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ON MINIMAL NON-B-GROUPS

HUAGUO SHI AND ZHANGJIA HAN

Abstract. A finite group G is called a B-group if every proper subgroup of
G is either normal or abnormal in G. In this paper the authors classify the

non-B-groups whose proper subgroups are all B-groups.

1. Introduction

Throughout this paper the term group always means a group of finite order. A
subgroup U is said to be abnormal in G if g ∈ 〈U,Ug〉 for all g ∈ G. The term
abnormal subgroup is due to Carter [1]. Since abnormal subgroups are selfnor-
malizing, abnormality is a strong form of non-normality. Clearly every maximal
non-normal subgroup is abnormal, and thus finite groups without proper abnormal
subgroups are nilpotent. The properties of abnormal subgroups in finite soluble
groups have been investigated in detail (see, for example, [4] and [11]).

Definition 1.1. A group G is called a B-group if every subgroup of G is either
normal or abnormal in G.

By [5, Lemma 1] we know that G is a B-group if and only if every primary
subgroup of G is either normal or abnormal in G. In addition, if G is a B-group,
then every subgroup and every homomorphic image of G is also a B-group.

Given a group theoretical property P, a P-critical group or a minimal non-
P-group is a group which is not P-group but all of whose proper subgroups
are P-groups. There are many remarkable examples about the minimal non-
P-groups: minimal non-abelian groups (Miller and Moreno [10]), minimal non-
nilpotent groups (Schmidt), minimal non-supersolvable groups ([3]), minimal non-
p-nilpotent groups (Itô), minimal non-PN-groups ([12]), minimal non-MSP -groups
([6]), and minimal non-NSN-groups ([7]). In this paper, by applying the structure
of B-groups, we give the classification of minimal non-B-groups.

Our notations are all standard. For example, we denote by AoB the semidirect
product of A and B; Cn always denotes a cyclic group of order n, and π(G) denotes
the set of all prime divisors of |G|. All unexplained notations can be found in [8]
and [11].
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2. Some preliminaries

In this section, we collect some lemmas which will be used in the following.

Lemma 2.1. [8, 7.2.2] Suppose that the Sylow p-subgroups of G are cyclic, where
p is the smallest prime divisor of |G|. Then G has a normal p-complement.

Lemma 2.2. [9] Suppose that p′-group H acts on a p-group G. Let

Ω(G) =

{
Ω1(G), p > 2,

Ω2(G), p = 2.

If H acts trivially on Ω(G), then H acts trivially on G as well.

Lemma 2.3. (Maschke’s Theorem). [8, 8.4.6] Suppose that the action of A on
an abelian group G is coprime and H is an A-invariant direct factor of G. Then
H has an A-invariant complement in G.

Lemma 2.4. [14] If G is a minimal non-abelian simple group, then G is isomorphic
to one of the following simple groups:

(1) PSL(2, p), where p is a prime with p > 3 and 5 - p2 − 1.
(2) PSL(2, 2q), where q is a prime.
(3) PSL(2, 3q), where q is a prime.
(4) PSL(3, 3).
(5) The Suzuki group Sz(2q), where q is an odd prime.

In proving our main theorem, the following result will be frequently used.

Lemma 2.5. [5, Theorem 3] Let G be a B-group. Then one of the following
statements is true:

(1) G is a Dedekind group.
(2) G = KQ, K = G′ is an abelian q′-subgroup of G, Q ∈ Sylq(G) is cyclic,

where q is the smallest prime divisor of |G|. Q induces a fixed-point-free
power automorphism of order q on K, Φ(Q) = Z(G).

3. Minimal non-B-groups

In this section, we classify finite minimal non-B-groups. Here we first note that
the classification of minimal non-Dedekind groups was given in [2] and [10]. So,
it only remains to classify finite minimal non-B-groups which are not minimal
non-Dedekind groups.

In the first place, we study some basic properties of minimal non-B-groups.

Lemma 3.1. Let G be a minimal non-B-group. Then G is solvable.

Proof. Suppose that G is not solvable. Let M be a maximal normal subgroup of
G. Then G/M is a non-abelian simple group and every proper subgroup of G/M
is a B-group and hence G/M is a minimal non-abelian simple group. Thus G/M
is isomorphic to one of the simple groups mentioned in Lemma 2.4. It is well know
that each of PSL(2, p), PSL(2, 3q) and PSL(3, 3) contains a subgroup which is
isomorphic to A4, the alternating group of degree 4. However, the group A4 is
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not a B-group. So G/M can not be isomorphic to PSL(2, p) or PSL(2, 3q) or
PSL(3, 3).

Suppose that G/M ∼= Sz(q), where q = 2r, r is an odd prime. By [13, Propo-

sition 16], G has an abelian subgroup A with order 2r + 2
r+1
2 + 1 such that

|NG(A)| = 4(2r + 2
r+1
2 + 1) and CG(x) = A for any x ∈ A. Apparently NG(A) is

a proper subgroup of G. However NG(A) is not a B-group, a contradiction. So
G/M � Sz(q).

Suppose that G/M ∼= PSL(2, 2r), r a prime. As PSL(2, 4) ∼= PSL(2, 5) ∼= A5,
we may assume that r is an odd prime. As we all know that PSL(2, 2r) has a
maximal subgroup which is a Frobenius subgroup F of order 2r(2r − 1) with the
Frobenius kernel K of order 2r. It is easy to see that F is not a B-group. So G/M
can not be isomorphic to PSL(2, 2r). �

Lemma 3.2. Let G be a minimal non-B-group. Then |π(G)| ≤ 3.

Proof. Suppose that |π(G)| > 3. Let {P1, P2, . . . , Pk, . . . , Pr}, r > 3, be a Sylow
system of G, where Pi ∈ Sylpi

(G), i = 1, 2, . . . , r. SinceG is not a B-group, without

loss of generality we suppose that P2 � NG(P1). Hence for every Pi(i ≥ 3), the
subgroup P1P2Pi is a B-group described in (2) of Lemma 2.5. Hence P1P2Pi =
P2Pi o P1. Now by the arbitrariness of Pi, we get that G itself is a B-group, a
contradiction. �

The following theorem classifies all minimal non-B-groups whose order has just
two prime divisors.

Theorem 3.3. Let G be a minimal non-B-group with |π(G)| = 2. Then one of
the following holds.

(1) G = Cq o (Cpn × Cp), Φ(Cpn)Cp = Z(G).
(2) G = Cq oQ8, Q8 induces an automorphism of order 2 on Cq.
(3) G = Cqn o Cpm , m ≥ 2, Φ(Φ(P )) = Z(G).

(4) G = 〈a, b, c | aq = bq = cp
m

= 1, ab = ba, ac = ai, bc = bj , i 6≡
j (mod q), ip ≡ jp ≡ 1 (mod q)〉.

(5) G = 〈a, b, c | aqm = bq
m

= 1, cp
n

= 1, ab = ba, ac = au, bc = bv. u 6≡
v (mod qm), u ≡ v (mod qm−1), up ≡ vp ≡ 1 (mod qm), u 6≡ 1 (mod q),
v 6≡ 1 (mod q), m ≥ 2〉.

(6) G = Q o P , Q is an elementary abelian q-group. P is cyclic, P acts
irreducibly on Q, Φ(P ) induces a power automorphism of order p on Q,
and Φ(Φ(P )) = Z(G).

Proof. Let G = PQ, where P ∈ Sylp(G) and Q ∈ Sylq(G). For convenience, we
always let p be the smallest prime divisor of |G|. Since G is solvable, there is a
normal maximal subgroup M of G such that |G : M | = p or q. By our assumption,
M is a B-group. Hence we can get that either P or Q must be normal in G.

Case 1. P is normal in G.
By Lemma 2.1, P is not a cyclic subgroup. Let Q1 and Q2 be two different

maximal subgroups of Q. Then PQ1 and PQ2 are all B-groups by hypothesis. By
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Lemma 2.5, both PQ1 and PQ2 are nilpotent, which implies that G is nilpotent,
a contradiction. Therefore we get that Q is cyclic. Since Φ(Q)P is a B-group, we
have that Φ(Q)P = Φ(Q)× P . Thus Φ(Q) ≤ Z(G).

Again by Lemma 2.5, we know that Q acts non-trivially on P , but acts trivially
on every Q-invariant proper subgroup of P . Applying Hall–Higman’s reduction
theorem, we get that exp(P ) = p (when p > 2) or exp(P ) ≤ 4 (when p = 2)
and P ′ = Φ(P ) = Ω1(P ) ≤ Z(G). Moreover, we have that Q acts irreducibly on
P/Φ(P ).

If exp(P ) = p, then P is an elementary abelian p-group. Now G = P o Cqm ,
Q acts irreducibly on the elementary abelian p-subgroup P , and Φ(Cqm) = Z(G).
By a routine check, we can get that G is a minimal non-Dedekind group, a contra-
diction.

If exp(P ) = 4, then we can easily get that P is not abelian. Hence P = Q8×E,
where E is an elementary abelian p-group. Since QΩ1(P ) is a B-group, we get
that Q ≤ CG(E) by Lemma 2.5. Thus E = 1 since Q acts irreducibly on P/Φ(P ).
As we all know that Aut(Q8) = S4, so G = Q8 oC3m . It is easy to see that G is a
minimal non-Dedekind group, a contradiction.

Case 2. Q is normal in G.
(1) Suppose in the first place that P is non-cyclic. By the same argument as

above we can get that exp(Q) = q. Hence Q is an elementary abelian q-group,
and the action of P on Q is irreducible. Assume that |Q| > q. Let P1 and P2 be
two maximal subgroups of P . Then both P1Q and P2Q are B-groups and hence
Pi (i = 1, 2) induces a fixed-point-free power automorphism on Q, which implies
that the action of P on Q is reducible, a contradiction. Thus we have |Q| = q.
On the other hand, let P1 be a maximal subgroup of P . Then P1Q is a B-group.
It follows that if P has more than one non-cyclic maximal subgroup, then G is
nilpotent by Lemma 2.5, a contradiction. Hence P has at most one non-cyclic
maximal subgroup. Since P is a B-group, P must be isomorphic to Cpn × Cp or
the quaternion group Q8.

If P ∼= Cpn × Cp, then G ∼= Cq o (Cpn × Cp), Φ(Cpn)Cp = Z(G). That is, G is
of type (1).

If P ∼= Q8, then G ∼= Cq o Q8, Q8 induces an automorphism of order 2 on Cq.
That is, G is of type (2).

(2) Suppose that P is cyclic and P acts reducibly on Q/Φ(Q). Let P = 〈c〉 and
Q = 〈x1〉 × 〈x2〉 × · · · × 〈xn〉, o(xi) = qmi , where qm1 = exp(Q) and xci = xui

i .
If n ≥ 3, then the action of P on 〈x1, xi〉 is reducible, there exists a natural
number w satisfying xc = xw for each x ∈ 〈x1, xi〉. Hence w ≡ u1 (mod qm1) and
w ≡ ui (mod qmi). Thus we get ui ≡ u1 (mod qmi). It follows that P induces
a fixed-point-free power automorphism of order p on Q and hence G itself is a
B-group, a contradiction. Therefore we have n ≤ 2.

If Q is cyclic, then we have |P | ≥ p2 by the structure of B-groups. Hence
G = Cqn o Cpm , m ≥ 2, Φ(Φ(P )) = Z(G). That is, G is of type (3).
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If Q is non-cyclic and Ω1(Q) = Q, then Q is an elementary abelian q-group. In
this case, G = 〈a, b, c〉, aq = bq = cp

m

= 1, ab = ba, ac = ai, bc = bj , i 6≡ j (mod q),
ip ≡ jp ≡ 1 (mod q). That is, G is of type (4).

IfQ is non-cyclic and Ω1(Q) 6= Q, then we can get CQ(P ) = 1 by Lemma 2.2. Let

Q = 〈a, b〉, aqm = 1, bq
n

= 1 and P = 〈c〉, ac = au, bc = bv. We claim that m = n.
Indeed, let m < n, and Q1 = 〈a, bq〉. Then PQ1 = Q1 o P is a B-group. Hence
there exists a natural number w such that ac = aw, (bq)c = (bp)w by Lemma 2.5.
It follows that u ≡ w (mod qm) and qv ≡ qw (mod qn). Thus v ≡ w (mod qn−1).
Since m < n, we get v ≡ w (mod qm) and hence u ≡ v (mod qm). Therefore
we have xc = xv for every x ∈ Q, which implies that P induces a fixed-point-free
power automorphism of order p on Q, a contradiction. Hence m = n and then
G = 〈a, b, c〉, aqm = bq

m

= 1, cp
n

= 1, ab = ba, ac = au, bc = bv. u 6≡ v (mod qm),
u ≡ v (mod qm−1), up ≡ vp ≡ 1 (mod qm), u 6≡ 1 (mod q), v 6≡ 1 (mod q),m ≥ 2.
That is, G is of type (5).

(3) Suppose that P is cyclic and the action of P on Q/Φ(Q) is irreducible. Then,
we can easily get that either Q is cyclic or Q = Ω1(Q). If Q is cyclic, then G is of
type (3).

If Q = Ω1(Q), then G = QoP , Q is an elementary abelian q-group. P is cyclic,
the action of P on Q is irreducible, Φ(P ) induces a power automorphism of order
p on Q, and Φ(Φ(P )) = Z(G). That is, G is of type (6). �

The following theorem classifies all minimal non-B-groups whose order has just
three prime divisors.

Theorem 3.4. Let G be a minimal non-B-group with |π(G)| = 3. Then one of
the following holds:

(1) G = (Cq × Cr)o Cpm , and Z(G) = Cq × Φ(Cpm).
(2) G = (Cr o Cqm)o Cp, and Z(G) = Cr × Φ(Cqm) or Z(G) = 1.

Proof. Since G is solvable, we may assume that G = PQR, where P ∈ Sylp(G), Q ∈
Sylq(G), R ∈ Sylr(G). Without loss of generality, we always let p be the smallest
prime divisor of |G|. If P is non-cyclic, then PQ and PR are all nilpotent by
Lemma 2.5. Hence P is normal in G. Let P1 be a maximal subgroup of P . Then
P1QR is a B-group and hence we get that P1QR is nilpotent by Lemma 2.5, which
implies that G itself is nilpotent, a contradiction. Thus we have that P is cyclic.
By Lemma 2.1, QREG. Since QR is a B-group, we have by Lemma 2.5 that RQ
is either a Dedekind group or a group of the type (2) in Lemma 2.5.

Case 1. RQ is a Dedekind group.
In this case both Q and R are normal in G. Since G is not a B-group, we

know that either R or Q can not normalize P . Assume that R can not normalize
P for instance, and let x ∈ R be an element of order r. If 〈x〉PQ is a B-group,
then we have x ∈ CR(P ), which implies that P acts trivially on Ω1(R). Thus P
acts trivially on R by Lemma 2.2, a contradiction. Therefore we get that R is of
prime order. By the same argument we have that Q is of prime order too. Hence
G = (Cq × Cr)o Cpm , and Z(G) = Cq × Φ(Cpm). That is, G is of type (1).
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Case 2. RQ is a group of the type (2) in Lemma 2.5.
Without loss of generality, we assume that q < r. Then R � NG(Q). By the

same reason as in Case 1, we can get that P and R are all of prime order. If P
acts trivially on R, then we have that P acts trivially on Φ(Q) since PΦ(Q)R is a
B-group. Thus G = (Cr o Cqm)o Cp, and Z(G) = Cr × Φ(Cqm). That is, G is of
type (2).

If P acts non-trivially on R, then either Φ(Q) = 1 or P acts non-trivially on
Φ(Q). Thus G = (Cr o Cqm)o Cp, and Z(G) = 1. That is, G is of type (2). �
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