REVISTA DE LA

UNION MATEMATICA ARGENTINA
Vol. 54, No. 2, 2013, Pages 67-73
Published online: November 25, 2013

GRAPH PAINTING AND THE
BOREL-DE SIEBENTHAL PROPERTY

CHING-I HSIN

ABSTRACT. In this article, we consider graph painting and introduce the
Borel-de Siebenthal property. We study this property on graphs of type E.
We also study its applications in Hermitian symmetric spaces and hyperbolic
Kac-Moody Lie algebras.

1. INTRODUCTION

A painting on a connected graph T' is a color assignment of white (unpainted)
or black (painted) on its vertices. If p is a painting on I' and « is a black vertex,
we define another painting F,p by

F,, : reverse the colors of all vertices adjacent to a. (1.1)

We make the convention that the adjacent vertices do not include « itself, so «
remains black. We say that two paintings p,q on I' are equivalent if there exists a
sequence of paintings on I,

P=Po—=P1 7. 7 Pm=(¢
such that each p; — p;41 is given by some F,. We always ignore the painting with
all white vertices, because it is not equivalent to any other painting. For a given
painting, we look for an equivalent painting with the least number of black vertices.

The following terminology is motivated by a theorem of Borel and de Siebenthal
[6, Thm. 6.96).

Definition 1.1.

(a) We say that T' is a Borel-de Siebenthal graph if every painting on I is
equivalent to a painting with a single black vertex.

(b)  We say that I' is a strictly Borel-de Siebenthal graph if every connected
subgraph of T" is Borel-de Siebenthal.

We say that a graph is of type F if it looks like Figure [1 If it has n vertices,
as indicated in the figure, we call it E,,. We assume that n > 6. The indices in
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FIGURE 1.

the figure are assigned for future reference. The following is the main result of this
article.

Theorem 1.2. For alln, E,, is a strictly Borel-de Siebenthal graph.

We prove the theorem in Section 2. While the theorem and its proof are purely
combinatorial, they have unexpected algebraic applications in Lie theory. We dis-
cuss in Section 3 the relations of this theorem with Hermitian symmetric spaces
and hyperbolic Kac-Moody Lie algebras, leading to Corollaries and
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2. PROOF OF THE MAIN THEOREM

In this section, we prove Theorem Label the vertices of E,, by {1,...,n}
as in Figure m Let D,,—1 be the subgraph formed by vertices 1,...,n — 1, and let
A, _> be the subgraph formed by vertices 1,...,n —2. Hence A,,_s C D,,_1 C E,.

Proposition 2.1. [Il Table 1] For alln, A,, and D,, are Borel-de Siebenthal graphs.

To show that F, is also a Borel-de Siebenthal graph, we introduce the following
notations. Let (i1,...,4,) denote the painting on F,, whose vertices 41,...,%, are
black. If a black vertex « is vertex i of Figure [1} we write F; to denote F,, of (L.1)).
For example if p = (2,3), then Fop = F»(2,3) = (1,2). We also underline i to
denote Fj, for example (2,3) — (1,2).

Proposition 2.2. On E,,
(a) (i,n)~(i+1,n—1) fori<n-—23;
) (i,n—1)~(@{+1,n—2) fori<n-—3;
(¢) (i,n—2)~(i+2) fori<n—4.

Proof. For part (a), start with (i,n) — (i,n —2,n) — (i,n —3,n—2). Then apply
Fo_s,Fn_4,...,Fit1 to (i,n—3,n—2) and get (i +1,n—1). This proves part (a).
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For part (b), apply Fri—1, Fri_s, Fru—a, ..., Fi11 to (i,n—1) and get (i+1,n—2).
Finally for part (c),

(F7;+2 . Fn_an_QFn)(Fi+1 . Fn_an_Q)(i, n — 2)
= (FiJrQ . anan,QFn)(i + 1, n — 1, n)
= (i+2).

This proves the proposition. O

Proposition 2.3. For alln, E, is a Borel-de Siebenthal graph.

Proof. Let p be a painting on F,. Let p denote its restriction to D,_1. By
Proposition [2.1} p ~ (r). Hence a sequence Fj,, ..., F,

Tm

transforms p to (r). The
same sequence transforms p to either (r) or (r,n), depending on the parity of
occurrence of n — 2 in {i1,...,4m}. If p ~ (r), there is nothing to prove. Hence we
may assume that

p~ (rn). (2.1)

We want to show that in (2.1), (r,n) is equivalent to a painting with a single
black vertex. We divide the arguments into several cases depending on r.

r=n-—1:
n-—1n)—m—-2n—-1n)—-n-3n—-2n—-1)—=nN—-4n-3)— ... (1).
r=n—2:(n—-2,n)— (n).

r=n—-3:(n—-3,n)—>n-3n—2n)— (n—2).

For r = n — 4, we have

(n—4,n) ~(n—3,n—1) by Proposition a)
~ (n — 1) by anl-

For r =n — 5, we have

(n—=5mn) ~(n—4,n-1) by Proposition 2.2|(a)
~(n—3mn-—2) by Proposition [2.2|b)
~(n=2,n)~(n) by F,—2and F,.

For r = n — 6, we start with (n —6,n) ~ (n —5,n—1) ~ (n —4,n — 2) by
Proposition (a,b). This is followed by

m—4n—-2)—=nm—-4n—-3,n—-2,n) = (n—3,n—1,n)

- mn-3n—-2n—-1n)—->m-2n—-1)—(n—-3,n—2,n—1).

Then (n—3,n—2,n—1)~(n—4,n—3)~---~ (1) by F,_3,F_4,..., F1.
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Finally let » < n — 7. Since r is sufficiently far from the right end of the graph,
we can apply the general arguments of Proposition by
(r,n) ~(r+1,n—1) by Proposition a)
~ (r+2,n—2) by Proposition 2.2b)
~ (r+4). by Proposition c)

We have shown that in all cases of r in (2.1)), (r,n) is equivalent to a painting with
a single black vertex. This proves Proposition O

Proof of Theorem[I.3: Any connected subgraph of E,, is Ay, Dy or Ej. Proposi-
tions 2.1) and [2.3] say that Ay, Dy and Ej are all Borel-de Siebenthal graphs. Hence
E, is a strictly Borel-de Siebenthal graph. (|

Remark 2.4. In view of Theorem the equivalence classes of paintings on F,,
can be parametrized by paintings with one black vertex. However, the classification
of equivalence classes is a nontrivial matter, and various n have different results.
We list a few cases here:

Es has 2 equivalence classes, parametrized by (1) and (5).

E7 has 3 equivalence classes, parametrized by (1), (2) and (6).

Eg has 2 equivalence classes, parametrized by (1) and (8).

Ey has 3 equivalence classes, parametrized by (1), (2) and (9).

The above results on Eg, E7 and Eg are given in [I], p. 23-24], and the result on
Ey is given in [2] p. 115]. These examples show that the situation varies greatly
among various F,. It will be interesting to systematically solve this problem for
all £,,.

3. APPLICATIONS IN LIE THEORY

In this section, we discuss the significance of Theorem for n =9 and n = 10.
A finite dimensional complex simple Lie algebra g is said to be simply-laced if its
root system contains only one root length. The simply-laced Lie algebras are A,,,
D,,, Egs, E7 and Eg [0, Appendix C], so their Dynkin diagrams I" are just graphs
in the usual sense. Recall the notion of Borel-de Siebenthal graph and strictly
Borel-de Siebenthal graph in Definition

Theorem 3.1. Every simply-laced Dynkin diagram is a strictly Borel-de Siebenthal
graph.

Proof. By a theorem of Borel and de Siebenthal [6, Thm. 6.96], every simply-laced
Dynkin diagram is a Borel-de Siebenthal graph (the theorem also works for non-
simply-laced diagrams, by modifying suitably). Every subset of a simple
system is itself a simple system of a smaller root system, so every subdiagram of
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a Dynkin diagram is a Dynkin diagram. It follows that all Dynkin diagrams are
strictly Borel-de Siebenthal.

The theorem of Borel and de Siebenthal provides an indirect proof for our the-
orem, in the sense that it does not explicitly show how any given painting is sim-
plified to a painting with one black vertex. The explicit simplification process is
given in [I], as summarized in I, Cor. 5.2]. O

The natural question is the converse of Theorem [3.1] namely whether every
strictly Borel-de Siebenthal graph is a Dynkin diagram. If this were true, it would
provide an equivalent definition of the simply-laced Dynkin diagrams. In [II §5],
the authors state without proof that Eg is strictly Borel-de Siebenthal though it
is not Dynkin. The proof is now given by Theorem confirming that “strict
Borel-de Siebenthal is weaker that simply-laced Dynkin.”

Corollary 3.2.

{strictly Borel-de Siebenthal graphs}
= {simply-laced Dynkin diagrams} U {Ey, Eq, ... }.

Proof. The D part of Corollary [3.2] follows from Theorems and It remains
to prove its C part.

We first introduce some terminologies and notations. The degree of a vertex of
a graph is the number of edges joint to it. The vertex is said to be a branch point
if its degree is > 3. If a graph has a unique branch point p of degree 3, it can
be expressed as (a, b, c), where a < b < ¢ are positive integers which describe the
lengths of the “legs” joint to p. For example, Fg is (1,2,2) and F7 is (1,2, 3).

We recall that in [T, §5] it is stated that Eg is a Borel-de Siebenthal graph,
however the other non-Dynkin diagrams in [T}, (5.1)] fail to be Borel-de Siebenthal
graph because the paintings given in [Il (5.2)] are not equivalent to paintings with
a single black vertex. Since the first graph of [II, (5.1)] is not Borel-de Siebenthal,
it implies that a strictly Borel-de Siebenthal graph is acyclic, i.e. it cannot contain
any loop. Since the second graph of [Il (5.1)] is not Borel-de Siebenthal, it implies
that a strictly Borel-de Siebenthal graph cannot contain any branch point with
degree > 4. Since the third graph of [Il (5.1)] is not Borel-de Siebenthal, it implies
that a strictly Borel-de Siebenthal graph can have at most one branch point. Hence
a strictly Borel-de Siebenthal graph is either A,, or contains a unique branch point
with degree 3. Assume the latter and express it as (a,b,c) as described above.
Since the fourth graph of [, (5.1)] is not Borel-de Siebenthal, it implies that a
strictly Borel-de Siebenthal graph (a, b, ¢) satisfies ¢ = 1. Since the fifth graph of
[1, (5.1)] is not Borel-de Siebenthal, it implies that a strictly Borel-de Siebenthal
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graph (1,b, ¢) satisfies b < 3. So we get either (1,1,c¢) or (1,2, ¢). The former is D,,
and the latter is F,,. We conclude that a strictly Borel-de Siebenthal graph is A,
D,, or E,. This proves the C part of Corollary O

The graphs in [I} (5.1)] are actually all extended simply-laced Dynkin diagrams
An, Dn, E(;, E7 and Eg [4, Ch. X-5 Table 1] [5, Ch. 4 Table Aff 1]. In other words,

(a) An, Dn, E6, E7 are not Borel-de Siebenthal;

P 3.1
(b) Ejs is Borel-de Siebenthal. (3:1)

We now discuss the algebraic significance of in terms of symmetric spaces.

Let G be a real simple Lie group with Lie algebra g. Let K be a maximal
compact subgroup of G. Then G/K is a Riemannian symmetric space [4, Ch. IV].
We say that G is of Hermitian type if the G-invariant Riemannian structure on
G/K is Hermitian.

Corollary 3.3. FEg is the only simply-laced Lie algebra without any real form of
Hermitian type.

Proof. Let G be a real simple Lie group with Lie algebra g. Let L =g® C. Let I’
be the extended Dynkin diagram of L, and suppose that it is simply-laced.

Let 6 be a Cartan involution of g, extended by complex linearity to L. Then 6
is represented by a painting p on I'. Furthermore, G is of Hermitian (resp. non-
Hermitian) type if and only if p is a painting with two (resp. one) black vertices,
and in that case LY has a 1-dimensional center (resp. LY is semisimple) [3, §2].
Here LY denotes the fixed points of §. If ¢ is another painting on I" with a single
black vertex, then ¢ represents an L-automorphism o such that L7 is semisimple
[4, Ch. X-5 Thm. 5.15(ii)][5, Ch. 8 Prop. 8.6]. Therefore, g is of Hermitian type if
and only if # is not conjugate to such o, namely p is not equlvalent to such q.

In [T, (5.2)], there are paintings with two black vertices on An, Dn, E6, E7 which
are not equivalent to paintings with a single black vertex, so each of them represents
a real form of Hermitian type. Such a painting does not exist on Fg = E;, so Fy
has no real form of Hermitian type. This proves the corollary. O

The vertices of an extended Dynkin diagram are equipped with positive integers,
known as their labels [, Ch. X-5 Table 1] [5, Ch. 4 Table Aff 1]. When g is
represented by a painting with two black vertices, the black vertices occur on
vertices with label 1. The list of extended Dynkin diagrams shows that E; is the
only simply-laced diagram without a pair of vertices with label 1. This explains
why it does not accept a painting of two black vertices that is not equivalent to a
single black vertex.

Next we consider another application of Theorem by setting n = 10. Here
FE is the Dynkin diagram of a hyperbolic Kac-Moody Lie algebra of highest rank
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[7, p. 3767]. We denote the Lie algebra of Ejg by g. Let h be a Cartan subalgebra
of g, and let IT C h* be a simple system of roots. Let § be a g-involution. We say
that 0 preserves h and II if 6(h) = b, and 6 maps a simple root space to another
simple root space.

Corollary 3.4. Let g be the hyperbolic Kac-Moody Lie algebra of Eqo, and let 0 be
a g-involution which preserves i and a simply system II. Then there exists another
simple system II' such that 6 = —1 on one simple root space of II' and 6 = 1 on
the remaining root spaces.

Proof. Suppose that 6 preserves h and II. Let g, be the root space of a. Then 6
leads to a permutation d on II by fg, = g4, for all @ € II. The Dynkin diagram of
FEp does not have nontrivial diagram symmetry, hence d is trivial. It follows that
0 preserves each root space. Since # has order 2, it acts as +1 on each root space.

If we represent II by the vertices of E1g, we obtain a painting p where a vertex
is white (resp. black) if and only if 8 = 1 (resp. § = —1) on the corresponding root
space. This is the motivation for Vogan diagrams [6, Ch. VI-8]. Suppose that «
is a black vertex and r, is its reflection map on the root system. Then the new
painting which represents 6 with respect to r,Il is F,,p, where F, is given by .
By Theorem there exists a sequence of some F,, such that ¢ = Fy,, ... F,, p has
a single black vertex. Let II' = r,, ... 74, II, so that ¢ represents 6 with respect to
IT'. Since a € IT' is white (resp. black) with respect to ¢ if and only if § = 1 (resp.
6 = —1) on the corresponding root space, I is our desired simple system. O
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