition 1.1.

Theorem 3.1. Every simply-laced Dynkin diagram is a strictly Borel-de Siebenthal

graph.

Proof. By a theorem of Borel and de Siebenthal [6, Thm. 6.96], every simply-laced

Dynkin diagram is a Borel-de Siebenthal graph (the theorem also works for non-

simply-laced diagrams, by modifying (1.1) suitably). Every subset of a simple

system is itself a simple system of a smaller root system, so every subdiagram of
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a Dynkin diagram is a Dynkin diagram. It follows that all Dynkin diagrams are

strictly Borel-de Siebenthal.

The theorem of Borel and de Siebenthal provides an indirect proof for our the-

orem, in the sense that it does not explicitly show how any given painting is sim-

plified to a painting with one black vertex. The explicit simplification process is

given in [1], as summarized in [1, Cor. 5.2]. �

The natural question is the converse of Theorem 3.1, namely whether every

strictly Borel-de Siebenthal graph is a Dynkin diagram. If this were true, it would

provide an equivalent definition of the simply-laced Dynkin diagrams. In [1, §5],

the authors state without proof that E9 is strictly Borel-de Siebenthal though it

is not Dynkin. The proof is now given by Theorem 1.2, confirming that “strict

Borel-de Siebenthal is weaker that simply-laced Dynkin.”

Corollary 3.2.

{strictly Borel-de Siebenthal graphs}
= {simply-laced Dynkin diagrams} ∪ {E9, E10, . . . }.

Proof. The ⊃ part of Corollary 3.2 follows from Theorems 1.2 and 3.1. It remains

to prove its ⊂ part.

We first introduce some terminologies and notations. The degree of a vertex of

a graph is the number of edges joint to it. The vertex is said to be a branch point

if its degree is ≥ 3. If a graph has a unique branch point p of degree 3, it can

be expressed as (a, b, c), where a ≤ b ≤ c are positive integers which describe the

lengths of the “legs” joint to p. For example, E6 is (1, 2, 2) and E7 is (1, 2, 3).

We recall that in [1, §5] it is stated that E9 is a Borel-de Siebenthal graph,

however the other non-Dynkin diagrams in [1, (5.1)] fail to be Borel-de Siebenthal

graph because the paintings given in [1, (5.2)] are not equivalent to paintings with

a single black vertex. Since the first graph of [1, (5.1)] is not Borel-de Siebenthal,

it implies that a strictly Borel-de Siebenthal graph is acyclic, i.e. it cannot contain

any loop. Since the second graph of [1, (5.1)] is not Borel-de Siebenthal, it implies

that a strictly Borel-de Siebenthal graph cannot contain any branch point with

degree ≥ 4. Since the third graph of [1, (5.1)] is not Borel-de Siebenthal, it implies

that a strictly Borel-de Siebenthal graph can have at most one branch point. Hence

a strictly Borel-de Siebenthal graph is either An or contains a unique branch point

with degree 3. Assume the latter and express it as (a, b, c) as described above.

Since the fourth graph of [1, (5.1)] is not Borel-de Siebenthal, it implies that a

strictly Borel-de Siebenthal graph (a, b, c) satisfies a = 1. Since the fifth graph of

[1, (5.1)] is not Borel-de Siebenthal, it implies that a strictly Borel-de Siebenthal
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graph (1, b, c) satisfies b < 3. So we get either (1, 1, c) or (1, 2, c). The former is Dn

and the latter is En. We conclude that a strictly Borel-de Siebenthal graph is An,

Dn or En. This proves the ⊂ part of Corollary 3.2. �

The graphs in [1, (5.1)] are actually all extended simply-laced Dynkin diagrams

Ãn, D̃n, Ẽ6, Ẽ7 and Ẽ8 [4, Ch. X-5 Table 1] [5, Ch. 4 Table Aff 1]. In other words,

(a) Ãn, D̃n, Ẽ6, Ẽ7 are not Borel-de Siebenthal;

(b) Ẽ8 is Borel-de Siebenthal.
(3.1)

We now discuss the algebraic significance of (3.1) in terms of symmetric spaces.

Let G be a real simple Lie group with Lie algebra g. Let K be a maximal

compact subgroup of G. Then G/K is a Riemannian symmetric space [4, Ch. IV].

We say that G is of Hermitian type if the G-invariant Riemannian structure on

G/K is Hermitian.

Corollary 3.3. E8 is the only simply-laced Lie algebra without any real form of

Hermitian type.

Proof. Let G be a real simple Lie group with Lie algebra g. Let L = g⊗ C. Let Γ

be the extended Dynkin diagram of L, and suppose that it is simply-laced.

Let θ be a Cartan involution of g, extended by complex linearity to L. Then θ

is represented by a painting p on Γ. Furthermore, G is of Hermitian (resp. non-

Hermitian) type if and only if p is a painting with two (resp. one) black vertices,

and in that case Lθ has a 1-dimensional center (resp. Lθ is semisimple) [3, §2].

Here Lθ denotes the fixed points of θ. If q is another painting on Γ with a single

black vertex, then q represents an L-automorphism σ such that Lσ is semisimple

[4, Ch. X-5 Thm. 5.15(ii)][5, Ch. 8 Prop. 8.6]. Therefore, g is of Hermitian type if

and only if θ is not conjugate to such σ, namely p is not equivalent to such q.

In [1, (5.2)], there are paintings with two black vertices on Ãn, D̃n, Ẽ6, Ẽ7 which

are not equivalent to paintings with a single black vertex, so each of them represents

a real form of Hermitian type. Such a painting does not exist on E9 = Ẽ8, so E8

has no real form of Hermitian type. This proves the corollary. �

The vertices of an extended Dynkin diagram are equipped with positive integers,

known as their labels [4, Ch. X-5 Table 1] [5, Ch. 4 Table Aff 1]. When g is

represented by a painting with two black vertices, the black vertices occur on

vertices with label 1. The list of extended Dynkin diagrams shows that Ẽ8 is the

only simply-laced diagram without a pair of vertices with label 1. This explains

why it does not accept a painting of two black vertices that is not equivalent to a

single black vertex.

Next we consider another application of Theorem 1.2 by setting n = 10. Here

E10 is the Dynkin diagram of a hyperbolic Kac-Moody Lie algebra of highest rank
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[7, p. 3767]. We denote the Lie algebra of E10 by g. Let h be a Cartan subalgebra

of g, and let Π ⊂ h∗ be a simple system of roots. Let θ be a g-involution. We say

that θ preserves h and Π if θ(h) = h, and θ maps a simple root space to another

simple root space.

Corollary 3.4. Let g be the hyperbolic Kac-Moody Lie algebra of E10, and let θ be

a g-involution which preserves h and a simply system Π. Then there exists another

simple system Π′ such that θ = −1 on one simple root space of Π′ and θ = 1 on

the remaining root spaces.

Proof. Suppose that θ preserves h and Π. Let gα be the root space of α. Then θ

leads to a permutation d on Π by θgα = gdα for all α ∈ Π. The Dynkin diagram of

E10 does not have nontrivial diagram symmetry, hence d is trivial. It follows that

θ preserves each root space. Since θ has order 2, it acts as ±1 on each root space.

If we represent Π by the vertices of E10, we obtain a painting p where a vertex

is white (resp. black) if and only if θ = 1 (resp. θ = −1) on the corresponding root

space. This is the motivation for Vogan diagrams [6, Ch. VI-8]. Suppose that α

is a black vertex and rα is its reflection map on the root system. Then the new

painting which represents θ with respect to rαΠ is Fαp, where Fα is given by (1.1).

By Theorem 1.2, there exists a sequence of some Fα such that q = Fα1 . . . Fαmp has

a single black vertex. Let Π′ = rα1
. . . rαm

Π, so that q represents θ with respect to

Π′. Since α ∈ Π′ is white (resp. black) with respect to q if and only if θ = 1 (resp.

θ = −1) on the corresponding root space, Π′ is our desired simple system. �
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