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INEQUALITIES FOR SUBMANIFOLDS OF A RIEMANNIAN

MANIFOLD OF NEARLY QUASI-CONSTANT CURVATURE

WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

PAN ZHANG, XULIN PAN, AND LIANG ZHANG

Abstract. By using two new algebraic lemmas we obtain Chen’s inequalities
for submanifolds of a Riemannian manifold of nearly quasi-constant curvature

endowed with a semi-symmetric non-metric connection. Moreover, we correct

a result of C. Özgür and A. Mihai’s paper (Chen inequalities for submanifolds
of real space forms with a semi-symmetric non-metric connection, Canad.

Math. Bull. 55 (2012), 611–622).

1. Introduction

According to B.-Y. Chen [1], one of the most important problems in submani-
fold theory is to find simple relationships between the main extrinsic invariants and
the main intrinsic invariants of a submanifold. Recently the study of this topic has
attracted a lot of attention [1, 2, 3, 4, 5]. Related with the famous Nash embedding
theorem [6], B.-Y. Chen introduced a new type of Riemannian invariants, known
as δ-invariants [3, 4, 5]. The author’s original motivation was to provide answers
to a question raised by S. S. Chern concerning the existence of minimal isometric
immersions into Euclidean space [7]. Therefore, B.-Y. Chen obtained a necessary
condition for the existence of minimal isometric immersion from a given Riemann-
ian manifold into Euclidean space and established inequalities for submanifolds
in real space forms in terms of the sectional curvature, the scalar curvature and
the squared mean curvature [8]. Later, he established general inequalities relat-
ing δ(n1, . . . , nk) and the squared mean curvature for submanifolds in real space
forms [9]. Similar inequalities also hold for Lagrangian submanifolds of complex
space forms. However, in [10], B.-Y. Chen proved that, for any δ(n1, . . . , nk), the
equality case holds at a single point if and only if the Lagrangian submanifold is
minimal at that point. This indicated that the inequality was not optimal and
inspired people to look for a more optimal inequality. In 2007, T. Oprea improved
the inequality on δ(2) for Lagrangian submanifolds in complex space forms [11].
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Recently, B.-Y. Chen and F. Dillen established general inequalities for Lagrangian
submanifolds in complex space forms and provided some examples showing that
these new improved inequalities are the best possible [12]. However, it was pointed
out in [13] that the proof of the general inequality given in [12] is incorrect when∑k
i=1

1
2+ni

> 1
3 . In [14], B.-Y. Chen, F. Dillen, J. Van der Veken and L. Vrancken

corrected the proof of the general inequality in the case n1 + · · · + nk < n and
showed that the inequality can be improved in the case n1 + · · ·+ nk = n.

Such invariants and inequalities have many nice applications to several areas in
mathematics [15].

Afterwards, many papers studied Chen’s inequalities for different submanifolds
in various ambient spaces, like generalized S-space forms [16], generalized complex
space forms [17], (κ, µ)-contact space forms [18], Riemannian manifold of nearly
quasi-constant curvature [19] and Sasakian space forms [20].

Recently, C. Özgür and A. Mihai proved Chen’s inequalities for submanifolds of
real space forms endowed with a semi-symmetric non-metric connection [21]. In this
paper, we obtain Chen’s first inequalities and Chen–Ricci inequalities for subman-
ifolds of a Riemannian manifold of nearly quasi-constant curvature endowed with
a semi-symmetric non-metric connection by using algebraic lemmas. We should
point out that our approaches are different from B.-Y. Chen’s. Moreover, we show
that a result of C. Özgür and A. Mihai [21, Theorem 4.1] is incorrect. For the sake
of correcting the result, we establish Chen–Ricci inequalities for submanifolds of
real space forms with a semi-symmetric non-metric connection in Section 5.

2. Preliminaries

To meet the requirements in the next sections, here the basic elements of the
theory of a Riemannian manifold endowed with a semi-symmetric non-metric con-
nection are briefly presented.

Let Nn+p be an (n + p)-dimensional Riemannian manifold with Riemannian
metric g and the linear connection ∇. For the vector fields X,Y on Nn+p the
torsion tensor field T of the linear connection ∇ is defined by T (X,Y ) = ∇XY −
∇YX − [X,Y ]. A linear connection ∇ is said to be a semi-symmetric connection

if the torsion tensor T of the connection ∇ satisfies T (X,Y ) = φ(Y )X − φ(X)Y ,
where φ is a 1-form on Nn+p. Further, if ∇ satisfies ∇g = 0, then ∇ is called
a semi-symmetric metric connection [22]. If ∇g 6= 0, then ∇ is called a semi-

symmetric non-metric connection [23]. Suppose ∇̂ is the Levi–Civita connection
of N . Following [23], we define a semi-symmetric connection ∇ given by

∇XY = ∇̂XY + φ(Y )X,

where φ is a 1-form on N . This clearly is a semi-symmetric non-metric connection.
As φ is a 1-form we can introduce a dual vector field P by

g(P,X) = φ(X).
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Let Mn be an n-dimensional submanifold of an (n + p)-dimensional manifold
Nn+p with the semi-symmetric non-metric connection ∇ and the Levi–Civita con-

nection ∇̂. On Mn we consider the induced semi-symmetric non-metric connection
denoted by ∇ and the induced Levi–Civita connection denoted by ∇̂. Let R be the

curvature tensor of Nn+p with respect to ∇ and R̂ the curvature tensor of Nn+p

with respect to ∇̂. We also denote by R and R̂ the curvature tensors associated to
∇ and ∇̂.

The Gauss formulas with respect to ∇, respectively ∇̂, can be written as follows

∇XY = ∇XY + h(X,Y ), ∇̂XY = ∇̂XY + ĥ(X,Y ),

for any vector fields X, Y on Mn, where h is a (0, 2) symmetric tensor on Mn

and ĥ is the second fundamental form associated to the Levi–Civita connection ∇̂.
According to formula (3.4) in [24] we have

h = ĥ. (2.1)

We will consider a Riemannian manifoldNn+p of nearly quasi-constant curvature
[25] endowed with a semi-symmetric non-metric connection ∇ and the Levi–Civita

connection ∇̂. From [25], for any vector fields X,Y , Z,W on Nn+p, the curvature

tensor R̂ with respect to the Levi–Civita connection ∇̂ on Nn+p is expressed by

R(X,Y , Z,W ) = a[g(X,Z)g(Y ,W )− g(X,W )g(Y , Z)]

+ b[g(Y ,W )B(X,Z)− g(Y ,Z)B(X,W )

+ g(X,Z)B(Y ,W )− g(X,W )B(Y , Z)],

(2.2)

where a, b are scalar functions and B is a non-zero symmetric tensor of type (0, 2).
If b = 0, it can be easily seen that the manifold reduces to a space of constant
curvature.

A non-flat Riemannian manifold (Nm, g), m > 2, is defined to be a nearly
quasi-Einstein manifold if its Ricci tensor satisfies the condition

S(X,Y ) = cg(X,Y ) + dE(X,Y ),

where X,Y are any vector fields on N and c and d are non zero scalar functions and
E is a non-zero symmetric tensor of type (0, 2) [26]. It can be easily seen that every
Riemannian manifold of nearly quasi-constant curvature is a nearly quasi-Einstein
manifold.

Example 2.1 ([26]). Let (R4, g) be a Riemannian manifold endowed with the met-
ric given by

ds2 = gijdx
idxj = (x4)

4
3 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2.

Then (R4, g) is a manifold of nearly quasi-constant curvature. Detailed explana-
tions were given in [26](see also [19]).
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The curvature tensor R with respect to the semi-symmetric non-metric connec-
tion ∇ on Nn+p can be written as (see [23])

R(X,Y , Z,W ) = R̂(X,Y , Z,W ) + s(Y ,Z)g(X,W )− s(X,Z)g(Y ,W ), (2.3)

for any vector fields X,Y , Z,W on N , where s is a (0, 2)-tensor field defined by

s(X,Y ) = (∇̂Xφ)Y − φ(X)φ(Y ).

From (2.2) and (2.3) it follows that the curvature tensor R can be expressed as

R(X,Y , Z,W ) = a[g(X,Z)g(Y ,W )− g(X,W )g(Y , Z)]

+ b[g(Y ,W )B(X,Z)− g(Y , Z)B(X,W )

+ g(X,Z)B(Y ,W )− g(X,W )B(Y ,Z)]

+ s(Y ,Z)g(X,W )− s(X,Z)g(Y ,W ).

(2.4)

Decomposing the vector field P on M uniquely into its tangent and normal
components PT and P⊥, respectively, we have P = PT + P⊥. For any vector
fields X,Y, Z,W on M , the Gauss equation with respect to the semi-symmetric
non-metric connection is (see [24])

R(X,Y, Z,W ) = R(X,Y, Z,W ) + g(h(X,Z), h(Y,W ))− g(h(X,W ), h(Y,Z))

+ g(P⊥, h(Y,Z))g(X,W )− g(P⊥, h(X,Z))g(Y,W ).

(2.5)

In Nn+p we can choose a local orthonormal frame

e1, . . . , en, en+1, . . . , en+p, (2.6)

such that, restricting to Mn, e1, e2, . . . , en are tangent to Mn. We write hrij =

g(h(ei, ej), er). The squared length of h is ‖h‖2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)) and

the mean curvature vector of M associated to ∇ is H = 1
n

n∑
i=1

h(ei, ei). Similarly,

the mean curvature vector of Mn associated to ∇̂ is Ĥ = 1
n

n∑
i=1

ĥ(ei, ei). Combining

with (2.1) we have

H = Ĥ.

Let π ⊂ TxM and π⊥ ⊂ T⊥x M be plane sections for any x in Mn and K(π) the
sectional curvature of Mn associated to the induced semi-symmetric non-metric
connection ∇. The scalar curvature τ at x is defined by

τ(x) =
∑

1≤i<j≤n

Kij . (2.7)

Suppose L is an l-dimensional subspace of TxM , x ∈M , l ≥ 2 and {e1, . . . , el}
an orthonormal basis of L. We define the scalar curvature τ(L) of the l-plane L by

τ(L) =
∑

1≤µ<ν≤l

K(eµ ∧ eν). (2.8)
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For simplicity we put

Ψ1(L) =
∑

1≤i<j≤l

[s(ei, ei) + φ(h(ei, ei))],

Ψ2(L) =
∑

1≤i<j≤l

[B(ei, ei)
2 +B(ej , ej)

2].
(2.9)

For an integer k ≥ 0 we denote by S(n, k) the set of k-tuples (n1, . . . , nk) of
integers ≥ 2 satisfying n1 < n and n1 + · · ·+nk ≤ n. We denote by S(n) the set of
unordered k-tuples with k ≥ 0 for a fixed n. For each k-tuples (n1, . . . , nk) ∈ S(n),
B.-Y. Chen [9] defined a Riemannian invariant δ(n1, . . . , nk) as follows:

δ(n1, . . . , nk)(x) = τ(x)− S(n1, . . . , nk)(x), (2.10)

where
S(n1, . . . , nk)(x) = inf{τ(L1) + · · ·+ τ(Lk)},

and L1, . . . , Lk run over all k mutually orthogonal subspaces of TxM such that
dimLj = nj , j ∈ {1, . . . , k}. In particular, we have δ(2) = τ(x)− inf K, where K
is the sectional curvature.

For each (n1, . . . , nk) ∈ S(n), we put

c(n1, . . . , nk) =

n2
(
n+ k − 1−

k∑
j=1

nj
)

2
(
n+ k −

k∑
j=1

nj
) ,

d(n1, . . . , nk) =
1

2
[n(n− 1)−

k∑
j=1

nj(nj − 1)].

We recall the well-known Chen’s lemma:

Lemma 2.2 ([8]). Let a1, a2, . . . , an, b be (n+ 1)(n ≥ 2) real numbers such that

(

n∑
i=1

ai)
2 = (n− 1)(

n∑
i=1

a2
i + b).

Then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3 = · · · = an.

Most of the geometers (cf. [8, 16, 17, 18, 19, 20, 21]) established inequalities
relating δ(2) and the squared mean curvature for different submanifolds in various
ambient spaces by using the above algebraic lemma, except for T. Oprea (cf. [11]).
In [11], T. Oprea obtained Chen’s inequalities for Lagrangian submanifolds in com-
plex space forms by using optimization techniques applied in the setup of Riemann-
ian geometry. We will use another algebraic lemma to obtain inequalities relating
δ(2) and the squared mean curvature in Section 3.

Lemma 2.3. Let f(x1, x2, . . . , xn), n ≥ 3, be a function in Rn defined by

f(x1, x2, . . . , xn) = (x1 + x2)

n∑
i=3

xi +
∑

3≤i<j≤n

xixj .
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If x1 + x2 + · · ·+ xn = (n− 1)ε, then we have

f(x1, x2, . . . , xn) ≤ (n− 1)(n− 2)

2
ε2,

with the equality holding if and only if x1 + x2 = x3 = · · · = xn = ε.

Proof. By simple calculation, we have

f(x1, x2, . . . , xn) = (x1 + x2)

n∑
i=3

xi +
∑

3≤i<j≤n

xixj

=
1

2
{(x1 + x2 + · · ·+ xn)2 − [(x1 + x2)2 + x2

3 + · · ·+ x2
n]}

=
1

2
{(n− 1)2ε2 − [(x1 + x2)2 + x2

3 + · · ·+ x2
n]}.

(2.11)

On the other hand, by the Cauchy–Schwarz inequality we have

[(x1 + x2) + x3 + · · ·+ xn]2 ≤ (n− 1)[(x1 + x2)2 + x2
3 + · · ·+ x2

n], (2.12)

with the equality holding if and only if x1 + x2 = x3 = · · · = xn.
Noting that (x1 + x2) + · · ·+ xn = (n− 1)ε, from (2.12) we have

(x1 + x2)2 + x2
3 + · · ·+ x2

n ≥ (n− 1)ε2. (2.13)

Using (2.11) and (2.13) we derive

f(x1, x2, . . . , xn) ≤ 1

2
[(n− 1)2ε2 − (n− 1)ε2] =

(n− 1)(n− 2)

2
ε2,

which proves the lemma. �

In Section 5, we use a more simple way to obtain the relation between the Ricci
curvature and the squared mean curvature. We need the following lemma.

Lemma 2.4. Let f(x1, x2, . . . , xn) be a function in Rn defined by

f(x1, x2, . . . , xn) = x1

n∑
i=2

xi.

If x1 + x2 + · · ·+ xn = 2ε, then we have

f(x1, x2, . . . , xn) ≤ ε2,

with the equality holding if and only if x1 = x2 + x3 + · · ·+ xn = ε.

Proof. From x1 + x2 + · · ·+ xn = 2ε, we have
n∑
i=2

xi = 2ε− x1.

It follows that

f(x1, x2, . . . , xn) = x1(2ε− x1) = −(x1 − ε)2 + ε2,

which proves the lemma. �
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3. Chen’s first inequality

According to equation (3.1) in [21], denote by

Ω(X) = s(X,X) + g(P⊥, h(X,X)), (3.1)

for a unit vector X tangent to Mn at a point x. We remark that Ω doesn’t depend
on X and denote it simply by Ω. Detailed explanations were given in the proof of
Theorem 3.1 in [21]. From the definition of vector field P , we have

φ(H) =
1

n

n∑
i=1

φ(h(ei, ei)) = g(P⊥, H). (3.2)

For submanifolds of a Riemannian manifold of nearly quasi-constant curvature
endowed with a semi-symmetric non-metric connection we establish the following
optimal inequality relating δ(2) and squared mean curvature, which we will call
Chen’s first inequality. For simplicity, we denote by

χ =

n∑
i=1

B(ei, ei), λ =

n∑
i=1

s(ei, ei). (3.3)

Theorem 3.1. Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n + p)-
dimensional Riemannian manifold of nearly quasi-constant curvature Nn+p en-
dowed with a semi-symmetric non-metric connection. Then we have

τ(x)−K(π) ≤ (n+ 1)(n− 2)

2
a+ b[(n− 2)χ+ traceB|π⊥ ]

+
n2(n− 2)

2(n− 1)
‖H‖2 − n− 1

2
λ− n2 − n

2
φ(H) + Ω,

(3.4)

where π is a 2-plane section of TxM
n, x ∈ Mn. The equality case of (3.4) holds

at a point x ∈ M if and only if, with respect to a suitable orthonormal basis {eA}
at x, the shape operators Ar = Aer take the following forms:

An+1 =


hn+1

11 0 0 · · · 0
0 hn+1

22 0 · · · 0
0 0 hn+1

11 + hn+1
22 · · · 0

...
...

...
. . . 0

0 0 0 · · · hn+1
11 + hn+1

22


and

Ar =


hr11 hr12 0 · · · 0
hr12 −hr11 0 · · · 0
0 0 0 · · · 0
...

...
...

. . . 0
0 0 0 · · · 0

 , r = n+ 2, . . . , n+ p.

Remark 3.2. For b = 0, Theorem 3.1 is due to C. Özgür and A. Mihai [21,
Theorem 3.1].

Rev. Un. Mat. Argentina, Vol. 56, No. 2 (2015)



8 PAN ZHANG, XULIN PAN, AND LIANG ZHANG

Proof. We consider the point x ∈Mn, and choose a local orthonormal frame (2.6)
such that {e1, e2} is an orthonormal frame in the 2-plane which minimizes the
sectional curvature at the point x. We remark that

B(e1, e1) +B(e2, e2) = χ− traceB|π⊥ . (3.5)

Using (2.4), (2.5) and (3.2) we have

Rijij = a+ b[B(ei, ei) +B(ej , ej)]− s(ei, ei)− φ(h(ei, ei))

+

n+p∑
r=n+1

[hriih
r
jj − (hrij)

2],
(3.6)

and it follows that

τ(x) =
∑

1≤i<j≤n

Rijij =
n2 − n

2
a+ b(n− 1)χ− (n− 1)

2
λ− n2 − n

2
φ(H)

+

n+p∑
r=n+1

∑
1≤i<j≤n

[hriih
r
jj − (hrij)

2].

(3.7)

Using (3.1), (3.3), (3.5) and (3.6) we have

R1212 = a+ b(χ− traceB|π⊥)− Ω +

n+p∑
r=n+1

[hr11h
r
22 − (hr12)2]. (3.8)

From (3.7) and (3.8) one gets

τ(x)−K(π)

=
(n+ 1)(n− 2)

2
a+ b[(n− 2)χ+ traceB|π⊥ ]− (n− 1)

2
λ− n2 − n

2
φ(H) + Ω

+

n+p∑
r=n+1

 ∑
1≤i<j≤n

hriih
r
jj − hr11h

r
22 −

∑
1≤i<j≤n

(hrij)
2 + (hr12)2


=

(n+ 1)(n− 2)

2
a+ b[(n− 2)χ+ traceB|π⊥ ]− (n− 1)

2
λ− n2 − n

2
φ(H) + Ω

+

n+p∑
r=n+1

(hr11 + hr22)
∑

3≤i≤n

hrii +
∑

3≤i<j≤n

hriih
r
jj −

∑
3≤j≤n

(hr1j)
2 −

∑
2≤i<j≤n

(hrij)
2


≤ (n+ 1)(n− 2)

2
a+ b[(n− 2)χ+ traceB|π⊥ ]− (n− 1)

2
λ− n2 − n

2
φ(H) + Ω

+

n+p∑
r=n+1

(hr11 + hr22)
∑

3≤i≤n

hrii +
∑

3≤i<j≤n

hriih
r
jj

 .
(3.9)
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Let us consider the quadratic forms fr : Rn → R, defined by

fr(h
r
11, h

r
22, . . . , h

r
nn) = (hr11 + hr22)

∑
3≤i≤n

hrii +
∑

3≤i<j≤n

hriih
r
jj .

We consider the problem max fr, subject to Ξ : hr11 + hr22 + · · ·+ hrnn = kr, where
kr is a real constant. From Lemma 2.3, we see that the solution (hr11, h

r
22, . . . , h

r
nn)

of the problem in question must satisfy

hr11 + hr22 = hrii =
kr

n− 1
, i = 3, . . . , n, (3.10)

which implies

fr ≤
n− 2

2(n− 1)
(kr)2. (3.11)

From (3.9) and (3.11) we have

τ(x)−K(π) ≤ (n+ 1)(n− 2)

2
a+ b[(n− 2)χ+ traceB|π⊥ ]− (n− 1)

2
λ

− n2 − n
2

φ(H) + Ω +
∑
r

n− 2

2(n− 1)
(kr)2

=
(n+ 1)(n− 2)

2
a+ b[(n− 2)χ+ traceB|π⊥ ]− (n− 1)

2
λ

− n2 − n
2

φ(H) + Ω +
n2(n− 2)

2(n− 1)
‖H‖2,

which is the inequality to prove.
Next we will study the equality case.
If the equality case of (3.4) holds at a point x ∈ M , then the equality cases of

(3.9) and (3.11) hold, and it follows that∑
3≤i≤n

(hr1i)
2 = 0,

∑
2≤i<j≤n

(hrij)
2 = 0, ∀r,

hr11 + hr22 = hrii, 3 ≤ i ≤ n, ∀r.

After choosing a suitable orthonormal basis, the shape operators take the desired
form due to (2.1). �

4. Chen’s general inequality

Next we prove a generalization of Theorem 3.1 in terms of Chen’s invariant
δ(n1, . . . , nk).

Theorem 4.1. If Mn, n ≥ 3, is a submanifold of a Riemannian manifold of
nearly quasi-constant curvature Nn+p endowed with a semi-symmetric non-metric
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connection, then we have

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)‖H‖2 + d(n1, . . . , nk)a− (n− 1)

2
λ

− n2 − n
2

φ(H) +

k∑
j=1

Ψ1(Lj) + b[(n− 1)χ−
k∑
j=1

Ψ2(Lj)],
(4.1)

for any k-tuple (n1, . . . , nk) ∈ S(n), where λ and χ are given by (3.3). The equality
case of (4.1) holds at x ∈ Mn if and only if there exist an orthonormal basis
{e1, . . . , en} of TxM and an orthonormal basis {en+1, . . . , en+p} of T⊥x M such that
the shape operators of Mn in Nn+p at x have the following forms:

Aen+1
=


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an

 ,

Aer =


Ar1 · · · 0 0
...

. . .
...

...
0 · · · Ark 0
0 · · · 0 ςrI

 , r = n+ 2, . . . , n+ p,

where a1, . . . , an satisfy

a1 + · · ·+ an1 = · · · = an1+···+nk−1+1 + · · ·+ an1+···+nk
= an1+···+nk+1 = · · · = an

and each Arj is a symmetric nj × nj submatrix satisfying trace(Ar1) = · · · =
trace(Ark) = ςr. I is an identity matrix.

Remark 4.2. For δ(2), inequality (4.1) is due to Theorem 3.1.

Proof. Choose an orthonormal basis {e1, e2, . . . , en} for TxM
n and {en+1, en+2, . . . ,

en+p} for the normal space T⊥x M
n such that the mean curvature vector H is in

the direction of the normal vector to en+1. For convenience, we set

ai = hn+1
ii , i = 1, 2, . . . , n,

b1 = a1, b2 = a2 + · · ·+ an1
, b3 = an1+1 + · · ·+ an1+n2

,

. . .

bk+1 = an1+···+nk−1+1 + · · ·+ an1+n2+···+nk−1+nk
,

bk+2 = an1+···+nk+1, . . . , bγ+1 = an,

∆1 = {1, . . . , n1},
. . .

∆k = {(n1 + · · ·+ nk−1) + 1, . . . , n1 + · · ·+ nk},
∆k+1 = (∆1 ×∆1) ∪ · · · ∪ (∆k ×∆k).

Let L1, . . . , Lk be mutually orthogonal subspaces of TxM with dim Lj = nj , defined
by

Lj = Span{en1+···+nj−1+1, . . . , en1+···+nj
}, j = 1, . . . , k.
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From (2.4), (2.5), (2.7), (2.8) and (2.9) we have

τ(Lj) =
nj(nj − 1)

2
a+bΨ2(Lj)−Ψ1(Lj)+

n+p∑
r=n+1

∑
µj<νj

[hrµjµj
hrνjνj−(hrµjνj )2], (4.2)

2τ = n(n− 1)a+ 2b(n− 1)χ− (n− 1)λ− (n2 − n)φ(H) + n2‖H‖2 − ‖h‖2. (4.3)

We can rewrite (4.3) as

n2‖H‖2 = (‖h‖2 + η)γ,

or equivalently,

(

n∑
i=1

hn+1
ii )2 = γ[

n∑
i=1

(hn+1
ii )2 +

∑
i6=j

(hn+1
ij )2 +

n+p∑
r=n+2

n∑
i,j=1

(hrij)
2 + η], (4.4)

where

η = 2τ−2c(n1, . . . , nk)‖H‖2−n(n−1)a−2(n−1)bχ+(n−1)λ+(n2−n)φ(H), (4.5)

and

γ = n+ k −
k∑
j=1

nj .

From (4.4) we deduce

(

γ+1∑
i=1

bi)
2 = γ[η +

γ+1∑
i=1

b2i +
∑
i 6=j

(hn+1
ij )2 +

n+p∑
r=n+2

n∑
i,j=1

(hrij)
2 − 2

k∑
j=1

∑
µj<νj

aµjaνj ],

where µj , νj ∈ ∆j , for all j = 1, . . . , k. Applying Lemma 2.2, we derive

k∑
j=1

∑
µj<νj

aµjaνj ≥
1

2
[η +

∑
i 6=j

(hn+1
ij )2 +

n+p∑
r=n+2

n∑
i,j=1

(hrij)
2].

It follows that

k∑
j=1

n+p∑
r=n+1

∑
µj<νj

[hrµjµj
hrνjνj − (hrµjνj )2] ≥ η

2
+

1

2

n+p∑
r=n+1

∑
(µ,ν)/∈∆k+1

(hrµν)2

+

n+p∑
r=n+2

∑
µj∈∆j

(hrµjµj
)2

≥ η

2
.

(4.6)

From (4.2) and (4.6) we have

k∑
j=1

τ(Lj) ≥
k∑
j=1

[
nj(nj − 1)

2
a+ bΨ2(Lj)−Ψ1(Lj)] +

1

2
η. (4.7)

Using (2.10), (4.5) and (4.7), we derive the desired inequality.
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The equality case of (4.1) at a point x ∈ M holds if and only if we have the
equality in all the previous inequalities and also in Lemma 2.2, and thus from (2.1)
the shape operators take the desired forms. �

From Theorem 4.1, we have

Corollary 4.3. If Mn, n ≥ 3, is a submanifold of an (n+p)-dimensional real space
form Nn+p(c) of constant curvature c endowed with a semi-symmetric non-metric
connection, then we have

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)‖H‖2 + d(n1, . . . , nk)c− (n− 1)

2
λ

− n2 − n
2

φ(H) +

k∑
j=1

Ψ1(Lj),
(4.8)

for any k-tuple (n1, . . . , nk) ∈ S(n). The equality case of (4.8) holds at x ∈Mn if
and only if there exist an orthonormal basis {e1, . . . , en} of TxM and an orthonor-
mal basis {en+1, . . . , en+p} of T⊥x M such that the shape operators of Mn in Nn+p

at x have the following forms:

Aen+1 =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an

 ,

Aer =


Ar1 · · · 0 0
...

. . .
...

...
0 · · · Ark 0
0 · · · 0 ςrI

 , r = n+ 2, . . . , n+ p,

where a1, . . . , an satisfy

a1 + · · ·+ an1
= · · · = an1+···+nk−1+1 + · · ·+ an1+···+nk

= an1+···+nk+1 = · · · = an

and each Arj is a symmetric nj × nj submatrix satisfying trace(Ar1) = · · · =
trace(Ark) = ςr. I is an identity matrix.

Remark 4.4. For δ(2), inequality (4.8) is due to C. Özgür and A. Mihai [21,
Theorem 3.1].

5. Chen–Ricci inequality

In [27], B.-Y. Chen established a sharp relationship between the Ricci curvature
and the squared mean curvature for any n-dimensional Riemannian submanifold
of a real space form Rm(c) of constant sectional curvature c as follows:

Theorem 5.1 ([27], Theorem 4). Let M be an n-dimensional submanifold of a
real space form Rm(c). Then the following statements are true:
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(i) For each unit vector X ∈ TxM , we have

‖H‖2 ≥ 4

n2
[Ric(X)− (n− 1)c]. (5.1)

(ii) If H(x) = 0, then a unit vector X ∈ TxM satisfies the equality case of (5.1)
if and only if X belongs to the relative null space N (x) given by

N (x) = {X ∈ TxM | h(X,Y ) = 0, ∀Y ∈ TxM}.

(iii) The equality case of (5.1) holds for all unit vectors X ∈ TxM if and only
if either x is a geodesic point or n = 2 and x is an umbilical point.

Afterwards, many papers studied similar Chen–Ricci inequalities for different
submanifolds in various ambient manifolds; see for example [28, 29, 30].

In this section, we establish Chen–Ricci inequalities for submanifolds of a Rie-
mannian manifold of nearly quasi-constant curvature endowed with a semi-symmetric
non-metric connection.

Theorem 5.2. Let Mn, n ≥ 2, be an n-dimensional submanifold of an (n + p)-
dimensional Riemannian manifold of nearly quasi-constant curvature Nn+p en-
dowed with a semi-symmetric non-metric connection ∇. Then:

(i) For each unit vector X in TxM we have

Ric(X) ≤ (n− 1)(a− Ω) + b[(n− 2)B(X,X) + χ] +
n2

4
‖H‖2, (5.2)

where Ω and χ are given by (3.1), (3.3), respectively.
(ii) If H(x) = 0, then a unit tangent vector X at x satisfies the equality case of

(5.2) if and only if X ∈ N (x) = {X ∈ TxM | h(X,Y ) = 0,∀Y ∈ TxM}.
(iii) The equality case of (5.2) holds for all unit vectors X ∈ TxM if and only

if either x is a geodesic point or n = 2 and x is an umbilical point.

Proof. (i) LetX ∈ TxM be a unit tangent vector at x. We choose the local field of
orthonormal frames (2.6) at x such that e1 = X. From equation (3.6) we have

Ric(X) =

n∑
i=2

R1i1i = (n− 1)a+ (n− 1)bB(e1, e1) + b

n∑
i=2

B(ei, ei)

− (n− 1)s(X,X)− (n− 1)φ(h(e1, e1))

+

n+p∑
r=n+1

n∑
i=2

[hr11h
r
ii − (hr1i)

2]

≤ (n− 1)(a− Ω) + (n− 2)bB(X,X) + bχ+

n+p∑
r=n+1

n∑
i=2

hr11h
r
ii.

(5.3)

Let us consider the quadratic forms fr : Rn → R, defined by

fr(h
r
11, h

r
22, . . . , h

r
nn) =

n∑
i=2

hr11h
r
ii.
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We consider the problem max fr, subject to Ξ : hr11 + hr22 + · · · + hrnn = kr,
where kr is a real constant. From Lemma 2.4, we can see that the solution
(hr11, h

r
22, . . . , h

r
nn) of the problem in question must satisfy

hr11 =

n∑
i=2

hrii =
kr

2
, (5.4)

which implies

fr ≤
(kr)2

4
. (5.5)

From (5.3) and (5.5) we have

Ric(X) ≤ (n− 1)(a− Ω) + (n− 2)bB(X,X) + bχ+

n+p∑
r=n+1

(kr)2

4

= (n− 1)(a− Ω) + b[(n− 2)B(X,X) + χ] +
n2

4
‖H‖2.

(ii) For each unit vector X at x, if the equality case of inequality (5.2) holds,
from (5.3), (5.4) and (5.5) we have

hr1i = 0, i 6= 1, ∀r, (5.6)

hr11 + hr22 + · · ·+ hrnn − 2hr11 = 0, ∀r. (5.7)

Noting that H(x) = 0, we have hr11 = 0, then hr1i = 0, ∀i, r, i.e. X ∈ N (x).
(iii) If the equality case of inequality (5.2) holds for all unit tangent vectors at

x, noting that X is arbitrary, by computing Ric(ej), j = 2, 3, . . . , n, and combining
(5.6) and (5.7), we have

hrij = 0, i 6= j, ∀r,
hr11 + hr22 + · · ·+ hrnn − 2hrii = 0, ∀i, r.

We can distinguish two cases:
(1) n 6= 2, hrij = 0, i, j = 1, 2, . . . , n, r = n+ 1, . . . , n+ p;
(2) n = 2, hr11 = hr22, hr12 = 0, r = 3, . . . , 2 + p.
The converse is trivial. �

Noting that the Riemannian manifold of nearly quasi-constant curvature Nn+p

reduces to a real space form of constant curvature when b = 0, from Theorem 5.2
we have

Corollary 5.3. Let Mn be an n-dimensional submanifold of an (n+p)-dimensional
real space form Nn+p(c) of constant curvature c endowed with a semi-symmetric
non-metric connection. Then:

(i) For each unit vector X in TxM we have

Ric(X) ≤ (n− 1)(c− Ω) +
n2

4
‖H‖2. (5.8)

(ii) If H(x) = 0, then a unit tangent vector X at x satisfies the equality case of
(5.8) if and only if X ∈ N (x) = {X ∈ TxM | h(X,Y ) = 0,∀Y ∈ TxM}.
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(iii) The equality case of inequality (5.8) holds for all unit tangent vectors at x
if and only if either x is a geodesic point, or n = 2 and x is an umbilical point.

In [21], C. Özgür and A. Mihai also established Chen–Ricci inequalities for
submanifolds of a real space form endowed with a semi-symmetric non-metric con-
nection. They proved:

Theorem 5.4 ([21], Theorem 4.1). Let Mn be an n-dimensional submanifold of
an (n + p)-dimensional real space form Nn+p(c) endowed with a semi-symmetric
non-metric connection. Then

(i) For each unit vector X in TxM we have

Ric(X) ≤ (n− 1)c+
n2‖H‖2

4
− n− 1

2
λ+

(n− 1)(n− 2)

2
s(X,X)− n2 − n

2
φ(H),

(5.9)
where λ is given by (3.3).

(ii) If H(x) = 0, then a unit tangent vector X at x satisfies the equality case of
(5.9) if and only if X ∈ N (x) = {X ∈ TxM | h(X,Y ) = 0,∀Y ∈ TxM}.

(iii) The equality case of inequality (5.9) holds for all unit tangent vectors at x if
and only if either x is a totally geodesic point, or n = 2 and x is a totally umbilical
point.

We will show that the inequality (5.9) is incorrect.

Remark 5.5. For n 6= 2, if the equality case of (5.9) holds for all unit tangent
vectors at x, from Theorem 5.4 we know that hrij = 0, ∀i, j, r. Further, using (2.5)
we have

Ric(X) =

n∑
i=2

R1i1i = (n− 1)c− (n− 1)s(X,X)− (n− 1)φ(h(X,X)),

which is a contradiction with the equality case of (5.9).

Remark 5.6. For n = 2, if the equality case of (5.9) holds for all unit tangent
vectors at x, from Theorem 5.4 we know that hr11 = hr22, h

r
12 = 0, r = 3, . . . , 2 + p.

Further, using (2.5) we have

Ric(X) = R1212 = c− s(X,X)− φ(h(X,X)) + ‖H‖2,

which is also a contradiction with the equality case of (5.9).

Remark 5.7. In the proof of Theorem 4.1 in [21], the authors wrote

Kij = R̃(ei, ej , ej , ei) + g(h(ei, ei), h(ej , ej))− g(h(ei, ej), h(ei, ej))

= c− s(ej , ej) +

n+p∑
r=n+1

[hriih
r
jj − (hrij)

2].
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But according to formulas (3.2) and (3.3) in [21], we get

Kij = R̃(ei, ej , ej , ei) + g(h(ei, ei), h(ej , ej))− g(h(ei, ej), h(ei, ej))− φ(h(ej , ej))

= c− s(ej , ej) +

n+p∑
r=n+1

[hriih
r
jj − (hrij)

2]− φ(h(ej , ej)).

This is the reason they made a mistake. We should note that the Gauss equation
with respect to the semi-symmetric non-metric connection is very different from the
Gauss equation with respect to the Levi–Civita connection.

6. k-Ricci curvature

Let L be a k-plane section of TxM
n, x ∈ M , and X a unit vector in L. We

choose an orthonormal frame e1, . . . , ek of L such that e1 = X. In [27], B.-Y. Chen
defined the k-Ricci curvature of L at X by

RicL(X) = K12 +K13 + · · ·+K1k. (6.1)

The scalar curvature of a k-plane section L is given by

τ(L) =
∑

1≤i<j≤n

Kij . (6.2)

For an integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk on Mn defined by

Θk(x) =
1

k − 1
inf{RicL(X) | L,X}, x ∈M, (6.3)

where L runs over all k-plane sections in TxM and X runs over all unit vectors
in L.

From (2.7), (2.8), (6.1), and (6.2) it follows that for any k-plane section Li1···ik
spanned by {ei1 , . . . , eik} one has

τ(Li1···ik) =
1

2

∑
i∈{i1,...,ik}

RicLi1···ik
(ei) (6.4)

and

τ(x) =
1

Ck−2
n−2

∑
1≤i1<···<ik≤n

τ(Li1···ik). (6.5)

From (6.3), (6.4) and (6.5) we obtain

τ(x) ≥ n(n− 1)

2
Θk(x). (6.6)

In this section, we prove a relationship between the k-Ricci curvature of Mn

(intrinsic invariant) and the mean curvature ‖H‖ (extrinsic invariant), as another
answer to the basic problem in submanifold theory which we have mentioned in
the introduction.
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Theorem 6.1. Let Mn, n ≥ 3, be an n-dimensional submanifold of an (n + p)-
dimensional Riemannian manifold of nearly quasi-constant curvature Nn+p en-
dowed with a semi-symmetric non-metric connection ∇, then for any integer k,
2 ≤ k ≤ n, and any point x ∈Mn, we have

‖H‖2(x) ≥ Θk(x)− a− 2b

n
χ+

1

n
λ+ φ(H),

where λ and χ are given by (3.3).

Remark 6.2. For b = 0, Theorem 6.1 is due to C. Özgür and A. Mihai [21,
Theorem 5.2].

Proof. We choose the orthonormal frame (2.6) at x such that en+1 is in the direction
of the mean curvature vector H(x) and {e1, . . . , en} diagonalize the shape operator
An+1. Then the shape operators take the following forms:

An+1 =


a1 0 · · · 0
0 a2 · · · 0
...

...
. . . 0

0 0 · · · an

 , (6.7)

traceAr = 0, r = n+ 2, . . . , n+ p.

From (4.3) and (6.7) we have

n2‖H‖2 = 2τ + ‖h‖2 − (n2 − n)a− 2b(n− 1)χ+ (n− 1)λ+ (n2 − n)φ(H)

= 2τ +

n∑
i=1

a2
i +

n+p∑
r=n+2

n∑
i,j=1

(hrij)
2 − (n2 − n)a− 2b(n− 1)χ

+ (n− 1)λ+ (n2 − n)φ(H).

(6.8)

Using the Cauchy–Schwarz inequality we have

(n‖H‖)2 = (

n∑
i=1

ai)
2 ≤ n

n∑
i=1

a2
i ;

it follows that
n∑
i=1

a2
i ≥ n‖H‖2. (6.9)

From (6.8) and (6.9) we have

n2‖H‖2 ≥ 2τ + n‖H‖2 − (n2 − n)a− 2b(n− 1)χ+ (n− 1)λ+ (n2 − n)φ(H),

which implies

‖H‖2 ≥ 2τ

n(n− 1)
− a− 2b

n
χ+

1

n
λ+ φ(H). (6.10)

Using (6.6) and (6.10) we have

‖H‖2(x) ≥ Θk(x)− a− 2b

n
χ+

1

n
λ+ φ(H).

�
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