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TWO CLASSES OF SLANT SURFACES IN THE NEARLY

KÄHLER SIX SPHERE

K. OBRENOVIĆ AND S. VUKMIROVIĆ

Abstract. In this paper we find examples of slant surfaces in the nearly

Kähler six sphere. First, we characterize two-dimensional small and great
spheres which are slant. Their description is given in terms of the associative

3-form in ImO. Later on, we classify the slant surfaces of S6 which are orbits

of a maximal torus in G2. Among them we find a one parameter family of
minimal orbits with arbitrary slant angle.

1. Introduction

It is known that S2 and S6 are the only spheres that admit almost complex
structures. The best known Hermitian almost complex structure J on S6 is defined
using octonionic multiplication. It is not integrable, but satisfies the condition
(∇XJ)X = 0, for the Levi-Civita connection ∇ and every vector field X on S6.
The sphere S6 with this structure J is usually referred to as nearly Kähler six
sphere.

Submanifolds of the nearly Kähler sphere S6 are the subject of intensive re-
search. A. Gray [8] proved that almost complex submanifolds of nearly Kähler
S6 are necessarily two-dimensional and minimal. In [4] Bryant showed that any
Riemannian surface can be embedded in the six sphere as an almost complex sub-
manifold. Almost complex surfaces were further investigated in [2] and classified
into four types.

Totally real submanifolds of S6 can be of dimension two or three. Three-
dimensional totally real submanifolds are investigated in [9] where N. Ejiri proved
that they have to be minimal and orientable. In [3] the authors classify totally
real, minimal surfaces of constant curvature. Totally real and minimal surfaces
with Gauss curvature K ∈ [0, 1] (and compact) or those with K constant must
have either K = 0 or K = 1 (see [7]).

Slant submanifolds are a generalization of totally real and almost complex sub-
manifolds, that have slant angle π

2 and 0, respectively. Slant submanifolds with
slant angle θ ∈ (0, π2 ) are called proper slant submanifolds. Note that the notion of
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a surface with constant Kähler angle coincides with the notion of a slant surface.
The general theory regarding slant submanifolds and some classification theorems
of slant surfaces in C2 can be found in [5]. Because of dimensional reasons (see [5])
a proper slant submanifold of the six sphere is two-dimensional. Very few examples
of slant surfaces of S6 are known and all of them are minimal. In [2] it is shown
that rotation of an almost complex curve of type (III) results in a minimal slant
surface that is linearly full in some S5 ⊂ S6. According to [13], a minimal slant
surface of S6 that has non-negative Gauss curvature K ≥ 0 must have either K ≡ 0
or K ≡ 1. Classification of such surfaces is given in [14]. In the present paper we
find two classes of slant surfaces of S6 with K ≡ 0 and K ≡ 1. Some of them are
minimal and therefore known, but most of them are not.

In Section 2 we recall some basic facts about octonions and define the notion
of a slant submanifold (Definition 2.1). Lemma 2.2 is simple, but it is not in [5].
In Section 3 we consider slant two-dimensional spheres which are the intersection
of an affine 3-plane and the six sphere. We give their characterization in terms of
the associative 3-form in Theorem 3.1. Finally, in Section 4, we investigate two-
dimensional orbits of a Cartan subgroup of the group G2 on the sphere S6. We
found that these orbits are flat, two-dimensional tori which are always slant, with
an arbitrary slant angle (see Theorem 4.1). In Theorem 4.2 we find a one-parameter
family of minimal orbits. Note that a similar method was used in [11] to obtain
three-dimensional orbits which are CR submanifolds of the six sphere S6.

2. Preliminaries

Let H be the field of quaternions. The Cayley algebra, or algebra of octonions,
is the vector space O = H ⊕ H ∼= R8 with multiplication defined in terms of
quaternionic multiplication:

(q, r) · (s, t) := (qs− tr, tq + rs), q, s, r, t ∈ H.

In the sequel we omit the multiplication sign. Conjugation of octonions is defined
by

(q, r) := (q,−r), q, r ∈ H,
and the inner product by

〈x, y〉 :=
1

2
(xy + yx), x, y ∈ O. (1)

If we denote by 1, i, j, k the standard orthonormal basis of H, then e0 = (1, 0),
e1 = (i, 0), e2 = (j, 0), e3 = (k, 0), e4 = (0, 1), e5 = (0, i), e6 = (0, j), e7 = (0, k) is
an orthonormal basis of O. It is easy to check that the multiplication in that basis
is given by Table 1.

Octonions are not associative, so the associator is defined by

[x, y, z] := (xy)z − x(yz), x, y, z ∈ O.

Denote by

ImO := {x ∈ O | x+ x = 0},
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e1 e2 e3 e4 e5 e6 e7

e1 −e0 e3 −e2 e5 −e4 −e7 e6

e2 −e3 −e0 e1 e6 e7 −e4 −e5

e3 e2 −e1 −e0 e7 −e6 e5 −e4

e4 −e5 −e6 −e7 −e0 e1 e2 e3

e5 e4 −e7 e6 −e1 −e0 −e3 e2

e6 e7 e4 −e5 −e2 e3 −e0 −e1

e7 −e6 e5 e4 −e3 −e2 e1 −e0

Table 1. Multiplication in the basis e0, . . . , e7 of O

the subspace of imaginary octonions. Then we have the orthogonal decomposition

O = R⊕ ImO = R⊕ R7. (2)

On the subspace of imaginary octonions ImO the vector product is defined by

x× y :=
1

2
(xy − yx),

that shares many properties with the vector product in R3.
We state some well known properties of octonions without a proof (see [10]).

Lemma 2.1.

1) If x, y ∈ ImO then

xy = −〈x, y〉+ x× y.
2) For all x, y, z ∈ O we have

x(xy) = (xx)y,

〈xy, xz〉 = 〈x, x〉〈y, z〉 = 〈yx, zx〉.
3) If x, y, z ∈ O are mutually orthogonal unit vectors then

x(yz) = y(zx) = z(xy).

The exceptional group G2 is usually defined as the group of automorphisms of
the octionions. Since it preserves the multiplication, it also preserves the inner
product (1) and the decomposition (2) and therefore is a subgroup of the group
O(7). Actually, it is a subgroup of the group SO(7).

For any point p ∈ S6 ⊂ ImO and a tangent vector X ∈ TpS
6 we define the

automorphism Jp : TpS
6 → TpS

6 by

Jp(X) := p ·X = p×X.
One can easily show that the six-dimensional sphere (S6, 〈〉, J) is an almost Her-
mitian manifold, i.e. Jp satisfies

J2
p = −Id , 〈JpX,JpY 〉 = 〈X,Y 〉,

for all X,Y ∈ TpS6.
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The unit six-dimensional sphere S6 ⊂ ImO ∼= R7 posseses an almost complex
structure J defined by

Jp(X) = pX = p×X, p ∈ S6, X ∈ TpS6.

Obviously, the group G2 preserves the structure J .

Definition 2.1. Let (M, g, J) be an almost Hermitian manifold and N ⊂M be a
submanifold of M . For each p ∈ N and X ∈ TpN we define the Wirtinger angle or
slant angle by

θp(X) := ∠(JX, TpN).

We say that N is a slant submanifold if its slant angle θ is constant, i.e. it doesn’t
depend on the point p ∈ N and the tangent vector X ∈ TpN .

A slant submanifold with angle θp ≡ 0 is usually called an almost complex
submanifold, and a slant submanifold with the angle θp ≡ π

2 is called a totally real
submanifold. A slant submanifold that is neither almost complex nor totally real
is called a proper slant submanifold.

It is known (see [5]) that a proper slant submanifold N ⊂M has even dimension,
which must be less than half the dimension of M . The next lemma shows that in
the case dimN = 2, the slant angle of N is always independent of vector X ∈ TpM .

Lemma 2.2. Let (M, g, J) be an almost-Hermitian manifold and N ⊂M a surface.
The slant angle θp(X) doesn’t depend on the vector X ∈ TpN and

cos θp(Z) = |g(X,JY )|
for all Z ∈ TpN , where (X,Y ) is any orthonormal basis of TpN .

Proof. For each Z ∈ TpN there is an orthogonal decomposition

JZ = PZ + FZ,

where PZ ∈ TpN and FZ ∈ T⊥p N are the tangent and normal components, re-
spectively.

Therefore,

cos θp(Z) =
g(JZ, PZ)

‖JZ‖‖PZ‖
=
‖PZ‖2

‖Z‖‖PZ‖
=
‖PZ‖
‖Z‖

.

Since J is an isometry we have

g(JX, Y ) = −g(X,JY ),

for all X,Y ∈ TpM and particularly for X = Y

g(JX,X) = 0. (3)

Let (X,Y ) be an orthonormal basis of TpN . For any Z = aX + bY ∈ TpN ,

‖PZ‖2 = g(PZ,X)2 + g(PZ, Y )2 = g(JZ,X)2 + g(JZ, Y )2

= g(aJX + bJY,X)2 + g(aJX + bJY, Y )2

= (a2 + b2)g(X, JY )2,
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so we have

cos θp(Z) =

√
a2 + b2 |g(X, JY )|√

a2 + b2
= |g(X, JY )|. �

3. Slant two-dimensional spheres in S6

Definition 3.1. If π ∈ GR(3, ImO) is the imaginary part of a quaternionic sub-
algebra of octonions O we call π an associative 3-plane. Denote by ASSOC ⊂
GR(3, ImO) the set of all associative planes.

Since the quaternions are associative, the associator of any three vectors of an
associative plane equals zero. Vice versa, if the associator of three vectors in ImO
vanishes, then these three elements span an associative plane.

On the vector space ImO = R7 we define the 3-form φ by the formula

φ(x, y, z) := 〈x, yz〉.

In [10] this form is called an associative 3-form and it is shown that the form φ is
calibration with the contact set ASSOC .

We use the following notation for the associative 3-form φ and the associator of
a 3-dimensional plane π ∈ ImO:

φ(π) := |φ(f1, f2, f3)|, and [π] := [f1, f2, f3],

where f1, f2, f3 is an orthonormal basis of π. One can show that these defini-
tions do not depend on the choice of orthonormal basis f1, f2, f3 of the plane π.
Furthermore, both the form φ and the associator are G2 invariant.

The associator and the associative 3-form φ are related by the formula

φ2(π) +
1

4
‖[π]‖2 = 1, (4)

which we prove in Lemma 3.1. It follows that φ(π) ∈ [0, 1] for any 3-dimensional
plane φ and that associative planes are characterized by the condition φ(π) = 1.

In the remainder of this section, we characterize two-dimensional spheres that
are intersections of a 3-dimensional affine plane and the sphere S6. Intrinsically,
they are the complete connected totally umbilic submanifolds of S6 of dimension
two (see for instance [1, Section 2.6]). For the proof of Theorem 3.1 we need the
following lemma.

Lemma 3.1. Let f1, f2, f3 be an orthonormal basis of the plane π. The Gram
matrix of the set of vectors

f = (f1, f2, f3, f2f3, f3f1, f1f2, [f1, f2, f3])

is the matrix  I ϕI 0
ϕI I 0
0 0 4(1− ϕ2)

 ,

where we abbreviate ϕ = φ(f1, f2, f3) and I is the 3×3 identity matrix. Particularly,
the set f spans ImO if and only if φ(π) 6= 1, i.e. the plane π is not associative.
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116 K. OBRENOVIĆ AND S. VUKMIROVIĆ

Proof. Most of the inner products are simple to calculate using properties of octo-
nions from Lemma 2.1. For example:

〈f2f3, f3f1〉 = −〈f2f3, f1f3〉 = 〈f2, f1〉|f3|2 = 0.

Now we prove the most complicated inner product 〈[f1, f2, f3], [f1, f2, f3]〉. First,
note that all f2f3, f3f1, f1f2 are imaginary. Using simple transformations one can
show

f3(f1f2) = −2ϕ− (f1f2)f3. (5)

Using the previous formula we get

〈[f1, f2, f3], [f1, f2, f3]〉 = 4(〈(f1f2)f3, (f1f2)f3〉+ 2〈(f1f2)f3, ϕ〉+ 〈ϕ,ϕ〉)
= 4(1− 2ϕ2 + ϕ2) = 4(1− ϕ2). �

Theorem 3.1. Let S = π′ ∩ S6 be a two-dimensional sphere of radius r ∈ (0, 1]
and denote by π the 3-dimensional subspace parallel to the affine plane π′.

a) If the plane π is associative, then S is slant with slant angle θ = arccos r.
b) If π is not associative, then S is slant if and only if its center is a multiple

of [π], and in this case the slant angle is θ = arccos(rφ(π)).

In particular, if r = 1 (that is, π = π′ and S is a great sphere), then S is slant,
and it is proper slant if π is not associative.

Proof. Let X,Y be an orthonormal basis of the tangent space TpS, p ∈ S. Accord-
ing to the Lemma 2.2 we have

cos θp = |〈X, JY 〉| = |〈X, pY 〉| = |φ(p,X, Y )|.

Let f1, f2, f3 be an orthonormal basis of π. Since π′ is parallel to π we can write
π′ = π +

√
1− r2 ξ for a unit vector ξ ∈ π⊥. Therefore p ∈ S is of the form

p = rp0 +
√

1− r2 ξ

for some point p0 = p1f1 + p2f2 + p3f3 ∈ S6 ∩ π. As before, let X,Y be an
orthonormal basis of the tangent space TpS. Then the vectors p0, X, Y form an
orthonormal basis of π.

cos θp = |φ(p,X, Y )| = |φ(r p0 +
√

1− r2 ξ,X, Y )|

= |r φ(p0, X, Y ) +
√

1− r2 φ(ξ,X, Y )|.

Since |φ(p0, X, Y )| = φ(π), it remains to calculate φ(ξ,X, Y ). Note that if the
plane π is associative then XY ∈ π and we have

φ(ξ,X, Y ) = 〈ξ,XY 〉 = 0.

Therefore, in the case of the associative plane π we have

cos θp = rφ(π) = r,

which proves the statement a).
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Let π be a non-associative plane. Since X,Y ∈ π we can write them in the form

X = x1f1 + x2f2 + x3f3,

Y = y1f1 + y2f2 + y3f3.

The vectors X and Y are orthogonal to the point p0 ∈ π, whose coordinates, with
respect to {f1, f2, f3}, are

(p1, p2, p3) = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1).

Now, an easy calculation yields

φ(ξ,X, Y ) = 〈ξ,XY 〉 = 〈ξ, (x1f1 + x2f2 + x3f3)(y1f1 + y2f2 + y3f3)〉
= 〈ξ, f2f3p1 − f1f3p2 + f1f2p3〉
= φ(ξ, f2, f3)p1 − φ(ξ, f1, f3)p2 + φ(ξ, f1, f2)p3.

The sphere S is slant if this expression doesn’t depend on the point p ∈ S, that
is, if and only if

φ(ξ, f2, f3) = 0, φ(ξ, f1, f3) = 0, φ(ξ, f1, f2) = 0.

This condition means that the vector ξ is orthogonal to the vectors f2f3, f3f1, f1f2,
and since ξ ∈ π⊥, according to Lemma 3.1, the only possibility for the unit vector
ξ is

ξ = ± [π]

|[π]|
,

and therefore the statement b) holds. �

Lemma 3.2. The two 3-dimensional planes π1, π2 ∈ GR(3, ImO) are G2-equivalent
if and only if φ(π1) = φ(π2).

Proof. If the planes π1 and π2 are equivalent by a G2 transformation then we have
φ(π1) = φ(π2) because the form φ is G2 invariant. Let us prove the converse.

If φ(π1) = 1 = φ(π2), i.e. the planes are associative, they are G2-equivalent.
Namely, if the planes π1 and π2 are spanned by orthonormal bases f1, f2, f1f2 and
g1, g2, g1g2 respectively, then any G2 transformation that maps f1, f2 to g1, g2 also
maps π1 onto π2.

Suppose that φ(π) = ϕ 6= 1 and f1, f2, f3 is an orthonormal basis of π. De-
note by F1 = f1, F2 = f2, F3 = f1f2. From Lemma 3.1, it follows that F4 =

1

2
√

1−ϕ2
[f1, f2, f3] is a unit vector orthogonal to F1, F2 and F3. Following the

Cayley-Dixon process, the set of vectors F1, F2, F3, F4, F5 = F1F4, F6 = F2F4,
F7 = F3F4 is G2 basis of ImO, i.e. satisfies the same multiplication properties as
the standard basis e1, . . . , e7 from Section 2. One can easily check the following
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relations:

F5 =
1√

1− ϕ2
(ϕf1 + f2f3),

F6 =
1√

1− ϕ2
(ϕf2 + f3f1),

F7 =
1√

1− ϕ2
(−f3 + ϕf1f2). (6)

There is a G2 transformation that maps vectors F1, F2, F4 to vectors e1, e2, e4, re-

spectively. According to the relation (6) the image of vector f3 is ϕe3−
√

1− ϕ2 e7.
Therefore, in the case φ(π) = ϕ 6= 1, the plane π is G2-equivalent to the plane

πϕ0 = R〈e1, e2, ϕ e3 −
√

1− ϕ2 e7〉.

We conclude that any two planes π1, π2 with φ(π1) = φ(π2) are G2-equivalent, as
claimed. �

Corollary 3.1.1. Let π′ ∩ S6 and τ ′ ∩ S6 be two-dimensional slant spheres from
Theorem 3.1. They are G2-equivalent if and only if they have the same radius and
φ(π) = φ(τ).

Remark 3.1.1. Up to G2-equivalence there is only one almost complex real two-
dimensional sphere. It is a great sphere belonging to the associative plane π, i.e.
φ(π) = 1.

Remark 3.1.2. Totally real two dimensional spheres are S = π′ ∩ S6, where π′ is
an affine 3-plane parallel to the plane π with φ(π) = 0. Up to a G2-equivalence,
there is a unique such sphere for each radius r ∈ (0, 1]. The sphere with radius
r = 1 is minimal. It is found in the classification of totally real minimal surfaces
of constant curvature (see [3, Theorem 6.5 (a)]).

Remark 3.1.3. Slant great spheres S from Theorem 3.1 are exactly those from
the classification of minimal slant surfaces with K ≡ 1 in S6 (see [14, Example
3.1]).

4. Two-dimensional slant orbits in S6

In this section we consider orbits of a maximal torus, i.e. a Cartan subroup H
of the group G2 under the natural action on S6 = G2/SU(3). Since such an action
preserves both the metric on S6 and its almost complex structure, all points on a
fixed orbit have the same slant angle. Therefore, all such two-dimensional orbits
are slant surfaces of S6.

Since any two Cartan subgroups of G2 are conjugate by some element of G2,
they have the same set of orbits. Therefore it is not a loss of generality if we pick
any particular Cartan subgroup H ⊂ G2 to work with.

Denote by E[i,j] =
Eij−Eji

2 , i, j = 1, 2, . . . , 7, i < j, the standard basis of the Lie
algebra so(7) of SO(7). A basis of the Lie algebra g2 of the Lie group G2 can be
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found in [12]. Its Cartan subalgebra h is spanned by

P0 = E[3,2] + E[6,7], Q0 = E[4,5] + E[6,7].

The elements of the corresponding group H = S1 × S1 are of the form

gt,s = exp(tP0 + sQ0) = (exp tP0)(exp sQ0), t, s ∈ R.
It is easy to show that the action of the element gt,s ∈ H on a point p =
(x1, x2, x3, y0, y1, y2, y3) ∈ S6 ⊂ R7 is given by

gt,sp = (x1, x2 cos t− x3 sin t, x3 cos t+ x2 sin t,

y0 cos s+ y1 sin s, y1 cos s− y0 sin s,

y2 cos(s+ t) + y3 sin(s+ t), y3 cos(s+ t)− y2 sin(s+ t)).

(7)

Note that the action of H preserves the x1 coordinate, so the orbit Op of any point
p belongs to the hyperplane x1 = const and therefore to the sphere S5 = S6∩{x1 =
const}.

In the sequel we consider the points of the form p = (x1, 0, x3, 0, y1, y2, y3) that
represent all the orbits. The tangent space of the orbit Op in the point p is spanned
by the vectors

X =
d

dt
(gt,sp)|(t,s)=(0,0) = (0,−x3, 0, 0, 0, y3,−y2),

Y =
d

ds
(gt,sp)|(t,s)=(0,0) = (0, 0, 0, y1, 0, y3,−y2).

(8)

These two vectors are linearly independent, i.e. the orbit Op of point p = (x1, 0, x3,
0, y1, y2, y3) ∈ S6 is two-dimensional if the following conditions are satisfied:

α = x2
3 + y2

1 6= 0,

β = x2
3 + y2

2 + y2
3 6= 0,

γ = y2
1 + y2

2 + y2
3 6= 0.

(9)

An orthonormal basis of tangent space TpOp reads

X =
1√
β

(0,−x3, 0, 0, 0, y3,−y2),

Y =
(0, x3(y2

2 + y2
3), 0, βy1, 0, y3x

2
3,−y2x

2
3)

√
β
√
αβ − x4

3

.

Using Lemma 2.2 we can get the slant angle at any point of the orbit Op, namely

cos θp = |〈X, pY 〉| = |x3 y1 y2|√
αβ − x4

3

. (10)

Careful analysis of the above expression shows that every slant angle θ ∈ [0, π2 ]
is achieved for some point p, so we have the following theorem.

Theorem 4.1. Let p = (x1, 0, x3, 0, y1, y2, y3) ∈ S6 be a point satisfying relations
(9) and Op the orbit of p under the action (7) of Cartan subgroup H ⊂ G2 on the
sphere S6. The orbit is a slant, flat torus with the slant angle given by the formula
(10). The slant angles take all values in the interval [0, π2 ].
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Remark 4.1.1. The orbits Op with the slant angle θ ≡ 0, i.e. almost complex
curves, are obtained for points p = (0, 0,± 1√

3
, 0,± 1√

3
, 1√

3
, 0). They are all G2-

equivalent. These orbits are necessarily minimal, as proven by Gray (see [8]), and
confirmed in Theorem 4.2. This complex curve is linearly full in the totally geodesic
sphere S5 ⊂ S6.

Remark 4.1.2. The orbits Op with the slant angle θ ≡ π
2 , i.e. totally real surfaces,

are obtained if x3 = 0, y1 = 0 or y2 = 0. They are not necessarily minimal (for
example if x1 6= 0). If x3 = 0 or y1 = 0 they belong to the sphere S3, while if
y2 = 0 they are linearly full in some S5 ⊂ S6.

Now, we analyze the geometry of the orbit Op as a submanifold of the sphere S6.
Starting from the basis (8) of TpOp one can calculate the induced connection and
second fundamental form in the sphere S6. Then, one can check that the Gauss
curvature of the orbit Op vanishes. This also follows trivially from the Gauss-
Bonnet formula and the fact that the Gauss curvature is constant along the orbit
that is topologically a torus.

One can check that the mean curvature vector of the orbit Op in the point
p = (x1, 0, x3, 0, y1, y2, y3) is given by the formula

H = (2x1, 0,
N(x3, y1)

D
, 0,

N(y1, x3)

D
, y2(2− x2

3 + y2
1

D
), y3(2− x2

3 + y2
1

D
)),

where

D = (y2
1 + y2

2 + y2
3)x2

3 + y2
1(y2

2 + y2
3),

N(y1, x3) = y1((2y2
1 + 2y2

2 + 2y2
3 − 1)x2

3 + (2y2
1 − 1)(y2

2 + y2
3)).

There are many solutions to the minimality equation H ≡ 0, but most of them
are found to be G2-equivalent. From the formula (10) we also get the slant angle
for the minimal orbits. The result is given by the following theorem.

Theorem 4.2. Let p = (x1, 0, x3, 0, y1, y2, y3) ∈ S6 be a point satisfying relations
(9), and Op its orbit under the action (7). Up to a G2-equivalence, the minimal
orbits Op correspond to points

pα = (0, 0,
1√
3
, 0,

1√
3
,

cosα√
3
,

sinα√
3

), α ∈ (−π
2
,
π

2
], and

p̄ = (0, 0,
1√
2
, 0,

1√
2
, 0, 0).

The orbits of pα are linearly full in the totally geodesic S5 ⊂ S6, have ellipse of
curvature a circle, and slant angle θ ≡ |α|.

The orbit of p̄ is a totally real Clifford torus in S3 ⊂ S6, and its ellipse of
curvature is a segment.

Remark 4.2.1. The totally real minimal orbit corresponds to the point pπ
2

. It
is found in the classification of totally real minimal surfaces of constant curvature
(see [3, Theorem 6.5 (c)]). Minimal orbits with arbitrary slant angle are those from
the classification of minimal, flat, slant surfaces of S6 (see [14, Example 3.2]).
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Remark 4.2.2. Note that the orbits Opα are obtained by certain SO(7) rotation
of the complex curve Op0 , as explained in [2].
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