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ON SLANT CURVES IN TRANS-SASAKIAN MANIFOLDS

SABAN GUVENC AND CIHAN OZGUR

ABSTRACT. We find the characterizations of the curvatures of slant curves in
trans-Sasakian manifolds with C-parallel and C-proper mean curvature vector
field in the tangent and normal bundles.

1. INTRODUCTION

Let v be a curve in an almost contact metric manifold (M, ¢, &, n,g). In [14],
Lee, Suh and Lee introduced the notions of C-parallel and C-proper curves in the
tangent and normal bundles. A curve < in an almost contact metric manifold
(M, ,&,1n,g) is defined to be C-parallel if Vo H = X, C-proper if AH = )¢,
C-parallel in the normal bundle if VEH = \¢, C-proper in the normal bundle if
A+ H = X\¢, where T is the unit tangent vector field of v, H is the mean curvature
vector field, A is the Laplacian, X is a non-zero differentiable function along the
curve v, V+ and Al denote the normal connection and Laplacian in the normal
bundle, respectively [14]. For a submanifold M of an arbitrary Riemannian mani-
fold M, if AH = AH, then M is a submanifold with proper mean curvature vector
field H [7]. If A*H = \H, then M is a submanifold with proper mean curvature
vector field H in the normal bundle [1].

Let M be an almost contact metric manifold and 7(s) a Frenet curve in M
parametrized by the arc-length parameter s. The contact angle a(s) is a function
defined by cos[a(s)] = g(T'(s),£). A curve v is called a slant curve [8] if its contact
angle is a constant. Slant curves with contact angle 7 are traditionally called
Legendre curves [4].

In [I8], Srivastava studied Legendre curves in trans-Sasakian 3-manifolds. In
[11], Inoguchi and Lee studied almost contact curves in normal almost contact 3-
manifolds. In [12], the same authors studied slant curves in normal almost contact
metric 3-manifolds. In [14], Lee, Suh and Lee studied slant curves in Sasakian
3-manifolds. They find the curvature characterizations of C-parallel and C-proper
curves in the tangent and normal bundles. In the present study, our aim is to
generalize results of [14] to a curve in a trans-Sasakian manifold.
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82 SABAN GUVENC AND CIHAN OZGUR

2. PRELIMINARIES

A (2n+ 1)-dimensional Riemannian manifold M is said to be an almost contact
metric manifold [4], if there exist on M a (1,1) tensor field ¢, a vector field &, a
1-form 7 and a Riemannian metric ¢ satisfying

P=-I+n®¢ nE=1, (=0, nop=0

9(@X,9Y) = g(X,Y) =n(X)n(Y),  n(X) =g(X,$),
for any vector fields X,Y on M. Such a manifold is said to be a contact metric
manifold if dn = ®, where ®(X,Y) = g(X, ¢Y) is called the fundamental 2-form
of M [4].
The almost contact metric structure of M is said to be normal if

[@7 <P] (X7 Y) = _2d77(Xa Y)f,

for any vector fields X,Y on M, where [¢, ] denotes the Nijenhuis torsion of ¢.
A normal contact metric manifold is called a Sasakian manifold [4]. It is easy to
see that an almost contact metric manifold is Sasakian if and only if

(Vxp)Y = g(X, V)¢ —n(Y)X.

An almost contact metric manifold M is called a trans-Sasakian manifold [17] if
there exist two functions o and 8 on M such that

(Vx@)Y = alg(X,Y)§ —n(Y)X] + Blg(eX,Y)E —n(Y)pX], (2.1)
for any vector fields X,Y on M. From , it is easily obtained that
Vx{=—apX + B[X — n(X)¢E]. (2.2)

If 8 =0 (resp. & = 0), then M is said to be an a-Sasakian manifold (resp. S-
Kenmotsu manifold). Sasakian manifolds (resp. Kenmotsu manifolds [13]) appear
as examples of a-Sasakian manifolds (resp. [-Kenmotsu manifolds), with o = 1
(resp. 8 =1). For a = 8 = 0, we get cosymplectic manifolds [15]. From , for
a cosymplectic manifold we obtain

Vx€&€=0.
Hence ¢ is a Killing vector field for a cosymplectic manifold [3].

Proposition 2.1. [I6] A trans-Sasakian manifold of dimension greater than or
equal to 5 is either a-Sasakian, B-Kenmotsu or cosymplectic.

From now on, we state “(«, §)-trans-Sasakian manifold”, when the dimension of
the manifold is 3 and « # 0, 5 # 0.

The contact distribution of an almost contact metric manifold M with an almost
contact metric structure (¢, &, 7, g) is defined by

(X e TM : n(X) =0}

and an integral curve of the contact distribution is called a Legendre curve [4].
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ON SLANT CURVES IN TRANS-SASAKIAN MANIFOLDS 83

3. SLANT CURVES WITH C-PARALLEL MEAN CURVATURE VECTOR FIELD

Let (M, g) be an m-dimensional Riemannian manifold and v : I — M a curve
parametrized by arc length. Then ~ is called a Frenet curve of osculating order r,

1 < r < m, if there exists orthonormal vector fields F1, Es, ..., E, along v such
that
E1 = ’y/ = T,
VrE, = k1Es,
VirEy = —ki1 By + ko E3, (3.1)

VTE = *Hr—lEr—h
where k1, ..., K,._1 are positive functions on I.

A geodesic is a Frenet curve of osculating order 1; a circle is a Frenet curve of
osculating order 2 such that i is a non-zero positive constant; a heliz of order r,
r > 3, is a Frenet curve of osculating order r such that «q,...,%,_1 are non-zero
positive constants; a helix of order 3 is called simply a heliz.

Now let (M, g) be a Riemannian manifold and v : I — M a Frenet curve of
osculating order r. By the use of , it can be easily seen that

VrVrT = —kiEy + K} By + k1k2 s,
VoV rT = —3H1n’1E1 + (/-@’1’ — H:f — nlng) FEy
+ (2K K2 + K1Kb) E3 + K1koks Ey,
ViViET = Ky Ea + k1Ko B3,
VEVEVFT = (k) — mng) Ey + (2K k2 + k1KY) B3 + k1kaka Ey.

So we have (see [1])

VrH = —k3E) + ) Fy 4 k1Ko E3, (3.2)
AH = -V VrT
=3k1K By + (K§ + kik3 — KY) B (3.3)
— (2%’1/62 + Hllﬁlz)Eg, — KikokaFEy,
ViH = K\ Ey + k1k2E3, (3.4)
AYH = —V7V3VzT
= (m/{% — Ii/ll) Ey — (2K k2 + k1K) E3 (3.5)
— /’121/?2/@'3E4.

By the use of equations (3.2, (3.3), (3.4) and (3.5), we can directly state the

following proposition:

Proposition 3.1. Letv: 1 C R — M be a non-geodesic Frenet curve in a trans-
Sasakian manifold M. Then
1) v has C-parallel mean curvature vector field if and only if

— KBy + K| By 4 k1Ko B3 = \&;  or (3.6)
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84 SABAN GUVENC AND CIHAN OZGUR

1) v has C-proper mean curvature vector field if and only if
3k1K) Eq + (ni’ + K1K3 — K1) By — (26 ko + K1K5) B3 — k1koks By = A& or (3.7)

1it) v has C-parallel mean curvature vector field in the normal bundle if and
only if
K1 Fy + k1koE3 = X or (3.8)
1) v has C-proper mean curvature vector field in the normal bundle if and only
if
(/im% — kY) By — (2K Ko + K1kh) B3 — k1koks By = A€, (3.9)

where X\ is a non-zero differentiable function along the curve .

Now, let v : I C R — M be a non-geodesic slant curve of order r with contact
angle ap in an n-dimensional trans-Sasakian manifold. By the use of (2.1), (2.2)

and , we obtain
n(T) = cos ap,
r1n(Ez) = —Bsin® ag,
V€ = —apT + BT — cos ap],
VreT = al¢ — cosagT] — B cosappT + k1pFs.

So we have the following theorem:

Theorem 3.1. Let v : I C R — M be a non-geodesic slant curve of order r in
a trans-Sasakian manifold. If v has C-parallel or C'-proper mean curvature vector
field in the normal bundle, then it is a Legendre curve.

Proof. By the use of (3.8), (3.9) and (3.10]), the proof is clear. O

We consider the following cases:

Case I. The osculating order r = 2.
For this case, we have the following results:

Theorem 3.2. Let v : I C R — M be a non-geodesic slant curve of order 2
with contact angle ag in a trans-Sasakian manifold. Then ~v has C-parallel mean
curvature vector field if and only if it satisfies

gy = T 00 (3.14)
c— S8
— cot o csc o
A= —m—— 3.15

where ¢ is an arbitrary constant and s is the arc-length parameter of v. In this
case, M becomes an («, 3)-trans-Sasakian or a B-Kenmotsu manifold with

3 cot o csc

c— S
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Proof. Let v have C-parallel mean curvature vector field. From (3.6)), we have
— Ki By + K By = A (3.16)

If ap = 3, we find x; = 0, which is a contradiction. Thus, ag # 7.
Let 8 # 0. Hence M is an («, §)-trans-Sasakian or a [-Kenmotsu manifold.
Since n(F3) = £sinay, (3.11) gives us

k1 = FFsin ag. (3.17)
By the use of (3.10)), (3.11)) and (3.16]), we get

—K2
A= —1 (3.18)
Cos
K] = k18 sin ag tan ag. (3.19)

Differentiating (3.17) and using (3.19)), we have
B = % sin o tan oy,

which gives us
ﬂ:cotaocsca(), (3.20)

c—s
where ¢ is an arbitrary constant. Using (3.20)) in (3.18]) and (3.19)), we obtain (3.14])
and @.15)

Now, let 8 = 0. Hence M is an a-Sasakian or cosymplectic manifold. In this
case, we have n(E3) = 0. Thus (3.16] gives us k; =constant. So we get

—K1E) = AL
Thus £ = +F;. From (3.1)) and (3.12)), we have
VT€ == —Oé(pT =0= il{,lEg. (321)

Since v is non-geodesic, (3.21]) causes a contradiction.
Conversely, if the above conditions are satisfied, one can easily show that + has
C-parallel mean curvature vector field. O

Using the proof of Theorem [3.2] we have the following corollary:

Corollary 3.1. There does not exist any non-geodesic slant curve of order 2 with
C'-parallel mean curvature vector field in an a-Sasakian or a cosymplectic manifold.

In the normal bundle, we can state the following theorem:

Theorem 3.3. Let v : I C R — M be a non-geodesic slant curve of order 2
with contact angle ag in a trans-Sasakian manifold. Then v has C-parallel mean
curvature vector field in the normal bundle if and only if it is a Legendre curve with

K1 =FB, £=+E,, A==p. (3.22)

In this case, « = 0 and [ is not a constant along the curve .
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Proof. Let v have C-parallel mean curvature vector field in the normal bundle.

From (3.8) and Theorem we have

KIIEQ = )\f
So we have
A = +r],
§=+Es.

Differentiating (3.24]), we find
— OZQDEl —+ ﬂEl = :FKZlEl.
(13.25) gives us (3.22)) and o = 0 along the curve.

Case II. The osculating order r = 3.
For slant curves of order 3, we have the following theorem:

(3.23)

(3.24)

(3.25)

Theorem 3.4. Let v : I C R — M be a non-geodesic slant curve of order 3
with contact angle ag in a trans-Sasakian manifold. Then ~ has C-parallel mean

curvature vector field if and only if
1) it is a curve with

Ky = c.e®n o tanagfﬁ(s)ds’
Ky = [tan ag| 1/ k2 — 2 sin? ag,

Bsin? o

K9 COS (xp
g — COS OéQEl — EQ — E3
K1 K1
and
2
=M
cosag’

(3.26)
(3.27)

(3.28)

(3.29)

where k3 > [3? sin ag, o # 5, ¢ is an arbilrary constant, s is the arc-length
parameter of vy, (in this case, M becomes an («, 8)-trans-Sasakian or a B-Kenmotsu

manifold); or
1) it is a heliz with

2
K1

)\ =

™
ao#gv

Ko = —K1 tanag

cosap’

and
& = cosagFy + sinagFs.
(In this case, o # 0 and § =0 along the curve.)

Proof. Let v have C-parallel mean curvature vector field. From (3.6)), we have

— H%El + H/IEQ + Ki1koF3 = )\f

If ag = 5, we find k1 = 0, which is a contradiction. Thus, ag # 7.
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Let 8 # 0. So M is an (a, 8)-trans-Sasakian or a 3-Kenmotsu manifold. -
gives us & € span{E, Eo, E3}. Thus, we can write

& =cosapEy + sinag (cosEs + sin0FEs) , (3.31)

where 6 is the angle function between E5 and the orthogonal projection of £ onto

span { Es, F3}. From ) and -, we find

—[sin ag . —Ko coOt g
cos = —, sinf=————.
K1 K1
So we obtain (3.28]). We also have (3.29) using (3.30)). Since A\n(E3) = k, we can
calculate
/{’1 = 516 sin ao tan ay, (3.32)

which gives us . Using (3-32) in (3.30)), we find (3.27).

Now, let o # () =0 along the curve. Since n(E3) = 0, (3.30) and (3.31)) give

us k1 > 01is a constant, f = 3 and

- K,%El + KikoFE3 = )\(COS ookl + sin OzoE;g). (333)

From (3.33]), we find ko = —k1 tanag. So ks is also a constant Hence 7 is a helix.
Finally, let a = 8 = 0 along the curve. In this case, and (| give us

— KVlEl + K1/$2E3 = )\57 (334)
& = cosagE; + sinagEs. (3.35)
Differentiating (3.35]) along ~y, we have
%2 _ cot ap. (3.36)
K1
From (3.34)), we get
B2 _ _tan ap. (3.37)
K1
By the use of (3.36)) and (3.37)), we obtain cot gy = — tan ag, which has no solution.
The converse statement is clear. O

Using Theorem we give the following corollary:

Corollary 3.2. There does not ezist any non-geodesic slant curve of order 3 with
C-parallel mean curvature vector field in a cosymplectic manifold.

In the normal bundle, we can state the following theorem:

Theorem 3.5. Let v : I C R — M be a non-geodesic slant curve of order 3
with contact angle o in a trans-Sasakian manifold. Then ~y has C-parallel mean
curvature vector field in the normal bundle if and only if

1) it is a Legendre curve with

K1 # constant,
/ 2 2
K1VKL — B

k18

Ro =
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g, MR- (3.38)

R1 K1

5 =
and
—Ki K1
3
(in this case, M becomes an («, B8)-trans-Sasakian or a 3-Kenmotsu manifold); or
1) it is a Legendre heliz with

A=

£:E37 K/QZO[>0, >\:"<‘J1K/27
(in this case, M becomes an a-Sasakian or an (a, §)-trans-Sasakian manifold).

Proof. From (J3.8)), we have

K1Es + k1o B3 = AE. (3.39)
Then we get
n(Er) =0,
k11 (E2) = —B. (3.40)

Firstly, let 8 # 0. Then M is an (a, §)-trans-Sasakian or a S-Kenmotsu manifold.

From (3.39) and ([3.40)), we have

—K K1
A= ——
g
which gives us k1 # constant. We also have
—BKo
n(ks) = ——. (3.41)
k1
By the use of (3.40) and (3.41]), we can write
e=Pp, Prap (3.42)
K1 K1

Since £ is a unit vector field, we obtain

Ko/ = o
k13 . .

Finally, let 8 = 0 along the curve. Then (3.40) gives us n(E2) = 0. From (3.39)),
we find k1 = constant, £ = F3 and A\ = kiks. Differentiating £ = FE3 along the

curve v, we get ko = a. Thus 7y is a Legendre helix. Since ko = a > 0, M cannot
be cosymplectic.
The converse statement is trivial. O

Ro =

Case III. The osculating order r > 4.
For non-geodesic slant curves of osculating order r > 4, we give the following
theorem:
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ON SLANT CURVES IN TRANS-SASAKIAN MANIFOLDS 89

Theorem 3.6. Let v: I C R — M be a non-geodesic slant curve of order r > 4
with contact angle cvg in a trans-Sasakian manifold with dim M > 5. Then v has
C-parallel mean curvature vector field if and only if it satisfies

k1 = constant,

Ko = —K1 tan ap = constant,
—ag(pEy, Ey) 4r]
= = O[2 Y Constant,
sin ag sin“(2ay)

& = cosagFq + sin gy Es,
@B € span{ky, By},  g(pEr, Ey) #0

and

(2

A= L = constant.
COoS oy

In this case, M becomes an «-Sasakian manifold.

Proof. Let v be a curve with C-parallel mean curvature vector field. From (3.6]),
we have
— K2Ey + K} Eo + k1Ko B3 = AE. (3.44)
Moreover, from Proposition 2.1 M is either a-Sasakian, S-Kenmotsu or cosym-
plectic. Firstly, let us consider a-Sasakian case. We have
n(Ez) =0, (3.45)
V7€ =—apk;. (3.46)
(3-44) and (3.45)) give us &1 is a constant. The Legendre case causes a contradiction
with v being non-geodesic; so, ag # 5. From (3.44)), we obtain
2

A= o constant, (3.47)
cos ay
& = cosapEy + sinagEs3. (3.48)
Differentiating (3.48)) and using (3.46[), we get
—apk] = (Hl COS (ig — Ko Sin OLQ)EQ + k3 sin agFy, (349)
which gives us
wFE, € span{FEs, E,}, (3.50)
- EE
— 049(90 17 4)' (3'51)
S &g
Since k3 > 0, we have g(pEn, E4) # 0. Using (3.44), (3.47) and (3.48)), we find
Ko = —K1 tan ag = constant. (3.52)

Thus, from (3.49) and (3.52)), we get

. K1
K1 COS g — Ro SIN g =
cos Qg
and
K1 .
—apk = Ey + k3 sinagEy. (3.53)
cos Qg

Rev. Un. Mat. Argentina, Vol. 55, No. 2 (2014)
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Since g(¢E1, pEy) = sin® ag, using equation (3.53), we have

) 4k?
K3 = {|a® — —5 —— = constant.
sin“(2ap)

So the necessity condition is proved. Conversely, if v is the above curve, is
satisfied.

Now, let us consider the g-Kenmotsu case. The proof is done as in the proof of
Theorem [3.4] and same results are found with some extra conditions which cause
contradiction. Firstly, we have

r1n(Ey) = —Bsin? ay, (3.54)
and
V& = BT — cos apé]. (3.55)
Since € € span{E1, Es, E3}, we can write
& =cosapEy + sinag {cos0Fy +sin0FE3} (3.56)

where 6 = 0(s) is the angle function between Es and the orthogonal projection of
& onto span {Es, F3}. Since k3 > 0 and sinag # 0; differentiating (3.56) and using
(3.55)), one can easily find that sinf = 0. So we have

& =cosagE; + sinagEs. (3.57)
From (3.44) and (3.57), we have k3 = 0, a contradiction.

Finally, let us consider the cosymplectic case. In this case, we have

n(Ez) =0, (3.58)
Vg = 0. (3.59)

(3.44) and (3.58) give us
£ = cosapE] + sinagFs, (3.60)

k1 = constant.

Differentiating (3.60) and using (3.59), we obtain k3 = 0, which is also a contra-
diction. 0

The following corollaries are direct consequences of Theorem
Corollary 3.3. If the osculating order r =4 in Theorem[3.6, then 7 is a heliz.

Corollary 3.4. There does not exist a non-geodesic slant curve of osculating order
7 > 4 with C-parallel mean curvature vector field in a B-Kenmotsu or a cosymplectic
manifold.

In the normal bundle, we can state the following theorem:
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Theorem 3.7. Let v: I C R — M be a non-geodesic slant curve of order r > 4
with contact angle cvg in a trans-Sasakian manifold with dim M > 5. Then v has
C-parallel mean curvature vector field in the normal bundle if and only if it is a
Legendre curve with

k1 = constant,

ke = ag(pE1, Es), (3.61)

ks = —ag(pE1, Ey), (3.62)

K2+ K2 = a, (3.63)

A = K1Ka,
5 = E3a @ 7é 0
and
b =g, Bp, (3.64)
o o

In this case, M becomes an a-Sasakian manifold.

Proof. From , we have
Ky Es + k1Ko B3 = AE. (3.65)
Then we get
n(Er) =0,
k1n(Ez) = —pB. (3.66)
Firstly, let 8 = 0. Then, from and ,
n(E2) =0,
A = K1Ka,
§=Es. (3.67)
Differentiating , we find
—apEy = —koEp + K3 Ey,

which gives us (3.61), (3.62), (3.63) and (3.64), where o # 0, that is, M is an
a-Sasakian manifold.

Now, let us assume that 8 # 0. We have same results in Theorem [3.5] but some
extra calculations lead to a contradiction. Since £ € span {Es, E5}, we can write

& =cosOFEsy + sinFs, (3.68)

where 6 = 6(s) is the angle function between ¢ and Es. Differentiating (3.68)), we
find

_ —ag(pEy, Ey)
KRy = ——F
sin 0
which gives us a # 0. Since dim M > 5, this contradicts Proposition [2.1 O
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4. SLANT CURVES WITH C-PROPER MEAN CURVATURE VECTOR FIELD
We consider the following cases:

Case I. The osculating order r = 2.
For this case, we have the following theorems:

Theorem 4.1. Let v : I C R — M be a non-geodesic slant curve of order 2
with contact angle oy in a trans-Sasakian manifold. Then v has C-proper mean
curvature vector field if and only if « =0 and 8 # 0 along the curve and
i) v is a Legendre circle with k1 = F3 = constant, £ = +Fy, A\ = —33; or
it) v is a non-Legendre slant curve with
k1 = FOsin oo,
K — k3 = £3r] k1 tan ag, (4.1)
& =cosapky £sinagEs
and ,
3
A= 2l (4.2)
cos g

Proof. Let v have C-proper mean curvature vector field. From (3.7)), we have

3k By + (K — KY) B2 = AL (4.3)
Thus, £ € span{E1, Ex}. So we can write
5 = COs OZ()El =+ sin OtoEQ. (44)

Differentiating (4.4]) and using (3.12)), we find
— apE; + Bsin® agE) F BcosagsinagEy = Fry sinagEy + Ky cosagBy.  (4.5)

(4.4) and (4.5]) give us o = 0 along the curve. We have § # 0, since k1 = F0sin ay.
If g = 5, then 7 is a Legendre curve with x; = F3 = constant, { = +FEp, A = —B3.

Let g # 5. Then, by the use of (4.3) and (4.4), we obtain (4.1)) and (4.2)). O

In the normal bundle, we can state the following theorem:

Theorem 4.2. Let v : I C R — M be a non-geodesic slant curve of order 2
with contact angle oy in a trans-Sasakian manifold. Then v has C-proper mean
curvature vector field in the normal bundle if and only if it is a Legendre curve with

R1 = :Fﬂa g = iEQ? A= an (46)

and B(s) # as+b, where a and b are arbitrary constants. In this case, o = 0 along
the curve.

Proof. Let v have C-proper mean curvature vector field in the normal bundle.
From (3.9) and Theorem ~ is a Legendre curve with

—k/!Ey = AL

So we have
A=k
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and
§==+E,. (4.7)
Differentiating (4.7)), we find
— O[gOEl + ﬂEl = :Fl€1E1. (48)
(4.8) gives us (4.6) and o = 0 along the curve, which completes the proof. O

Case II. The osculating order r = 3.
For this case, we have the following theorems:

Theorem 4.3. Let v : I C R — M be a non-geodesic slant curve of order 3
with contact angle ag in a trans-Sasakian manifold. Then ~v has C-proper mean
curvature vector field if and only if
i) it satisfies
Ko = K1 + «,
263 — Ky =0,
Qo =

Ezg(El_E?))a

A = 3v2kK)

il
47

and
K1 # constant,

(in this case, M becomes an a-Sasakian or a cosymplectic manifold); or
it) it satisfies
3Kk1K] = ) cos ag,
KT+ RiRs — &Y = M(Ba),
— (2K Ko + k1K) = An(E3)
and
0(E2)? +1(E3)? = sin® aq.
(In this case, M becomes an (o, B)-trans-Sasakian or a S-Kenmotsu manifold.)

Proof. Let v have C-proper mean curvature vector field. Then, from (3.7)), we have

3k By + (K + kK3 — KY) Ea — (261 K2 4 K1kb) Es = AL (4.9)
Now, let us assume that § = 0. Then we have n(E3) = 0, so we can write
& = cosapE — sinagEs3. (4.10)

We cannot choose n(E3) = sinayg, because it leads to a contradiction. Differenti-
ating (4.10)), we have
— apE; = (k1 cos g — Kasinag) Ea, (4.11)

which gives us
Ko = K1 cot ag + a. (4.12)
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Since « is a constant, we obtain

Kby = K} cot ag. (4.13)
From (4.9)), we can write
3k1K] = A cos ap, (4.14)
K+ kik: — K] =0 (4.15)
and
2K Ko + K1k = Asin ag. (4.16)
By the use of (4.12)) in (4.15)), we get
K} —sin® aorl = 0. (4.17)
So we have k1 # constant and ag # 5. In view of (4.12), (4.13), (4.14]) and (4.16]),
we find cos2ag = 0, which means that ag = 7. Hence, taking ag = 7 in above

equations, the proof is done for a-Sasakian and cosymplectic manifolds.
Now, let us assume that § # 0. (4.9) gives us £ € span{E1, F2, E3}. So we can
write

& =cosapE; + sinag {cos§Fs +sin0F3}, (4.18)
where 6 = 0(s) is the angle function between E5 and the orthogonal projection of
& onto span {Es, F3}. Using (4.9) and (4.18]), the proof is completed. O

In the normal bundle, we can give the following result:

Theorem 4.4. Let v : I C R — M be a non-geodesic slant curve of order 3

with contact angle o in a trans-Sasakian manifold. Then v has C-proper mean

curvature vector field in the normal bundle if and only if it is a Legendre curve with
i)

K1 = c1e¥® + coe” 7, (4.19)
Ko = Q,
§=FE3; @bk =E;
and
A= —2a%(c1e®® — coe™ ™), (4.20)

where ¢1 and co are arbitrary constants, (in this case, M becomes an a-Sasakian
manifold); or

k1KY — K2K3

A= 3 : (4.21)
£= ;—BEQ + 7”51_52& (4.22)
1 1

and

+ (k] — K1K3) \/K3 — B2 = 2K] K2 + K1KY. (4.23)

In this case, M becomes an (a, B)-trans-Sasakian or a B-Kenmotsu manifold.
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Proof. Let v have C-proper mean curvature vector field in the normal bundle.
From (3.9) and Theorem v is a Legendre curve with

(k1K3 — KY) B2 — (261 K2 + K1Kb) B3 = AL, (4.24)
Let 8 =0. Then we find n(E3) = 0, which gives us

Kika — K] =0, (4.25)
§=Es (4.26)

and
A= — (2K K2 + K1KY) . (4.27)

Differentiating , we have

Ko =« (4.28)

and

pFE1 = Fs.

Since « is a non-zero constant, by the use of and , we find .
Using , and (]41_2_8 , we obtain ([4.20]).

Now, let B # 0. Then (3.11)) and (#.24) give us (#.21)). Since the unit vector
field £ € span {E», F3}, using (3.11), we find ({£.22). By the use of (4.21)),
and , we obtain . Since 8 # 0, M is an («, 3)-trans-Sasakian or a

B-Kenmotsu manifold. U

Case III. The osculating order r > 4.
In this case, we can state the following theorem:

Theorem 4.5. Let v: I C R — M be a non-geodesic slant curve of order r > 4
with contact angle cg in a trans-Sasakian manifold with dim M > 5. Then v has
C-proper mean curvature vector field if and only if it satisfies

3k1K} = X cos ap,
K + K1k — K = A\n(Ey),
—(2k Ko + K1KY) = An(E3),
~kuwaks = An(Ed)
and
n(E2)? 4+ n(E3)? 4+ n(Es)? = sin® ap,

where X\ is a non-zero differentiable function on I.

Proof. Since £ is a unit vector field, by the use of (3.7) and (3.10), the proof is
completed. O

In the normal bundle, we can give the following theorem:
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Theorem 4.6. Let v : I C R — M be a non-geodesic slant curve of order r >
4 with contact angle ag in a trans-Sasakian manifold dim M > 5. Then ~ has
C-proper mean curvature vector field in the normal bundle if and only if it is a

Legendre curve with

"
kiks — K] =0,

k2 = ag(pEr, Es),
k3 = —ag(pEr, Ey),
KJ% + mg = q,
A = =2k Ko — K1k,
E=FE3, a#0
and o ks
pEy = —FEy — —FEj.
! @
In this case, M becomes an «-Sasakian manifold.

Proof. The proof is similar to the proof of Theorem O

5. EXAMPLES

Example 1. Let us consider the 3-dimensional manifold
M= {(x,y,z) c Rz > O} ,

where (z,7,2) are the standard coordinates on R? and the metric tensor field on
M is given by

Lo o 2 2
g:?(dx +dy” +dz7).

The vector fields
0 0 0

el =2—, €y=Z2Z—, €3=—Z—
dy

ox 0z
are g-orthonormal vector fields in x(M). Let ¢ be the (1, 1)-tensor field defined by

per = —ea, @ea =e1, ez =0.

Let us define a 1-form n(Z) = g(Z,e3), for all Z € x(M) and the characteristic
vector field &€ = e3. In ([9], [13]), it was proved that (M, ¢, &, n,g) is a Kenmotsu
manifold. Thus, it is a trans-Sasakian manifold with o =0, 8 = 1.

The curve ¥(s) = (71(s),72(8),73(s)) is a slant curve in M with contact angle
ap if and only if the following equations are satisfied:

2 2
(1)” + (75)” = sin® ag(73)?,
vy = c.e~ 5080

where ¢ > 0 is an arbitrary constant.
Let v: I CR — M, v(s) = (as + b,ms + n,c) where a,b,m,n,c € R, ¢ > 0,
a?+m? = ¢? and s is the arc-length parameter on open interval I. The unit tangent

vector field T along ~ is
a m
T= —e1 + —ea.
c c
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Then v is a Legendre curve since 7(T') = 0, that is, ag = 5. Using Koszul’s
formula, we get VT = —es, which gives us k1 = 1, Es = —e3. After simple
calculations, we find VpFEy = —T | that is, ko = 0. Then ~ is of osculating order
r = 2. From Theorem i), 7 has C-proper mean curvature vector field in the
tangent bundle with k; = 8 =1, £ = —E, A = —383% = —1. Hence, an explicit
example of Theorem i) in the given manifold M is v(s) = (3s,4s,5).

In the above example, if we take e3 = z%, ¢ = e3 and define the other structures
in the same way, we have a trans-Sasakian manifold with « = 0, 8 = —1 which
was given in ([I0], [I3]). In this manifold, v(s) = (s,0,1) is another example of
Theorem [4.1]i) with k1 = —8=1,{ = E», A= -3 = 1.

We will use the following trans-Sasakian manifold given in [5] to construct new
examples.

Let M = N x (a,b) where N is an open connected subset of R? and (a, b) is an
open interval in R. Let (z,y, z) be the coordinate functions on M. Now let us take
the functions

wi,wa: N =R, o f:M—RY.

The normal almost contact metric structure (p,&,n,g) on M is given by

0 1 —W9
Y = -1 0 w1 5
0 0 0
0
¢ = 2 n = dz + widx + wady,
w% + oe2f wiwso w1 i
g = w12 w% + oe2f wa

w1 Wo 1

Let us choose g-orthonormal frame fields as follows:

ef 1o 0 e 1o 0] 0
Hl_ﬁ{ax_wl@z]’ _\/E[é‘y_wzaz_’ H3—§—&~
It is seen that M is a trans-Sasakian manifold with
o= & (O 0w g 180 Of
20 dy Ox 20 0z Oz

In [5], it is shown that v(s) = (71(s), v2(s),73(s)) is a slant curve in M with contact
angle aq if and only if

: 2
(V)2 + (13)2 = 2202

bl

g

w1Y) + ways + 75 = cos ag.
Using this method, we have the following examples:
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Example 2. Let us consider the Legendre helix v(s) = (0, §,2) in (M, ¢,&,n,9)
where w1 = f =0, wo = 2x and 0 = 2z. Then M is a trans-Sasakian manifold of
type (52, 52), that is,

-1

T2z A
It was shown that k1 = kg = i (see [19]). Let us show that v has C-proper mean
curvature vector field in the tangent and normal bundles. After direct calculations,
we obtain T = Hy, V7T = 1H3 Then we have ¢ = H3 = —F5. Finally, we
get Vo Ey = 1T + 1H1 Hence E3 = H;. By the use of Theorems and .
respectively, we find that v is a curve with C-proper mean curvature vector field
in the tangent bundle with A = 5—21 and in the normal bundle with A = 5—41.
Furthermore, in [5], the authors proved that « has proper mean curvature vector
field (in the tangent bundle) with A = £.

Example 3. Let us choose wy = f =0, wo = —y and o
B = 5. Thus M is a 3-Kenmotsu manifold. Then y(s) = (71
slant curve in M if and only if
.2
sin“ g
() + () = T2,

3

—Y2% + 7% = cos .
Let us take y(s) = (0,2%/4\/s,+/2s) in M. We find a = 5, that is, 7 is a Legendre
curve. After some calculations, using Theorem we find that ~ is of osculating
order r = 2 and it has C-parallel mean curvature vector field in the normal bundle
with Kk = 8 = 4%2, §=—FEyand A = —p' = 4%. Moreover, fy has C-proper
mean curvature vector field in the normal bundle with A = " = & Y2 V2 which verifies
Theorem 4.2

Example 4. Let us choose w; = f =0, wo = y and 0 = z. Then o = 0 and
B = 5. Hence M is a S-Kenmotsu manifold. Then v(s) = (71(s),v2(s),v3(s)) is
a slant curve in M if and only if
.2
sin“ ag
(M) + (12)* = ——,
73

Y2vh + V5 = cos ap.

Let us consider the non-Legendre slant curve v(s) = (%573/4\/30 0 fs) in M

715
with contact angle ag = arccos(‘l/g) = arcs1n(21‘/5§ ). After some straightforward

calculations, using Theorem [4.1] u ii), we find that v has C-proper mean curvature
vector field (in the tangent bundle) with

R1 = 7s
VT 2v/2

€ = T L1 = E27
15 15
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5= 15V/7
T 14s ]
and
\ —90v'7
C 4983
It is easy to check that x; satisfies
K — k3 = —3K) k1 tan ap.
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