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SOME RESULTS ON SPECTRAL DISTANCES OF GRAPHS

IRENA M. JOVANOVIĆ

Abstract. Spectral distances of graphs related to some graph operations and

modifications are considered. We show that the spectral distance between two

graphs does not depend on their common eigenvalues, up to multiplicities. The
spectral distance between some graphs with few distinct eigenvalues is com-

puted and due to the results obtained one of the previously posed conjectures

related to the A-spectral distances of graphs has been disproved. In order
to investigate the cospectrality for special classes of graphs, we computed

spectral distances and distance related graph parameters on several specially

constructed sets of graphs.

1. Introduction

Some problems related to the spectral distances of graphs have been presented at
the Aveiro Workshop on Graph Spectra held at the University of Aveiro, Portugal,
2006 (see [14]).

Let G1 and G2 be two nonisomorphic graphs on n vertices whose spectra with
respect to the matrix M are m1(Gi) ≥ m2(Gi) ≥ · · · ≥ mn(Gi), i = 1, 2. The
M -spectral distance between G1 and G2 is (see [14]):

σM (G1, G2) =

n∑
i=1

|mi(G1)−mi(G2)| .

Thus we can say that graphs G1 and G2 are εM -cospectral if σM (G1, G2) ≤ ε holds
for some non-negative number ε. In this paper the spectral distances are considered
with respect to the adjacency matrix A, the Laplacian L = D−A and the signless
Laplacian matrix Q = D + A, where D is the diagonal matrix of vertex degrees.
The eigenvalues of G1 and G2 with respect to the named matrices we denote as
λi(Gj), µi(Gj) and κi(Gj), for i = 1, 2, . . . , n and j = 1, 2, respectively, and, as
usual, we suppose that they have non-increasing order.

However the computation and evaluation of the distance related graph param-
eters on some specially constructed sets of graphs of equal orders is of particular
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interest. We will often call these parameters the extremal spectral distances be-
cause of their definition. Let X be an arbitrary set of n-vertex graphs. The
M -cospectrality of G1 ∈ X is defined by (see [14]):

csMX (G1) = min{σM (G1, G2) : G2 ∈ X, G2 6= G1}.

Thus, csMX (G1) = 0 if and only if G1 has a M -cospectral mate. The M -cospectrality
measure on the set X is

csM (X) = max{csMX (G1) : G1 ∈ X}.

In [10] two additional distance related graph parameters are introduced. The M -
spectral eccentricity of G1 is

seccMX (G1) = max{σM (G1, G2) : G2 ∈ X},

while the M -spectral diameter on the set X is given by:

sdiamM (X) = max{seccMX (G1) : G1 ∈ X}.

This function measures how large the spectral distance of graphs from the set X
can be.

We will use the notation that is common in the spectral graph theory. Thus, Cn
is the cycle of order n, while Kn is the complete graph on n vertices. The complete
multipartite graph on k parts and ni, 1 ≤ i ≤ k, vertices in each of them we will
denote as Kn1,n2,...,nk , and similarly, if n1 = n2 = · · · = nk = m holds, we will use
the label Kk×m. The energy of a n-vertex graph G is defined as (see [8]): E(G) =∑n
i=1 |λi(G)|. The Laplacian energy of G is (see [9]): LE(G) =

∑n
i=1 |µi(G)− 2m

n |,
where m is the number of edges of G, while the signless Laplacian energy is given
by: QE(G) =

∑n
i=1 |κi(G)− 2m

n |. For the remaining notation and terminology we
refer the reader to [3], [4] or [2].

The paper is organized as follows. In Section 2 we consider spectral distances
related to certain graph operations and expose some particular results that yield to
consideration of the spectral distances between graphs with common eigenvalues
in Section 3. In Section 4 we compute spectral distances between graphs with
few distinct eigenvalues, in particular between a strongly regular graph and its
complement. Due to these results we disproved one of the conjectures related
to the A-spectral distances of graphs (see [10]). Besides that, some results from
[11] are extended. The conjectures about the spectral distances of graphs related
to the various graph matrices are considered in Section 5. One of the research
tasks exposed at the Aveiro Workshop [14] is related to the investigation of the
cospectrality of some graph from the special class of graphs. So, in Section 6 we
estimate distance related graph parameters on the specially constructed sets of
graphs of equal orders.
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2. Spectral distances related to some graph operations and
modifications

Originally, the graph operation called NEPS (i.e. non-complete extended p-sum)
did not include existence of a basis with all-zero n-tuple. Precisely, we state the
definition of this graph operation as it is done in [4, page 44]:

Let B be a set of non-zero binary n-tuples, i.e. B ⊆ {0, 1}n/{(0, . . . , 0)}. The
NEPS of graphs G1, . . . , Gn with basis B is the graph with vertex set V (G1)×· · ·×
V (Gn), in which two vertices, say (x1, . . . , xn) and (y1, . . . , yn), are adjacent if and
only if there exists an n-tuple β = (β1, . . . , βn) ∈ B such that xi = yi whenever
βi = 0, and xi is adjacent to yi (in Gi) whenever βi = 1.

If we permit the existence of all-zero n-tuple, we will get a graph with loops.

Proposition 2.1. Let G = NEPS(G1, G2, . . . , Gn;B1) and H = NEPS(H1, H2,
. . . , Hn; B2), such that Gi and Hi, i = 1, 2, . . . , n are arbitrary graphs. If G′ =
NEPS(G1, G2, . . . , Gn;B′1) and H ′ = NEPS(H1, H2, . . . ,Hn;B′2), where B′1 = B1∪
{(0, 0, . . . , 0)} and B′2 = B2 ∪ {(0, 0, . . . , 0)}, then σA(G′, H ′) = σA(G,H).

Proof. According to Theorem 2.5.4 from [4] the spectrum of the graph G′, and
analogously H ′, consists of all possible values Λi1,...,in such that Λi1,...,in(G′) =∑
β∈B′1

λβ1

1i1
· · ·λβnnin , for ih = 1, . . . , kh and h = 1, . . . , n, where λi1 , . . . , λiki are the

eigenvalues of graphs Gi, i = 1, 2, . . . , n, respectively. Hence we have that

Λi1,...,in(G′) =
∑
β∈B1

λβ1

1i1
· · ·λβnnin + λ0

1i1
· · ·λ0

nin
= Λi1,...,in(G) + 1,

where Λi1,...,in(G) are the eigenvalues of G. Therefore, the spectral distance be-
tween G′ and H ′ is

σA(G′, H ′) =

2n∑
i=1

|λi(G) + 1− λi(H)− 1| = σA(G,H). �

There is a slightly more general result:

Proposition 2.2. Let G1 and G2 be two arbitrary graphs. Let G′1 and G′2 denote
graphs that are obtained from G1 and G2 by adding a loop at each vertex. Then
σA(G′1, G

′
2) = σA(G1, G2) holds.

Proof. The adjacency matrix A′ of the graph G′ which is obtained by adding a loop
at each vertex of the graph G is equal to A′ = A + E, where A is the adjacency
matrix of G, while E is the identity matrix. So, by applying the Courant-Weyl
inequalities (see Theorem 1.3.15 from [4]) we obtain the following: λi(G

′) ≤ λj(G)+
1, for 1 ≤ j ≤ i ≤ n and λi(G

′) ≥ λj(G) + 1, for 1 ≤ i ≤ j ≤ n. This means that
λi(G

′) = λi(G) + 1, for i = 1, 2, . . . , n, wherefrom the proof follows. �

Proposition 2.3. Let G = NEPS(K2,K2, . . . ,K2;B). Let Λ(k)(G) = Λ
(k)
i1,...,in

(G)

=
∑
β∈B λ

β1

1i1
· · · λβnnin , ih = 1, . . . , kh, h = 1, . . . , n be the distinct eigenvalues of the

graph G, such that k (0 ≤ k ≤ n) of the eigenvalues λi1 , . . . , λiki of graphs K2 are
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equal to −1. Let us suppose that the basis B is such that Λ(k)(G) ≥ Λ(k+1)(G) + 2,
for each 0 ≤ k ≤ n − 1. Let G′ = NEPS(K2,K2, . . . ,K2;B′), where B′ = B ∪
{(1, 1, . . . , 1)}. Then σA(G,G′) = 2n.

Proof. The spectrum of G′ consists of all eigenvalues Λ(G′) such that (see Theorem
2.5.4 from [4]):

Λ(G′) =
∑
β∈B′

λβ1

1i1
· · ·λβnnin =

∑
β∈B

λβ1

1i1
· · ·λβnnin +λ1i1

· · ·λnin = Λ(G) +λ1i1
· · ·λnin ,

for ih = 1, . . . , kh, h = 1, . . . , n, where Λ(G) are the eigenvalues of G. If there are
k of the eigenvalues λi1 , . . . , λiki of graphs K2 that are equal to −1, we have:

Λ(k)(G′) = Λ(k)(G) + (−1)k,

where 0 ≤ k ≤ n. The multiplicity of the eigenvalue Λ(k)(G), and similarly
Λ(k)(G′), corresponds to the number of ways in which one can choose k of the
n eigenvalues that are equal to −1, i.e.

(
n
k

)
. According to the assumptions from

the statement, we get:

Λ(k)(G′) = Λ(k)(G) + (−1)k ≥ Λ(k+1)(G) + (−1)k+1 = Λ(k+1)(G′),

for all 0 ≤ k ≤ n− 1. So, the spectral distance is

σA(G,G′) =

n∑
k=0

(
n

k

) ∣∣∣Λ(k)(G) + (−1)k − Λ(k)(G)
∣∣∣ = 2n. �

Example 2.1. Let G = NEPS(K2,K2, . . . ,K2;B), where the basis B consists of
binary n-tuples such that each of them has exactly one component equal to 1,
i.e. B = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, 0, . . . , 1)}. The graph G is n-cube

whose spectrum is [n−2i](
n
i), 0 ≤ i ≤ n. Let us denote G′ = NEPS(K2,K2, . . . ,K2;

B′), where B′ = B ∪ {(1, 1, . . . , 1)}. Since the inequality Λ(i)(G) = n − 2i ≥
n− 2 (i+ 1) + 2 = Λ(i+1)(G) + 2 holds for every selection of i of the eigenvalues of
graphs K2 that are equal to −1, 0 ≤ i ≤ n− 1, we have:

Λ(i)(G′) = Λ(i)(G) + (−1)i = n− 2i+ (−1)i ≥ n− 2(i+ 1) + (−1)i+1 = Λ(i+1)(G′).

So the spectral distance is

σA(G,G′) =

n∑
i=0

(
n

i

)
|n− 2i+ (−1)i − (n− 2i)| = 2n.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs such that |V1| = n1 and |V2| =
n2. Two graph operations, the Svertex join and the Sedge join, are introduced in
[7]. The Svertex join of graphs G1 and G2, denoted by G1∨̇G2, is the graph that is
obtained from S(G1) and G2 by joining each vertex from the set V (G1) = V1 with
each vertex from the set V2. Here, S(G) means the subdivision graph of the graph
G (for details see [3] or [4]). The Sedge join of G1 and G2, denoted by G1∨G2, is
the graph that is obtained from S(G1) and G2 by joining each vertex from the set
E(G1), i.e. V (S(G1))/V (G1) with each vertex from the set V2. In [7] A-spectra of
these graphs when Gi are ri-regular graphs, i = 1, 2, are given.
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SOME RESULTS ON SPECTRAL DISTANCES OF GRAPHS 99

Proposition 2.4. Let Gi, i = 1, 2 be two connected ri-regular graphs of orders ni,
respectively. Let the adjacency spectra of these graphs be: ri = λ1(Gi) ≥ λ2(Gi) ≥
. . . ≥ λni(Gi), i = 1, 2, such that λn2(G2) ≥ −

√
λ1(G1) + r1. Then

σA(G1∨̇G2, G1∨G2)

=
∑

i∈{1,n1+m1+n2}

|λi(G1∨̇G2)− λi(G1∨G2)|+ |λ(G1∨̇G2)− λ′(G1∨G2)|,

where m1 is the number of edges of G1, while λ(G1∨̇G2) and λ′(G1∨G2) are the
roots of the polynomials h1(x) = x3 − r2x

2 − (n1n2 + 2r1)x + 2r1r2 and h2(x) =
x3− r2x

2− (m1n2 + 2r1)x+ 2r1r2, respectively, that are different from λ1(G1∨̇G2)
and λn1+m1+n2(G1∨̇G2), apropos λ1(G1∨G2) and λn1+m1+n2(G1∨G2).

Proof. According to Theorems 1.1 and 1.2 from [7], the spectra of G1∨̇G2 and
G1∨G2 differ in exactly three eigenvalues. The remaining n1 +m1 + n2 − 3 eigen-
values are ±

√
λi(G1) + r1, for i = 2, 3, . . . , n1, λi(G2), for i = 2, 3, . . . , n2, and

[0]m1−n1 . Let us consider these six different eigenvalues of G1∨̇G2 and G1∨G2

(three from each of the spectra).
Since S(G1) is an induced subgraph of the graph G1∨̇G2 (G1∨G2) from the In-

terlacing Theorem (see Theorem 0.10 from [3]) we get: λ1(G1∨̇G2) ≥ λ1(S(G1)) =√
λ1(G1) + r1 ≥

√
λ2(G1) + r1.

On the other hand, since G2 is an induced subgraph of G1∨̇G2 (G1∨G2), again
by use of the Interlacing Theorem we obtain: λ1(G1∨̇G2) ≥ λ1(G2) ≥ λ2(G2).

From these inequalities we can conclude that one of the roots of the polynomial
h1(x) (h2(x)) is just the index of the graph G1∨̇G2 (G1∨G2). Analogously, we
have:

λn1+m1+n2
(G1∨̇G2) ≤ λn1+m1

(S(G1)) = −
√
λ1(G1) + r1,

λn1+m1+n2
(G1∨̇G2) ≤ λn2

(G2),

and also

λn1+m1+n2
(G1∨̇G2) ≤ min

{
λn2

(G2),−
√
λ1(G1) + r1

}
= −

√
λ1(G1) + r1 ≤ −

√
λ2(G1) + r1,

wherefrom we found that one of the two remaining roots of the polynomial h1(x)
(h2(x)) is the eigenvalue λn1+m1+n2

(G1∨̇G2) (λn1+m1+n2
(G1∨G2)). The third non-

null root of the polynomial h1(x) (h2(x)) we can denote by λ (λ′). Without loss
of generality, let us suppose that the position of the eigenvalue λ in the spectrum
of G1∨̇G2 is x, while the position of the eigenvalue λ′ in the spectrum of G1∨G2
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is y, and that x ≤ y holds. Then the A-spectral distance becomes:

σA(G1∨̇G2, G1∨G2) = |λ1(G1∨̇G2)− λ1(G1∨G2)|

+

x−1∑
i=2

|λi(G1∨̇G2)− λi(G1∨G2)|

+ |λx(G1∨̇G2)− λx(G1∨G2)|+
y−1∑
i=x+1

|λi(G1∨̇G2)− λi(G1∨G2)|

+ |λy(G1∨̇G2)− λy(G1∨G2)|+
n1+m1+n2−1∑

i=y+1

|λi(G1∨̇G2)− λi(G1∨G2)|

+ |λn1+m1+n2
(G1∨̇G2)− λn1+m1+n2

(G1∨G2)| = |λ1(G1∨̇G2)− λ1(G1∨G2)|
+ (λ− λx(G1∨G2)) + λx+1(G1∨̇G2)− λy(G1∨̇G2) + λy(G1∨̇G2)− λ′

+ |λn1+m1+n2(G1∨̇G2)− λn1+m1+n2(G1∨G2)| = |λ1(G1∨̇G2)− λ1(G1∨G2)|
+ (λ− λ′) + |λn1+m1+n2

(G1∨̇G2)− λn1+m1+n2
(G1∨G2)|.

�

3. Spectral distances of graphs with common eigenvalues

By Proposition 2.4 from the previous section we demonstrated that if the spectra
of two graphs of equal orders differ in exactly three eigenvalues, then the A-spectral
distance between them will depend on only these six different eigenvalues (three
from each of the spectra). In this section we will give a slightly more general result.

Let G1 and G2 be two graphs of order n whose spectra with respect to the
matrix M are x1 ≥ x2 ≥ . . . ≥ xn and y1 ≥ y2 ≥ . . . ≥ yn, respectively. Let us
denote by z1 > z2 > . . . > zn1

and t1 > t2 > . . . > tn2
the distinct eigenvalues of

these graphs, respectively.

Definition 3.1. Given two graphs G1 and G2, let λ be the common eigenvalue of
these graphs such that λ = zl1 , for some l1 ∈ {1, 2, . . . , n1} and λ = tl2 , for some
l2 ∈ {1, 2, . . . , n2}. Let i1, i2 ∈ {1, 2, . . . , n} be the least indices such that xi1 = λ
and yi2 = λ holds, and similarly, let j1, j2 ∈ {1, 2, . . . , n} be the largest indices such
that xj1 = λ and yj2 = λ holds. The M -partial spectral distance PM,λ(G1, G2) of
graphs G1 and G2 that corresponds to the common eigenvalue λ is

PM,λ(G1, G2) =

max{j1,j2}∑
k=min{i1,i2}

|xk − yk|. (1)

It is obvious that i1 ≤ j1 and i2 ≤ j2. Besides that, if Iλ stands for the
set of indices of the eigenvalues of graphs G1 and G2 that belong to the interval
[min{i1, i2},max{j1, j2}] for each common eigenvalue λ, we have

σM (G1, G2) =
∑
λ

PM,λ(G1, G2) +
∑

k∈{1,2,...,n}/
⋃
λ Iλ

|xk − yk| =
∑

1
+
∑

2
, (2)
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where the first summation goes over all common eigenvalues λ of G1 and G2. If
there are no common eigenvalues of G1 and G2, we simply have σM (G1, G2) =

∑
2.

Definition 3.2. Given two graphsG1 andG2 the partial realizationRPM,λ(G1, G2)
of the M -partial spectral distance PM,λ(G1, G2) that corresponds to the common
eigenvalue λ of these graphs is the arithmetic expression obtained from the sum
(1) in which for each k = min{i1, i2}, . . . ,max{j1, j2} the term |xk−yk| is replaced
by xk + (−yk) if xk ≥ yk, and by −xk + yk if xk < yk.

Definition 3.3. The reduced partial realization RRPM,λ(G1, G2) of the M -partial
spectral distance PM,λ(G1, G2) of given graphs G1 and G2 is the arithmetic expres-
sion obtained from RPM,λ(G1, G2) by deleting all pairs of opposite terms of the
form a,−a.

Of course, we have

PM,λ(G1, G2) = RPM,λ(G1, G2) = RRPM,λ(G1, G2).

Proposition 3.1. Let G1 and G2 be two graphs of order n with given spectra
with respect to the matrix M . If λ is the common eigenvalue of these graphs
with multiplicities m1 and m2, respectively, then the reduced partial realization
RRPM,λ(G1, G2) of the M -partial spectral distance PM,λ(G1, G2) contains at most
|m1−m2| terms that equal λ or −λ. In the special case, if the spectra of both graphs
G1 and G2 contain the eigenvalue λ with the same multiplicity, then the reduced
partial realization RRPM,λ(G1, G2) does not contain the term λ nor −λ.

Proof. Without loss of generality, we will analyse only the case when m1 > m2 > 1
holds. All remaining cases can be considered in a similar way. With this assump-
tion, we can distinguish the following relations between the positions i1, i2, j1, and
j2 of the common eigenvalue λ in the spectra of G1 and G2 (we use the previously
introduced notation).

If i1 = i2 < j2 < j1, then the M -partial spectral distance is PM,λ(G1, G2) =∑j1
k=i1
|xk − yk|. The partial realization is RPM,λ(G1, G2) =

∑j2
k=i1

(λ − λ) +∑j1
k=j2+1(λ − yk), so the reduced partial realization is RRPM,λ(G1, G2) = (m1 −

m2)λ−
∑j1
k=j2+1 yk.

Let i1 < i2 < j2 = j1 holds. Then we have PM,λ(G1, G2) =
∑j1
k=i1
|xk − yk|, so

the partial realization is RPM,λ(G1, G2) =
∑i2−1
k=i1

(yk−λ) +
∑j2
k=i2

(λ−λ). Finally,

we get RRPM,λ(G1, G2) =
∑i2−1
k=i1

yk + (m1 −m2)(−λ).

If i1 < i2 < j1 < j2, then PM,λ(G1, G2) =
∑j2
k=i1
|xk − yk|, so RPM,λ(G1, G2) =∑i2−1

k=i1
(yk − λ) +

∑j1
k=i2

(λ−λ) +
∑j2
k=j1+1(λ− xk). So, we get RRPM,λ(G1, G2) =∑i2−1

k=i1
yk −

∑j2
k=j1+1 xk + (m1 −m2)(−λ).

The case when i1 < i2 = j1 < j2 can be analysed like the previous one.

Let i2 < i1 < j2 < j1 holds. Then PM,λ(G1, G2) =
∑j1
k=i2
|xk − yk|, so the

partial realization becomes: RPM,λ(G1, G2) =
∑i1−1
k=i2

(xk − λ) +
∑j2
k=i1

(λ − λ) +∑j1
k=j2+1(λ−yk). The reduced partial realization is RRPM,λ(G1, G2) =

∑i1−1
k=i2

xk−∑j1
k=j2+1 yk + (m1 −m2)λ.
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The case when i2 < i1 = j2 < j1 can be analysed like the previous one.

If i1 < j1 < i2 < j2, then PM,λ(G1, G2) =
∑j2
k=i1
|xk − yk|, so RPM,λ(G1, G2) =∑j1

k=i1
(yk−λ)+

∑i2−1
k=j1+1(yk−xk)+

∑j2
k=i2

(λ−xk). The reduced partial realization

is RRPM,λ(G1, G2) =
∑i2−1
k=i1

yk −
∑j2
k=j1+1 xk + (m1 −m2)(−λ).

Let i2 < j2 < i1 < j1. The partial distance is PM,λ(G1, G2) =
∑j1
k=i2
|xk − yk|,

so we have RPM,λ(G1, G2) =
∑j2
k=i2

(xk−λ) +
∑i1−1
k=j2+1(xk− yk) +

∑j1
k=i1

(λ− yk).

The reduced partial realization is RRPM,λ(G1, G2) =
∑i1−1
k=i2

xk −
∑j1
k=j2+1 yk +

(m1 −m2)λ.

If i1 < i2 < j2 < j1, then PM,λ(G1, G2) =
∑j1
k=i1
|xk − yk|, so RPM,λ(G1, G2) =∑i2−1

k=i1
(yk−λ)+

∑j2
k=i2

(λ−λ)+
∑j1
k=j2+1(λ−yk). Now, we get RRPM,λ(G1, G2) =∑i2−1

k=i1
yk −

∑j1
k=j2+1 yk − (j2 − j1 + i2 − i1)λ. �

From Proposition 3.1 we can see that if the multiplicities of the common eigen-
value λ in the spectra of graphs whose partial spectral distance we compute are
the same, then the reduced partial realization does not contain the term λ nor
−λ. In the case when these multiplicities are different, according to the previously
introduced notation, the following corollary holds:

Corollary 3.1. If the M -spectra of both graphs G1 and G2 contain the eigenvalue
λ with multiplicities m1 6= m2, respectively such that

i2 − i1 = j1 − j2, for i1 < i2 ≤ j2 < j1 and m1 > m2, (3)

or

i1 − i2 = j2 − j1, for i2 < i1 ≤ j1 < j2 and m1 < m2, (4)

holds, then the reduced partial realization RRPM,λ(G1, G2) of the M -partial spectral
distance PM,λ(G1, G2) does not contain the term λ nor −λ.

Proof. It follows directly from the last case that is considered in the proof of Propo-
sition 3.1. �

As the corresponding eigenvalues that make the addends in the sum
∑

2 in
formula (2) are mutually different, from formula (2) and Proposition 3.1 we get the
following theorem:

Theorem 3.1. The M -spectral distance between two graphs of equal orders does
not depend on their common eigenvalues up to multiplicities.

Theorem 3.2. Let the M -spectra of both n-vertex graphs G1 and G2 contain eigen-
values λ1 > λ2 > · · · > λm, with multiplicities m11,m12, . . . ,m1m and m21,m22, . . . ,
m2m, respectively, such that m1l 6= m2l, for each l ∈ {1, 2, . . . ,m}. If for each pair
m1l,m2l, according to Definition 3.1, relation (3) or (4) holds, then the M -spectral
distance between graphs G1 and G2 does not depend on their common eigenvalues
at all.
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4. Spectral distances between graphs with few distinct eigenvalues

Recall from [3] that if r = λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) is the A-spectrum
of a r-regular graph G, then the A-spectrum of its complement G is n − 1 − r ≥
−1 − λn(G) ≥ · · · ≥ −1 − λ2(G), so the A-spectral distance between these two
graphs is

σA(G,G) = |n− 2r − 1|+
n∑
i=2

|λi(G) + λn−i+2(G) + 1|.

From the last equality we can notice that it is not easy to exactly compute the A-
spectral distance between a regular graph and its complement in the general case.
Some results on spectral distances between a regular graph and its complement are
exposed in [11]. In this section we will extend the existing results by computing
and comparing spectral distances between graphs with few distinct eigenvalues,
precisely between a strongly regular graph and its complement.

A strongly regular graph with parameters (n, r, e, f) (see, for example, [4]) is
a r-regular graph on n vertices in which any two adjacent vertices have exactly
e common neighbours and any two non-adjacent vertices have exactly f common
neighbours. It can be checked that if G is strongly regular graph with parameters
(n, r, e, f), then its complement G is strongly regular with parameters (n, r, e, f),
where n = n, r = n− r− 1, e = n− 2− 2r+ f , and f = n− 2r+ e. We say that a
strongly regular graph G is primitive (see [4]) if both G and G are connected.

Proposition 4.1. Let G be a primitive strongly regular graph with parameters
(n, r, e, f). Then

σA(G,G) = |n− 2r − 1|+ (n− 1) |e+ 1− f |

+

(
1− 2√

∆
|e− f + 1|

)
× |2r + (n− 1)(e− f)| ,

where ∆ = (e− f)2 + 4(r − f).

Proof. According to Theorem 3.6.5 from [4], the spectrum of G consists of three

distinct eigenvalues: [r] , [s]
k

and [t]
l
, where s, t = 1

2 ((e − f) ±
√

∆) and k, l =
1
2

(
n− 1∓ 2r+(n−1)(e−f)√

∆

)
. From Theorem 2.1.2 (see [4]), one can conclude that

the spectrum of G is [n− r − 1] , [−t− 1]
l

and [−s− 1]
k
. So, we have

σA(G,G) =

n∑
i=1

∣∣λi(G)− λi(G)
∣∣

= |n− 2r − 1|+
min{k,l}+1∑

i=2

|s+ t+ 1|+
max{k,l}+1∑
i=min{k,l}+2

|λi(G)− λi(G)|

+

n∑
i=max{k,l}+2

|s+ t+ 1|
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= |n− 2r − 1|+ (min{k, l} −max{k, l}+ n− 1) |s+ t+ 1|

+

max{k,l}+1∑
i=min{k,l}+2

|λi(G)− λi(G)|.

The last addend in the previous equality depends on the mutual relationship be-
tween the multiplicities k and l; it is

max{k,l}+1∑
i=min{k,l}+2

|2s+ 1| =
max{k,l}+1∑
i=min{k,l}+2

∣∣∣√∆− (f − e− 1)
∣∣∣ ,

if k > l, and

max{k,l}+1∑
i=min{k,l}+2

|2t+ 1| =
max{k,l}+1∑
i=min{k,l}+2

∣∣∣√∆ + (f − e− 1)
∣∣∣ ,

if k < l. If k > l, then we have r < n−1
2 (f − e), i.e. f > e, but if k < l holds, then

f ≤ e+ 1 (because if f > e+ 1 holds, let us suppose, for example, that f = e+ 2;
then we have 2r + (n − 1)(e − f) = 2r − 2(n − 1) ≤ 0, since r ≤ n − 1, which
contradicts the assumption). So, we have

max{k,l}+1∑
i=min{k,l}+2

|λi(G)− λi(G)| = (max{k, l} −min{k, l})
∣∣∣√∆− |f − e− 1|

∣∣∣ .
Since |f−e−1|2 = (f−e−1)2 = (f−e)2 +2(e−f)+1 ≤ (f−e)2 +2(r−f)+1 ≤ ∆,
it follows that

max{k,l}+1∑
i=min{k,l}+2

|λi(G)− λi(G)| = 1√
∆
|2r + (n− 1)(e− f)|

(√
∆− |f − e− 1|

)
,

i.e.

σA(G,G) = |n−2r−1|+(n−1)|e−f+1|+
(

1− 2√
∆
|e− f + 1|

)
|2r+(n−1)(e−f)|.

In the case when the multiplicities k and l are equal, i.e. 2r + (n − 1)(e −
f) = 0, the graphs G and G have the same parameters (see, for example, [13]):
(n, r, e, f) = (4t + 1, 2t, t − 1, t), for some t ≥ 1. Then, their spectra consist

of:
[
n−1

2

]
,
[
−1+

√
n

2

]n−1
2

and
[
−1−

√
n

2

]n−1
2

, so the spectral distance is σA(G,G) =

|n− 2r − 1|+ (n− 1)(f − e− 1) = 0. �

We proved (see Proposition 2.3 from [11]) that for a r-regular graph G such
that its degree is not greater than the degree of its complement G the following
inequality between A- and L- spectral distances holds: σL(G,G) ≤ σA(G,G) +
(n − 2)(n − 2r − 1). We also noticed that equality in this relation is attained for,
for example, the Petersen graph. By the following proposition we will prove that
the mentioned equality is attained for all the other strongly regular graphs with
parameters (n, r, e, f), such that r ≤ n−1

2 and f = e+ 1.
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Proposition 4.2. Let G be a primitive strongly regular graph with parameters
(n, r, e, f) such that r ≤ n−1

2 and f = e+ 1. Then

σL(G,G) = σA(G,G) + (n− 2)(n− 2r − 1).

Proof. The L-spectrum of the graph G consists of [r − t]l , [r − s]k and [0], while

the L-spectrum of its complement is [n− r + s]
k
, [n− r + t]

l
and [0], where s, t =

1
2

(
−1±

√
∆
)

and ∆ = 1 + 4(r − e− 1).

Since 2r + (n− 1)(e− f) = 2r − (n− 1) ≤ 2n−1
2 − (n− 1) = 0, we have k ≥ l.

Let us suppose that k > l. Then the L-spectral distance is

σL(G,G) =

l∑
i=1

|r − t− n+ r − s|+
k∑

i=l+1

|n− r + s− r + s|

+

n−1∑
i=k+1

|r − s− n+ r − t|

= 2l |n− 2r − 1|+ (k − l)
∣∣∣n− 2r − 1 +

√
∆
∣∣∣

= 2l(n− 2r − 1) + (k − l)(n− 2r − 1 +
√

∆)

= (n− 2r − 1)(l + k) +
√

∆

(
−2r + (n− 1)(−1)√

∆

)
= n(n− 2r − 1).

In the case when k = l, G and G have the same parameters, so σL(G,G) = 0.
From the previous proposition we have that the A-spectral distance between

G(n, r, e, e + 1) and its complement G is σA(G,G) = 2(n − 2r − 1), when k > l,
and similarly, σA(G,G) = 0, for k = l. Therefore we have

σA(G,G) + (n− 2)(n− 2r − 1) = n(n− 2r − 1) = σL(G,G). �

By using the previously obtained results, one can easily prove the following
statement:

Proposition 4.3. Let G be a primitive strongly regular graph with parameters
(n, r, e, f). Then we have

(1) If f = e and r = n−1
2 , then σL(G,G) = σA(G,G) + (n− 2)(n− 2r − 1).

(2) If f = e + a, a > 1 and r ≤ n−a
2 , then there is no strongly regular graph

with given parameters such that σL(G,G) = σA(G,G)+(n−2)(n−2r−1).

(3) Suppose that e = f + b, b ≥ 1 and r ≤ n−b
2 . If n − 2r + 1 <

√
∆, then

σL(G,G) = σA(G,G) + (n− 2)(n− 2r− 1) for r = n−1
2 . There is no other

strongly regular graph with given parameters such that the A- and L-spectral
distances between it and its complement satisfy the given equality.
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5. About conjectures related to spectral distances of graphs

Some conjectures related to the A-spectral distances of graphs have been posed
in [10]. Among them of particular interest are the following four:

Conjecture 5.1. The A-spectral distance between any two graphs of order n does
not exceed

Emax
n = max{E(G) : G is a graph of order n}.

Conjecture 5.2. If R1 and R2 are graphs having the maximal A-spectral distance
among connected regular graphs of order n, then one of them is Kn.

Conjecture 5.3. If B1 and B2 are graphs having the maximal A-spectral distance
among connected bipartite graphs of order n, then one of them is Kdn/2e,bn/2c.

Conjecture 5.4. The A-spectral distance between any two trees of order n does
not exceed σA(Pn,K1,n−1).

Proposition 4.1 inspired us to try to find a pair of graphs whose A-spectral
distance is greater than the maximal energy Emax

n on the set of all graphs of order
n. As for a graph G on n vertices the following inequality holds [12]: E(G) ≤
n
2 (1+

√
n), with equality if and only if G is a strongly regular graph with parameters

(n, (n+
√
n)/2, (n+

√
n)/4, (n+

√
n)/4), we concluded that for a strongly regular

graph G with parameters (n, r, e, f) such that f ≈
√
n and e is a small positive

number, σA(G,G) = O(n3/2) holds.

Precisely, let us consider the following graphs. The generalized quadrangle G1 =
GQ(2, 4) (more about this kind of graphs the reader can find in, for example, [6,
p. 81]) is the strongly regular graph with parameters (27, 10, 1, 5). The A-spectrum
of this graph consists of 10, [1]20, [−5]6, so we can easily compute σA(G1, G1) = 84.
As Emax

n ≤ n
2 (1+

√
n) ≈ 83.648, by this example we have disproved Conjecture 5.1.

The situation is similar with the generalized quadrangle G2 = GQ(3, 9), which is
also the strongly regular graph with parameters (112, 30, 2, 10). As the A-spectrum
of this graph consists of 30, [2]90, [−10]21, we found σA(G2, G2) = 690 > 648, 648 =
n
2 (1 +

√
n) ≥ Emax

n , i.e. we found another example that disproves Conjecture 5.1.

Besides that, the energies ofG2 andG2 are also smaller then the A-spectral distance
between them, i.e. E(G2) = 420 and E(G2) = 540.

Now, we will consider Conjecture 5.2 on some subset of all connected regular
graphs of order n, but with respect to the L-spectrum.

Proposition 5.1. Let GR be the set of connected regular graphs R of order n with
the adjacency spectrum λ1(R) ≥ λ2(R) ≥ · · · ≥ λn(R) ≥ −2. Then

σL(R1, R2) ≤ σL(Cn,Kn),

where R1 and R2 are ri-regular graphs, i = 1, 2 from the set GR such that ri ≥ 2,
i = 1, 2 and r1 + r2 ≤ n− 3.

Rev. Un. Mat. Argentina, Vol. 56, No. 2 (2015)



SOME RESULTS ON SPECTRAL DISTANCES OF GRAPHS 107

Proof. According to Proposition 3.1 from [11], we find that

σL(Cn,Kn) = 2

(
n(n− 1)

2
− n

)
= n(n− 3),

and also

σL(R,Kn) = 2

(
n(n− 1)

2
− nr

2

)
= n(n− 1− r),

for some r-regular graph R from the set GR.
Since the L-spectrum of an arbitrary r-regular graph R from the set GR is

µ1(R) = r − λn(R) ≥ µ2(R) = r − λn−1(R) ≥ · · · ≥ µn(R) = r − λ1(R) = 0, we
have

σL(R1, R2) =

n∑
i=1

|µi(R1)− µi(R2)|

=

n∑
i=1

|(r1 − λi(R1))− (r2 − λi(R2))| ≤
n∑
i=1

(max{r1, r2}+ 2)

≤ n (n− 3−min{r1, r2}+ 2) = σL
(
Rmin{r1,r2},Kn

)
≤ n(n− 1− 2) = σL(Cn,Kn). �

We saw that there are pairs of graphs of order n whose A-spectral distance is
greater than the maximal energy on the set of all graphs of order n. The computa-
tional results (see Appendix) show that there is no pair of trees of order 5 ≤ n ≤ 11
whose (L-) Q-spectral distance is greater than the Laplacian energy LE(K1,n−1) of
the star K1,n−1 (i.e. the signless Laplacian energy QE(K1,n−1)). So, we can pose
the following conjecture:

Conjecture 5.5. If T1 and T2 are arbitrary trees of order n, then σL(T1, T2) ≤
LE(K1,n−1) and σQ(T1, T2) ≤ QE(K1,n−1).

With the additional assumptions, we can prove the following statement:

Lemma 5.1. Let T1 and T2 be trees of order n ≥ 3. Let us suppose that for
the Laplacian eigenvalues of T1 and T2 the following inequalities hold: |µ1(T1) −
µ1(T2)| ≤ min{µ1(T1), µ1(T2)}−2 and |µi(T1)−µi(T2)| ≤ min{µi(T1), µi(T2)}, for
i = 2, 3, . . . , n. Then we have

σL(T1, T2) ≤ LE(K1,n−1).

Proof. According to the assumptions, we get

σL(T1, T2) ≤ (µ1(T1)−2)+

n∑
i=2

µi(T1) = 2(n−1)−2 < 2n−4+
4

n
= LE(K1,n−1). �

6. Spectral distances in some specially constructed sets of graphs

In order to investigate the cospectrality on the special classes of graphs [14] and
to study the conjectures about the spectral distances of graphs [10], in this section
we will calculate spectral distances and estimate distance related graph parameters
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on the sets of specially chosen graphs of the same order. We will consider three
classes of graphs. The first of them consists of some complete multipartite graphs;
the second class comprehends the graphs that have 2Kn as the common subgraph,
while the graphs in the third class are results of NEPS that is applied on n graphs
K2.

6.1. Complete multipartite graphs. Let X = {G1, G2, . . . , Gp} be the set of
complete multipartite graphs Gi = Kki×mi of order n, where 1 ≤ i ≤ p. Here, p
signifies the number of factors (or divisors) of n. Each graph Gi from the set X
has ki parts (where ki is one of the divisors of n), and each of these parts has equal
number of vertices mi = kp−i+1, for 1 ≤ i ≤ p. We also assume that for graphs Gi
and Gj from the set X such that i < j, ki < kj holds. Thus, G1 is the graph that
consists of isolated vertices (k1 = 1 and m1 = kp = n), G2 = K2×m2

= K2×kp−1
is

the complete bipartite graph, while Gp (kp = n and mp = k1 = 1) is the complete
graph. The spectrum of the graph Gi = Kki×mi consists of (see [3, page 73]):
[(ki − 1)mi], [0]ki(mi−1), and [−mi]

ki−1, but because ki ·mi = n holds for each i,
we have: [n−mi], [0]n−ki and [−mi]

ki−1.

Proposition 6.1. Let X be the previously defined set of graphs. Then

(1) csAX(Gi) = min{2(n− kimi+1), 2(n− ki−1mi)}, for 2 ≤ i ≤ n− 1;
(2) csA(X) = 2(n−m2) = 2(n− kp−1);
(3) seccAX(Gi) = max{2(n− ki), 2(n−mi)}, for 1 ≤ i ≤ n;

(4) sdiamA(X) = E(Kn) = 2(n− 1).

Proof. Let us determine the A-spectral distance between graphs Gi = Kki×mi and
Gj = Kkj×mj from the set X, such that 1 ≤ i < j ≤ p, which means ki < kj and
mi > mj . Since λ1(Gi) < λ1(Gj) and |λn(Gi)| > |λn(Gj)|, we have

σA(Gi, Gj) = |λ1(Gi)− λ1(Gj)|+
n−kj+1∑
k=2

|λk(Gi)− λk(Gj)|

+

n−ki+1∑
k=n−kj+2

|λk(Gi)− λk(Gj)|+
n∑

k=n−ki+2

|λk(Gi)− λk(Gj)|

= |(n−mi)− (n−mj)|+
n−ki+1∑

k=n−kj+2

| −mj |

+

n∑
k=n−ki+2

| −mi +mj | = ki mi + (kj − 2ki)mj = 2(n− ki mj).

Now, we can determine distance related graph parameters on the set X. According
to the definition, for the cospectrality we have

csAX(Gi) = min{σA(Gi, Gj) : Gj ∈ X, j 6= i} = min{2(n− kimi+1), 2(n− ki−1mi)},
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for 2 ≤ i ≤ n − 1. In other words, the graphs that are nearest to the chosen
graph Gi from the set X are its neighbours Gj such that the difference between
the numbers of parts ki and kj is minimal.

Since in the set X there are graphs with only one part and also with the parts
of cardinality equal to one, we can conclude that:

csA(X) = max{2(n− 1 ·m2), 2(n− kp−1 · 1)} = 2(n−m2),

because m2 = kp−1 holds.
The maximal spectral distance is achieved with the empty graph or with the

complete graph, i.e.

seccAX(Gi) = max{σA(Gi, Gj) : Gj ∈ X, j 6= i} = max{2(n− ki · 1), 2(n− 1 ·mi)}.

So, the spectral diameter is sdiamA(X) = σA(G1, Gp) = E(Kn) = 2(n− 1). �

Example 6.1. For n = 12 the set X comprehends the following six graphs:
G1 = 12 K1, G2 = K2×6, G3 = K3×4, G4 = K4×3, G5 = K6×2, and G6 = K12.
The cospectrality of each graph from the set X is cs(G1) = σA(G1, G2) = 12,
cs(G2) = σA(G2, G3) = 8, cs(G3) = σA(G3, G4) = 6, cs(G4) = σA(G3, G4) = 6,
cs(G5) = σA(G4, G5) = 8, and cs(G6) = σA(G5, G6) = 12, so the cospectrality
measure is cs(X) = σA(G1, G2) = σA(G5, G6) = 12. The spectral eccentrici-
ties are secc(G1) = σA(G1, G6) = 22, secc(G2) = σA(G2, G6) = 20, secc(G3) =
σA(G3, G6) = 18, secc(G4) = σA(G4, G1) = 18, secc(G5) = σA(G5, G1) = 20, and
secc(G6) = σA(G1, G6) = 22, and the spectral diameter is sdiam(X) = E(G6) =
22.

6.2. KKj
n graphs. The graph KKj

n is defined in [5] as the graph that is obtained
from two copies of Kn by adding j edges between one vertex of a copy of Kn and j
vertices of the other copy, for 1 ≤ j ≤ n. Its A-characteristic polynomial for n ≥ 3
and 1 ≤ j ≤ n is also exposed in [5]: PKKj

n
(x) = (x+ 1)(2n−4)h(x), where h(x) is

the polynomial whose degree is equal to four. We will first show that the roots of
h(x) are just the first, second, third and 2n-th eigenvalue of the graph KKj

n.

The adjacency matrix Aj of the graph KKj
n is Aj = A0 +Mj . Here, A0 is the

adjacency matrix of 2Kn, whence Mj is the matrix of the following form:

Mj =

(
O Xj

XT
j O

)
=



0 · · · 0 1 · · · 1 · · · 0
0 · · · 0 0 · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
0 · · · 0 0 · · · 0 · · · 0
1 · · · 0 0 · · · 0 · · · 0
1 · · · 0 0 · · · 0 · · · 0
...

. . .
...

...
. . .

...
. . .

...
0 · · · 0 0 · · · 0 · · · 0


,
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where O is the null matrix, while Xj is the matrix of order n that in only one row
(which corresponds to the vertex that is chosen in one of the two copies of Kn) has
j entries that are equal to one, and all others equal to zero.

By applying the row transformations on the matrix Mj , we get the matrix with
just two non-null rows. So, the spectrum of the matrix Mj consists of 2n − 2
eigenvalues that are equal to zero. Since the corresponding graph is bipartite,
remaining two eigenvalues are symmetric with respect to zero, and it can be checked
that they are equal to ±

√
j, for 1 ≤ j ≤ n.

Let us now outline the order of eigenvalues in the spectrum of KKj
n. If we apply

the Courant-Weyl inequalities (see Theorem 1.3.15 from [4]) to A0 and Mj , we get
the following relations:

λl(KK
j
n) ≥ λl+1(2Kn) + λ2n−1(Mj) = λl+1(2Kn) = −1, l = 4, 5, . . . , 2n− 1;

λl(KK
j
n) ≤ λl−1(2Kn) + λ2(Mj) = λl−1(2Kn) = −1, l = 4, 5, . . . , 2n− 1;

λ2n(KKj
n) ≤ λ2n−1(2Kn) + λ2(Mj) = λ2n−1(2Kn) = −1;

λ3(KKj
n) ≥ λ4(2Kn) + λ2n−1(Mj) = λ4(2Kn) = −1,

since the spectrum of 2Kn consists of [n − 1]2 and [−1]2n−2. Therefore the roots
of the polynomial h(x) are λ1(KKj

n), λ2(KKj
n), λ3(KKj

n), and λ2n(KKj
n).

Theorem 6.1. Let G be the set of graphs G = {G0, G1, . . . , Gn} such that G0 =
2Kn and Gi = KKi

n, for 1 ≤ i ≤ n. Then

σA(Gi, Gj) ≤ λ1(Gj)− λ1(Gi) + 3
√
j − i,

for 0 ≤ i < j ≤ n and n ≥ 3.

Proof. The A-spectral distance between Gi = KKi
n and Gj = KKj

n, for 0 ≤ i <
j ≤ n is

σA(Gi, Gj) =

2n∑
l=1

|λl(Gi)− λl(Gj)| = |λ1(Gi)− λ1(Gj)|

+ |λ2(Gi)− λ2(Gj)|+ |λ3(Gi)− λ3(Gj)|+ |λ2n(Gi)− λ2n(Gj)| .

Since the increase of the number of edges does not decrease the maximal eigenvalue
(see Theorem 0.7 from [3]), we have

σA(Gi, Gj) = λ1(Gj)− λ1(Gi) + |λ2(Gi)− λ2(Gj)|
+ |λ3(Gi)− λ3(Gj)|+ |λ2n(Gi)− λ2n(Gj)| .

For the adjacency matrices Ai and Aj of KKi
n and KKj

n, respectively, Aj =
Ai + Mj−i holds. Here, Mj−i is, as before, the matrix of order 2n, with j − i + 1
non-null rows. By applying the Courant-Weyl inequalities we get:

λl(KK
j
n) ≤ λl(KKi

n) + λ1(Mj−i) = λl(KK
i
n) +

√
j − i, l = 2, 3, 2n,

λl(KK
j
n) ≥ λl(KKi

n) + λ2n(Mj−i) = λl(KK
i
n)−

√
j − i, l = 2, 3, 2n,
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which means: |λl(Gi)− λl(Gj)| ≤
√
j − i, for l = 2, 3, 2n. Finally, we have

σA(Gi, Gj) ≤ λ1(Gj)− λ1(Gi) + 3
√
j − i. �

Remark 6.1. In the general case, the distance related graph parameters cannot be
computed and estimated exactly. For example, on the set G for G0 = 2K7 we have
cs(G) = σA(G0, G1) = 2, while sdiam(G) = σA(G0, G5) = 3.68. This value of the
spectral diameter is different from the corresponding values on some other (see [10]
and [11]) previously considered sets of graphs with specially chosen structure and
interconnections, where the spectral diameter was equal to the spectral distance
between, we can say, extremal graphs, i.e. graphs with the least and the largest
number of edges.

Remark 6.2. Since the graph Gi is (j − i)-edge deleted subgraph of the graph
Gj , for 0 ≤ i < j ≤ n, according to Proposition 3.1 from [11], L-, and similarly,
Q-spectral distance between these graphs is equal to

σL(Gi, Gj) = σQ(Gi, Gj) = 2(j − i).

Now, the distance related graph parameters can be exactly computed:

• csLG(Gi) = min{σL(Gi, Gj) : Gj ∈ G, j 6= i} = 2;
• csL(G) = 2;
• seccLG(Gi) = max{σL(Gi, Gj) : Gj ∈ G, j 6= i} = max{2i, 2(n− i)};
• sdiamL(G) = 2n.

6.3. Some graphs obtained by NEPS. We will now continue with another
family of graphs. Namely, let Gk be the graph Gk = NEPS(K2,K2, . . . ,K2︸ ︷︷ ︸

n

; Bk),

where the basis Bk consists of 1 ≤ k ≤ n binary n-tuples with exactly one entry
equal to one. The graph Gk is regular, integral [1] and bipartite [15]. If Bk denotes
the matrix whose rows are vectors of the basis Bk, one can easily found that the
rank of such a matrix in the field GF2 is k. So, Gk has 2n−k connected components
[16]. All of these components are isomorphic, and each of them is isomorphic to the
graph G′k = NEPS(K2,K2, . . . ,K2︸ ︷︷ ︸

k

;B′k), for the basis B′k such that B′k = P (Bk).

Here, P is an isomorphism between the linear subspace L(Bk), generated by the
basis Bk, and the vector space GF k2 . Since the graph G′k is k-cube, whose spectrum

is [k − 2i](
k
i), for 0 ≤ i ≤ k, the spectrum of the graph Gk is [k − 2i]2

n−k(ki), for
0 ≤ i ≤ k and 1 ≤ k ≤ n. We will consider the spectral distances and distance
related graph parameters on the set of graphs F = {G1, G2, . . . , Gn}, each of whose
graphs Gj , for 1 ≤ j ≤ n, is one of the previously described graphs Gk.

Proposition 6.2. The A-spectral distance between graphs Gk and Gk+1, for 1 ≤
k ≤ n− 1, from the set F is

σA(Gk, Gk+1) = 2n.
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Proof. We will first prove some inequalities that are related to the multiplicities of
the distinct eigenvalues of graphs Gk and Gk+1.

From
(
k+1
i+1

)
≥
(
k
i

)
and

(
k+1
i

)
≥
(
k
i

)
, we get 2n−k

(
k
i

)
≤ 2n−k−1

((
k+1
i

)
+
(
k+1
i+1

))
,

for all 0 ≤ i ≤ k.
As 2(k+ 1− i) > k+ 1 holds for all i ≤ bk/2c, we have 2n−k

(
k
i

)
> 2n−k−1

(
k+1
i

)
,

for all 0 ≤ i ≤ bk/2c.
Since graphs Gk and Gk+1 are bipartite, each of the distinct eigenvalues of

Gk will contribute to the value of the spectral distance σA(Gk, Gk+1) with two
corresponding distinct eigenvalues of Gk+1, i.e. |(k − 2i)− (k + 1− 2i)| = 1 and
|(k − 2i)− (k + 1− 2(i+ 1))| = 1. So, the spectral distance is

σA(Gk, Gk+1) =

k∑
i=0

2n−k
(
k

i

)
· 1 = 2n. �

Proposition 6.3. The A-spectral distance between graphs Gk and Gk+2 from the
set F for 1 ≤ k ≤ n− 2 and k-odd is

σA(Gk, Gk+2) = 2n−k+2

bk/2c∑
j=0

2−2

j∑
i=0

(
k + 2

i

)
−
bk/2c∑
j=1

j−1∑
i=0

(
k

i

) .

Proof. We begin with some inequalities related to the multiplicities of the eigen-
values of graphs Gk and Gk+2, when k is odd.

We have 2n−k
(
k
i

)
> 2n−k−2

(
k+2
i

)
, for 0 ≤ i ≤ bk/2c. To see that this holds, it is

enough to show that 4 > (k+2)(k+1)
(k+2−i)(k+1−i) . Since i ≤ bk/2c, we have (k+2)(k+1)

(k+2−i)(k+1−i) <
(k+2)(k+1)

(k+2− k−1
2 )(k+1− k−1

2 )
= 4 (k+2)(k+1)

(k+5)(k+3) < 4, which proves the inequality.

We claim that 2n−k
(
k
i

)
≤ 2n−k−2

((
k+2
i

)
+
(
k+2
i+1

))
, for 1 ≤ k ≤ n and 0 ≤ i ≤

bk/2c, i.e.

4

(
k

i

)
−
(
k + 2

i

)
−
(
k + 2

i+ 1

)
≤ 0. (5)

It is a matter of routine to check that (5) holds for i = 0. For 1 ≤ i ≤ bk/2c
inequality (5) becomes:

k!

i!(k − i)!

(
4− (k + 1)(k + 2)(k + 3)

(i+ 1)(k − i+ 1)(k − i+ 2)

)
≤ 0.

Since (k + 2)(k + 3) ≥ 4(i+ 1)(k − i+ 1), we have

(k + 1)(k + 2)(k + 3)

(i+ 1)(k − i+ 1)(k − i+ 2)
≥ (k + 1)4(i+ 1)(k − i+ 1)

(i+ 1)(k − i+ 1)(k − i+ 2)
≥ 4,

which proves (5).
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Now, the spectral distance is

σA(Gk, Gk+2) = 2 ·


2n−(k+2)∑
i=1

|k − (k + 2)|+
2n−k∑

i=2n−(k+2)+1

|k − k|

+

2n−(k+2)·(1+(k+2))∑
i=2n−k+1

|(k − 2)− k|

+

2n−k·(1+k)∑
i=2n−(k+2)·(1+(k+2))+1

|(k − 2)− (k − 2)|+ · · ·

+

2n−1∑
2n−(k+2)((k+2

0 )+(k+2
1 )+···+( k+2

bk/2c))+1

|1− 1|

 .

Furthermore we have

σA(Gk, Gk+2) = 4

{
2n−(k+2) + 2n−(k+2)

(
1 +

(
k + 2

1

))
− 2n−k

+ 2n−(k+2)

(
1 +

(
k + 2

1

)
+

(
k + 2

2

))
− 2n−k

(
1 +

(
k

1

))
+ 2n−(k+2)

(
1 +

(
k + 2

1

)
+

(
k + 2

2

)
+

(
k + 2

3

))
− 2n−k

(
1 +

(
k

1

)
+

(
k

2

))
+ · · ·+ 2n−(k+2)

(
1 +

(
k + 2

1

)
+

(
k + 2

2

)
+ · · ·+

(
k + 2

bk/2c

))
− 2n−k

(
1 +

(
k

1

)
+

(
k

2

)
+ · · ·+

(
k

bk/2c − 1

))}
.

Hence, by grouping the corresponding addends we get the relation from the state-
ment. �

Remark 6.3. We can notice that the computation of the A-spectral distances be-
tween graphs from the set F becomes more complicated as the differences between
the cardinalities of the corresponding basis increase. On that way, it is not easy to
exactly compute and evaluate A-distance related graph parameters on this set.

On the other hand, L- or Q-distance related graph parameters on the set F can
be exactly computed. Namely, each graph Gk is an edge-deleted subgraph of the
graph Gk+1, for 1 ≤ k ≤ n− 1. Precisely, we have:

Proposition 6.4. Let F be the previously described set of graphs. Then

(1) csLF (Gk) = 2n, for 1 ≤ k ≤ n;
(2) csL(F ) = 2n;
(3) seccLF (Gk) = max{2n(k − 1), 2n(n− k)}, for 1 ≤ k ≤ n;

(4) sdiamL(F ) = 2n(n− 1).
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Proof. Each binary n-tuple with exactly one entry equal to one implies the existence
of 2n−1 edges in the corresponding graph. Since each of the basis Bl is originated
from the basis Bk, for k < l, by adding some binary n-tuples with exactly one
entry equal to one, each graph Gk is a edge-deleted subgraph of the graph Gl. So,
the L-spectral distance between arbitrary graphs Gk and Gl, 1 ≤ k < l ≤ n, from
the set F , according to Proposition 3.1 from [11], is

σL(Gk, Gl) = 2 (2n−1 l − 2n−1 k) = 2n (l − k).

The values of the distance related graph parameters from the statement can be
obtained by direct computation according to the definition. �

Appendix

In the following tables we give the computational results related to the energies
and spectral distances of graphs with respect to the Laplacian and the signless
Laplacian matrix. The first column of all subsequent tables contains the order
of the considered graphs. The values of the maximal (L-) Q-energy are given in
the second column, while the third column contains the number of pairs of graphs
whose (L-) Q-spectral distance is greater than the maximal (L-) Q-energy. The
number of all graphs that have the maximal (L-) Q-energy are exposed in the
fourth column. The graphs with the maximal (L-) Q-energy are outlined in the
last column. Observe that Rr in the last column stands for some r-regular graph.
Numerical results for L- and Q-energies and spectral distances are the same on the
set of connected bipartite graphs and the set of trees.

Table 1. Q-energies and Q-spectral distances of all n-vertex graphs

n max QE(G) σ ≥ max QE(G) No. G

3 4 3 1 K3

4 6 18 1 K4

5 8 148 1 K5

6 10.93 1573 1 CS2,4

7 14.49 34439 1 CS2,5

8 18.80 2212476 1 CS3,5
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Table 2. Q-energies and Q-spectral distances of connected regu-
lar graphs

n max QE(G) σ ≥ max QE(G) No. G

6 10 4 1 K6

7 12 5 1 K7

8 14 51 2 K8, R5

9 16.47 105 1 R6

10 20 3938 1 R6

11 22.45 2534 1 R6

Table 3. Q-energies and Q-spectral distances of connected bipar-
tite graphs

n max QE(G) σ ≥ max QE(G) No. G

4 5 0 1 K1,3

5 6.8 0 1 K1,4

6 9.33 0 1 K2,4

7 12.57 0 1 K2,5

8 16 103 1 K2,6

9 19.56 587 1 K2,7

10 23.2 11771 1 K2,8

11 27.82 196914 1 K3,8

Table 4. Q-energies and Q-spectral distances of trees

n max QE(G) σ ≥ max QE(G) No. G

5 6.8 0 1 K1,4

6 8.67 0 1 K1,5

7 10.57 0 1 K1,6

8 12.5 0 1 K1,7

9 14.44 0 1 K1,8

10 16.4 0 1 K1,9

11 18.36 0 1 K1,10
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Table 5. L-energies and L-spectral distances of all n-vertex graphs

n max LE(G) σ ≥ max LE(G) No. G

3 4 3 1 K3

4 6 18 4 PA3,1,K3 ∪K1,K2∇2K1,K4

5 9.6 84 1 K4 ∪K1

6 13.33 907 1 K5 ∪K1

7 17.14 19868 2 K6 ∪K1,K5 ∪ 2K1

8 22.5 686232 1 K6 ∪ 2K1

Table 6. L-energies and L-spectral distances of connected regular graphs

n max LE(G) σ ≥ max LE(G) No. G

6 10 4 1 K6

7 12 5 1 K7

8 14 51 2 K8, R5

9 16.47 105 1 R6

10 20 3938 1 R6

11 22.45 2396 1 R6
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