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PLANAR NORMAL SECTIONS OF FOCAL MANIFOLDS

OF ISOPARAMETRIC HYPERSURFACES IN SPHERES

CRISTIÁN U. SÁNCHEZ

Abstract. The present paper contains some results about the algebraic sets

of planar normal sections associated to the focal manifolds of homogeneous
isoparametric hypersurfaces in spheres. With the usual identification of the

tangent spaces to the focal manifold with subspaces of the tangent spaces

to the isoparametric hypersurface, it is proven that the algebraic set of pla-
nar normal sections of the focal manifold is contained in that of the original

hypersurface.

1. Introduction

In the present paper we study the real algebraic set of unit tangent vectors gen-
erating planar normal sections of the focal manifolds of isoparametric hypersurfaces
of the spheres. It is well known that isoparametric hypersurfaces of the spheres can
be considered isoparametric submanifolds of codimension two in ordinary Euclidean
spaces.

By definition, normal sections are the curves cut out of a submanifold Mn of
Rn+k by the affine subspace generated by a unit tangent vector and the normal
space, at a given point p of Mn. A normal section γ at any point p of Mn

(p = γ (0)) is called planar at p if its first three derivatives γ′(0), γ′′ (0), γ′′′(0)
are linearly dependent. The unit tangent vectors defining planar normal sections

at p ∈ Mn, form a real algebraic set X̂p [Mn] (see the next section for a proper
definition) which is of interest in the study of the geometry of submanifolds of
Euclidean spaces ([2, 11]).

We restrict our considerations to homogeneous isoparametric hypersurfaces and
their focal manifolds. The collection of homogeneous isoparametric hypersurfaces
of the spheres has a finite number of members in opposition to that of non-
homogeneous ones ([10, 3]). The reason for this restriction is twofold; on the one
hand our algebraic methods are intimately related to the R-spaces (see Section 4),

and on the other is the fact that for R-spaces the algebraic set X̂p [Mn] can in
fact be considered independent of the point p ∈ Mn. Recall that the considered
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120 CRISTIÁN U. SÁNCHEZ

submanifold Mn is extrinsic homogeneous if for any two points p, q ∈Mn there is
an isometry g of the ambient space Rn+k such that g (Mn) = Mn and g(p) = q.

The objective of the present paper is to prove the following result.

Theorem 1. Let Mn ⊂ Sn+1 ⊂ Rn+2 be a full homogenous isoparametric hyper-
surface and M(+) and M(−) its focal manifolds. If p is a point on Mn and p1 is a
focal point of p in M(+) or M(−) then

X̂p1

[
M(±)

]
⊂ X̂p [Mn] .

The method to obtain Theorem 1 depends strongly on the fact that the codi-
mension of Mn in Rn+2 is 2, and it seems clear that the proof presented here can
not be extended to higher codimension.

Theorem 1 indicates an important connection between the sets of planar normal
sections of two different manifolds and at the same time shows the presence of

interesting algebraic subsets of X̂p [Mn].
For an isoparametric submanifold Mn of Rn+k with codimension k ≥ 3 a similar

inclusion can be proved ([4, Corollary 13]) but it requires that the focal manifold
be a symmetric R-space.

It is important to remark the fact that not all focal manifolds of homogeneous
isoparametric hypersurfaces in spheres are symmetric R-spaces. In fact, interesting
examples are the focal manifolds M(+) and M(−) of M = G2/T

2 which is the
(essentially unique [7]) isoparametric hypersurface in the sphere of type (6, 2).
Here M(+) and M(−) are orbits of G2 of the form G2/U (2) = Q5 (the complex
quadratic). They are not symmetric since G2 has only one symmetric space, namely
G2/SO (4), which is an inner symmetric space of quaternionic type, hence it is not
an R-space.

The structure of the paper is the following. In the next Section we indicate the
basic definitions to be used along the paper and in Section 3 we recall basic results
from [11] about the planar normal sections of compact spherical submanifolds and

the definition of the algebraic set X̂p [M ]. In Section 4 we recall the definitions
of R-spaces and in Section 5 we indicate other notation associated to R-spaces.
Particularly in Subsection 5.2 we compute the covariant derivative of the second
fundamental form of a general R-space and that of the principal orbits. This
basic computation is also contained in [4] but it seems convenient to include it
here. Section 6 records basic facts about general isoparametric hypersurfaces in
spheres and their focal map. Details could be obtained in [1]; we just present what
seems strictly necessary. Section 7 contains the essential steps to get the proof of
Theorem 1, which is finally contained in Section 8.

2. Basic definitions

We start recalling some basic definitions. Let M be a compact connected n-
dimensional Riemannian manifold and I : M → Rn+k an isometric embedding into
the Euclidean space Rn+k. We identify M with its image by I. A submanifold
of a Euclidean space Rn+k is usually called full if it is not included in any affine
hyperplane.
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PLANAR NORMAL SECTIONS OF FOCAL MANIFOLDS 121

Let 〈∗, ∗〉 denote the inner product in Rn+k. Let ∇E be the Euclidean covariant
derivative in Rn+k and∇ the Levi-Civita connection in M associated to the induced
metric.

We shall say that the submanifold M is spherical if it is contained in a sphere
of radius r in Rn+k which we may think centered at the origin. Let α denote the
second fundamental form of the embedding in Rn+k. We denote by Tp (M) and

Tp (M)
⊥

the tangent and normal spaces to M at p, in Rn+k, respectively. Let p be
a point in M and consider a unit vector Y in the tangent space Tp (M). We may
define in Rn+k the affine subspace

S (p, Y ) = p+ Span
{
Y, Tp (M)

⊥
}
.

If U is a small enough neighborhood of p in M, then the intersection U ∩S (p, Y )
can be considered the image of a C∞ regular curve γ (s), parametrized by arc-
length, such that γ (0) = p, γ′ (0) = Y . This curve is called a normal section of
M at p in the direction of Y . We say that the normal section γ of M at p in the
direction of Y is planar at p if its first three derivatives γ′ (0), γ′′ (0) and γ′′′ (0)
are linearly dependent. We are interested in studying the set of those unit tangent
vectors which generate planar normal sections to M at the point p ∈M .

3. Compact spherical submanifolds

We recall some known facts and definitions from [11] which are needed here.

Lemma 2. Let M be spherical. The normal section γ of M at p in the direction of
X is planar at p if and only if the covariant derivative of the second fundamental
form vanishes on the vector X = γ′ (0). That is, X satisfies the equation(

∇Xα
)

(X,X) = 0.

Given a point p in the submanifold M we shall denote, as in [11],

X̂p [M ] =
{
Y ∈ Tp (M) : ‖Y ‖ = 1,

(
∇Y α

)
(Y, Y ) = 0

}
.

By doing this for each point in M we obtain a subset of the unit tangent bundle of
M which we shall denote by Ξ (M).

Let M be, as above, a compact connected n-dimensional Riemannian subman-
ifold and also assume that M is spherical. In these conditions, we may take the

image Xp [M ] of X̂p [M ] in the real projective space RP (Tp (M)). Then Xp [M ]
is a real algebraic set of RP (Tp (M)) and its natural complexification XC

p [M ] is

a complex algebraic set of CPn−1. The submanifold M is said to be extrinsically
homogeneous in Rn+k [1, p. 35] if for any two points p and q in Mn there is an
isometry g of Rn+k such that g (M) = M and g(p) = q. If this is the case, Xp [M ]
can be considered “independent” of the point p ∈M . In fact(

∇( g∗|pX)α
)(

g∗|pX, g∗|pX
)

= g∗|p
(
∇Xα

)
(X,X) ,

and we clearly have that

X̂q [M ] = X̂g(p) [M ] = g∗|p
(
X̂p [M ]

)
.
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122 CRISTIÁN U. SÁNCHEZ

Then X̂q [M ] and X̂p [M ] are isomorphic for each pair p, q and we may “free”
ourselves from the point p.

4. R-spaces

Let G/K be a compact simply connected irreducible Riemannian symmetric
space where G is a compact connected Lie group and K is a closed subgroup.
K is the isotropy subgroup of the basic point o = [K]. Let g and k denote the
Lie algebras of G and K respectively. The structure of G/K generates an invo-
lutive automorphism of θ of g such that k is the fixed point set of θ and setting
p = {X ∈ g : θ (X) = −X} we get a direct sum decomposition

g = k⊕ p,

with the properties:

[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

We can identify To (G/K), the tangent space to G/K at o = [K], with the
subspace p. We may assume that the invariant Riemannian metric on G/K is such
that at To (G/K) the inner product coincides with the restriction to p × p of the
opposite of the Killing form B of g. That is, we have for X, Y in p

〈X,Y 〉 = −Bg (X,Y ) . (1)

The group Ad (K) acts on p effectively, as a compact group of linear isometries.
The orbit of a non-zero element of p by this group is a submanifold of p called an
R-space. Let S ⊂ p be the unit sphere. Since the orbit of an element λA (λ 6= 0)
is homothetic to that of A it is customary to consider only the orbits of elements
in S. Such orbits are, of course, contained in S. Let a ⊂ p be a maximal abelian
subspace of p which we shall maintain fixed. It is furthermore known that the orbit
of any A ∈ S meets a orthogonally (polarity, [1, p. 41-46]), so the relevant orbits
are those of vectors in the unit sphere of a, that is a∩ S. We refer the reader to [1,
p. 37, p. 46 (3.2.10)] for a description of “orbit types”. The relevant comment to
make here is that, in our setting, for the action of Ad (K) on p we have two classes
of orbits, namely the principal orbits (generated by the points in an open dense
subset U of a∩S) and the singular ones (generated by the points in ((a ∩ S)− U)).
In the following lines we shall call regular elements to those in the set U .

The objective of the present part is to study the set of planar normal sections
of the orbit of a general element in a ∩ S.

5. The geometry of an R-space

We are going to study the geometry of the orbit for any F ∈ a ∩ S (which may
not be regular) by the group Ad (K). We start by fixing some notation that will
simplify things.
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PLANAR NORMAL SECTIONS OF FOCAL MANIFOLDS 123

5.1. Notation. We have

M = Ad (K)F ⊂ p.

It is convenient to define for λ ∈ a∗ (the dual space of a) the subspaces

kλ = {X ∈ k : (ad (H))
2
X = λ2 (H)X, ∀H ∈ a},

pλ = {X ∈ p : (ad (H))
2
X = λ2 (H)X, ∀H ∈ a},

and observe that obviously

kλ = k−λ, pλ = p−λ, p0 = a,

and k0 is the centralizer of a in k. If λ ∈ a∗ is λ 6= 0 and pλ 6= {0} then λ is called
a restricted root of g with respect to a. We denote by

∆R = ∆R (g, a)

the set of restricted roots of g with respect to a. It is important to notice that the
set of restricted roots ∆R ⊂ (a∗ − {0}) may be non-reduced.

Now consider the subsets of restricted roots associated to F :

∆R0 (F ) = {λ ∈ ∆R : λ (F ) = 0} ⊂ ∆R,

∆R+ (F ) = {λ ∈ ∆R : λ (F ) > 0} ⊂ ∆R.

With them we may define the following four subspaces:

kF = k0 ⊕
∑

λ∈∆R0

kλ, pF = a⊕
∑

λ∈∆R0

pλ,

k+ (F ) =
∑

λ∈∆R+

kλ, p+ (F ) =
∑

λ∈∆R+

pλ,

where all sums are direct, and of course

g = k⊕ p = (kF ⊕ k+)⊕ (pF ⊕ p+) .

A more complete notation may be required to indicate the dependence of k+ and
p+ from F ; in that case we shall use k+ (F ) and p+ (F ), but if there is no risk of
confusion we shall keep the simpler notation.

If X ∈ kλ (λ ∈ ∆R+) we have [X,F ] ∈ p and furthermore [kλ, F ] ⊂ pλ, and
similarly taking X ∈ pλ we obtain [pλ, F ] ⊂ kλ. But in fact, the function ad (F )
which is

ad (F ) : kλ −→ pλ, ad (F ) : pλ −→ kλ

is an isomorphism for each λ ∈ ∆R+ because in any of these two spaces ad (F )
2

=

λ (F )
2
Id.

Then we have

TF (M) = [k, F ] = [k+, F ] = p+.

Now we notice that p+ and pF are orthogonal, 〈p+, pF 〉 = 0; in fact, since any
Y ∈ p+ may be written as Y = [X,F ] for some X ∈ k+, by taking U ∈ pF we see
that

〈U, Y 〉 = 〈U, [X,F ]〉 = 〈[X,F ] , U〉 = 〈X, [F,U ]〉 = 0
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124 CRISTIÁN U. SÁNCHEZ

because [U,F ] = 0. Then we have

TF (M)
⊥

= pF ;

we must observe that if we take (instead of F ) an element E in a ∩ S which is
regular then

TE (M)
⊥

= a.

5.2. Computation of ∇α. We have the Euclidean covariant derivative ∇E in
(p, 〈∗, ∗〉) and the Levi-Civita connection ∇ associated to the induced metric on
M . Also on M we are going to consider the canonical connection determined by
the decomposition k = kF ⊕ k+, which we shall denote by ∇c [1, p. 203].

We have the second fundamental form of M on p and we have the Gauss formula

∇EUW = ∇UW + α (U,W ) .

We need to compute ∇EUW . Let us take, for some X ∈ k, the curve in M of the
form

γ (t) = (Ad (exp (tX))F ) . (2)

Its tangent vector at F is γ′(0) = [X,F ] and if we take t1 > 0 then we may compute
the derivative γ′(t1) by

γ′(t1) = d
dt

∣∣
t=0

(Ad (exp ((t1 + t)X))F )

= d
dt

∣∣
t=0

(Ad (exp ((t1)X))Ad (exp ((t)X))F )

= Ad (exp ((t1)X)) d
dt

∣∣
t=0

Ad (exp ((t)X))F

= Ad (exp ((t1)X)) [X,F ] ,

(3)

and so this gives the tangent field along γ (t).
It is well known that the curves like γ in (2) are ∇c-geodesics and that the

∇c-parallel translation along these geodesics is precisely given by (3) [1, p. 203].
Let us take a tangent vector at F

[Y, F ] ∈ TF (M) = [k, F ] = [k+, F ]

and extend it to a field along γ by

[Y, F ]
∗

= Ad (exp (tX)) [Y, F ] . (4)

Then compute, for X,Y ∈ k,

∇E[X,F ] [Y, F ]
∗

=
d

dt

∣∣∣∣
t=0

(Ad (exp (tX)) [Y, F ]) = [X, [Y, F ]] ∈ p,

noticing that, in fact, we may take X,Y ∈ k+.
Now writing the Gauss formula for [X,F ] and [Y, F ]

∗
we have

∇E[X,F ] [Y, F ]
∗

= ∇[X,F ] [Y, F ]
∗

+ α ([X,F ] , [Y, F ]) ;

then clearly
∇[X,F ] [Y, F ]

∗
= ([X, [Y, F ]])p+

α ([X,F ] , [Y, F ]) = ([X, [Y, F ]])pF
.

(5)
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Let us now compute the covariant derivative of α. By definition this is(
∇[X,F ]α

)
([Y, F ] , [Z,F ]) = ∇⊥[X,F ]α ([Y, F ] , [Z,F ])

− α
(
∇[X,F ] [Y, F ] , [Z,F ]

)
− α

(
[Y, F ] ,∇[X,F ] [Z,F ]

)
.

(6)

Now in [8] (see also [1, p. 212]) the canonical covariant derivative of the second
fundamental form α was introduced as(

∇c[X,F ]α
)

([Y, F ] , [Z,F ]) = ∇⊥[X,F ]α ([Y, F ] , [Z,F ])

− α(∇c[X,F ] [Y, F ] , [Z,F ])

− α([Y, F ] ,∇c[X,F ] [Z,F ]),

and an important result of [8] is that the condition(
∇c[X,F ]α

)
([Y, F ] , [Z,F ]) = 0

in fact characterizes R-spaces.
Since M is a R-space we have:

0 = ∇⊥[X,F ]α ([Y, F ] , [Z,F ])− α
(
∇c[X,F ] [Y, F ] , [Z,F ]

)
− α

(
[Y, F ] ,∇c[X,F ] [Z,F ]

)
,

(7)

and subtracting (7) from (6) we get(
∇[X,F ]α

)
([Y, F ] , [Z,F ]) = −α (D ([X,F ] , [Y, F ]) , [Z,F ])

− α ([Y, F ] , D ([X,F ] , [Z,F ])) ,

where

D = ∇−∇c

is the difference tensor of the two connections, and so we have an important equiv-
alence:(
∇[X,F ]α

)
([X,F ] , [X,F ]) = 0 ⇐⇒ α (D ([X,F ] , [X,F ]) , [X,F ]) = 0. (8)

So we need to compute the difference tensor D ([X,F ] , [Y, F ]). To that end we use
the fact that the tangent field [Y, F ]

∗
(4) is parallel with respect to the canonical

connection ∇c along γ. We have

D ([X,F ] , [Y, F ]) = ∇[X,F ] [Y, F ]
∗ −∇c[X,F ] [Y, F ]

∗
= ∇[X,F ] [Y, F ]

∗
,

and going back to (5) we have

D ([X,F ] , [Y, F ]) = ∇[X,F ] [Y, F ]
∗

= Ta ([X, [Y, F ]]) = ([X, [Y, F ]])p+
.

Then we have that the indicated equivalence (8) becomes here:(
∇[X,F ]α

)
([X,F ] , [X,F ]) = 0 ⇐⇒

([
X, ([X, [X,F ]])p+(F )

])
pF

= 0. (9)
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126 CRISTIÁN U. SÁNCHEZ

We want to mention the important case in which the orbit M is principal. To
distinguish this case we use E instead of F , so here E is a regular element in
(a ∩ S). Formula (9) becomes then(

∇[X,E]α
)

([X,E] , [X,E]) = 0 ⇐⇒
([
X, ([X, [X,E]])p+(E)

])
a

= 0.

Observe that when E is regular, p = a⊕ p+ (E), and in all these formulae X ∈ k =
kF ⊕ k+ (F ), but we may take in fact X ∈ k+ (F ).

6. Isoparametric hypersurfaces in spheres

We need to indicate in this section some notation for the case of isoparametric
hypersurfaces in spheres or equivalently isoparametric submanifolds of rank two
in Euclidean spaces. The literature about this type of hypersurfaces and their
many interesting properties is quite vast, and we refer the reader to the book [1]
and its references for a rather complete treatment of this particular subject within
the framework of submanifold geometry. In fact we shall only indicate here the
things we need to develop the present work and refer to this source whenever it is
necessary.

Let us recall that a compact connected hypersurface M ⊂ Sn+1 is called isopara-
metric if its principal curvatures λ1(p), . . . , λg(p) are constant functions of p ∈M .

It is usual ([1, p. 152]), for the constants λ1, . . . , λg, to adopt the notation

λj = cot (θj) , 0 < θ1 < · · · < θg < π,

and one has the result of Münzner [1, Th. 5.2.16, p. 152]:

θk = θ1 +
k − 1

g
π, k = 1, . . . , g.

The multiplicity of the principal curvature λj is denoted by mj . These satisfy

mj = mj+2 (modulo g indexing).

Any pair of shape operators corresponding to a pair of normal vectors (in Rn+2)
commute:

[Aξ, Aγ ] = 0.

It follows from the Ricci equation [1, p. 11] that the normal curvature tensor
R⊥ vanishes on M and all the shape operators can be simultaneously diagonalized
on each tangent space. We have then in Tp (M) common eigendistributions Dj (p)
(j = 1, . . . , g) called the curvature distributions of M , and we may write Tp (M) as
a direct sum

Tp (M) =

g∑
j=1

Dj (p) .
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PLANAR NORMAL SECTIONS OF FOCAL MANIFOLDS 127

6.1. The focal map. For each point p ∈M the normal space in Rn+2 is the two

dimensional real vector space Tp (M)
⊥

. We may take the normal vector H (p) such

that {p,H (p)} is an orthonormal basis of Tp (M)
⊥

(notice that H (p) is tangent to
the sphere Sn+1 at each p ∈M).

Let us consider the unit speed geodesic in Sn+1 normal to M starting at p,
moving in the direction of H (p). We may write it as

Φs (p) = cos (s) p+ sin (s)H (p) , s ∈ [0, π] . (10)

We have then (for each fixed s) a function

Φs : M −→ Sn+1.

The derivative of Φs at p ∈M is [1, p. 152]:

(Φs)∗|p = cos (s) Id− (sin t)AH(p), (11)

and we observe that for

s ∈ [0, π] , s 6= θj (j = 1, . . . , g) (12)

the derivative (11), at each p ∈ M , is a monomorphism in each Dj (p). In fact, if
X ∈ Dj (p),

(Φs)∗|pX =
sin (θj − s)

sin (θj)
X

and, by our condition on s, (Φs)∗|p is a monomorphism on Tp (M) [1, p. 152].

Remark 3. It is important to notice that the subspace Dj (p) is the eigenspace of
eigenvalue λj = cot (θj) for the operator AH(p).

Each of the points Φs (p), for s satisfying (12), belongs to another isoparametric
hypersurface of the family. On the other hand if s = θj we see that (Φs)∗|p sends

Dj (p) to zero and therefore

p̂ = Φθj (p)

is a focal point of p along the normal geodesic, and so p̂ is in one of the two focal
manifolds.

Let us call Mθj the focal manifold reached at s = θj (of course this is either
M(+) or M(−) but this is not relevant for our purposes). The tangent space to the
corresponding focal manifold Mθj at p̂ can be identified with

Tp̂
(
Mθj

)
=

g∑
k=1,k 6=j

Dk (p) .

Let us notice that the two dimensional plane generated by {p,H (p)} which

coincides with Tp (M)
⊥

is orthogonal to Mθj at p̂. But also the component Dj (p)
is now contained in the normal space of this focal manifold at p̂. Furthermore we
may identify

Tp̂
(
Mθj

)⊥
= SpanR {p,H (p)} ⊕Dj (p) .
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128 CRISTIÁN U. SÁNCHEZ

7. Planar normal sections of Mθj

The fundamental fact here is that the manifold Mθj is a spherical submanifold

of Rn+2 and so we may study its set of planar normal sections at the point p̂ as in
Section 3. However we shall restrict our considerations to the case in which M is a
homogeneous isoparametric hypersurface in the sphere Sn+1. This shall allows us
to use the above facts for R-spaces which apply both to the cases of M and Mθj .

We need to make compatible the notations used above. We have the Cartan
decomposition

g = k⊕ p.

We have a ⊂ p a maximal abelian subspace (dim a = 2), E ∈ (a ∩ S) a regular
element, and M = Ad (K)E is a principal orbit in p. This is the isoparametric
hypersurface of the unit sphere S (p) ⊂ p under consideration. We have the or-

thonormal basis {E,H (E)} of a =TE (M)
⊥

and consider the focal point (in Mθj )

E1 = Φθj (E) = cos (θj)E + sin (θj)H (E)

given by (10) at s = θj . We want to apply (9) to the spherical submanifold Mθj

hence here we have F = E1, and we need to recover some of the notation from
Section 5 in this special case. In particular, we have to identify the subspace Dj (E)
in the notation of the R-spaces.

By definition (Remark 3),

Dj (E) = eigenspace of cot (θj) of AH(E).

It is on the other hand known [1, p. 63] that (for the principal orbit M = Ad (K)E)
the eigenvalues of any shape operator can be computed in terms of the restricted
roots λ ∈ ∆R as

Aξ (X) =

(
− λ (ξ)

λ (E)

)
X, X ∈ pλ, ξ ∈ a, (13)

so the common eigenspaces of the shape operators of M are

Ωλ = pλ + p2λ,

where p2λ = {0} if 2λ is not a restricted root.
By Remark 3 we have that, on X ∈ Dj ,

AH(E) (X) = cot (θj)X =⇒
(
−λ (H (E))

λ (E)

)
= cot (θj) .

We need to identify which is the λ ∈ ∆R such that Dj = Ωλ. To that end,
since E1 ∈ a, we may use formula (13) to compute (at the point E ∈M) the shape
operator AE1 (X) for X ∈ pλ. We get

AE1
(X) =

(
−λ (E1)

λ (E)

)
X, X ∈ pλ.
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On the other hand, by the definition of E1, we may compute (again at the point
E ∈M) on X ∈ Dj ,

AE1(X) = cos (θj)AE (X) + sin (θj)AH(E)X

= cos (θj) (−X) + sin (θj) cot (θj)X = 0.

Then we see that X ∈ Dj implies λ (E1) = 0. We conclude that

Dj ⊂
∑
λ

Ωλ such that λ(E1) = 0. (14)

Then in our notation for the R-spaces we have the two sets of restricted roots
associated to the point E1, that is

∆R0 (E1) = {λ ∈ ∆R : λ (E1) = 0} ,
∆R+ (E1) = {λ ∈ ∆R : λ (E1) > 0} .

and (14) yields

Dj =
∑

λ∈∆R0(E1)

pλ. (15)

We also have

k = kE ⊕ k+ (E) k = kE1
⊕ k+ (E1)

kE1
= k0 ⊕

∑
λ∈∆R0

kλ pE1
= a⊕

∑
λ∈∆R0

pλ

k+ (E1) =
∑
λ∈∆R+

kλ p+ (E1) =
∑
λ∈∆R+

pλ.

To determine the planar normal sections of Mθj we consider now (9). Since we

have the orthogonal direct sum pE1
= a

⊥
⊕Dj , we see that[

X, ([X, [X,E1]])p+(E1)

]
pE1

=
[
X, ([X, [X,E1]])p+(E1)

]
a

+
[
X, ([X, [X,E1]])p+(E1)

]
Dj

. (16)

Therefore, if an X vanishes the left hand side (i.e. if the vector [X,E1] defines
a planar normal section to Mθj at E1) then it has to vanish each term on the
right hand side (because they belong to different orthogonal subspaces). In these
formulas X ∈ k = kE1

⊕k+ (E1), but we may take in fact X ∈ k+ (E1) and k+ (E1) ⊂
k+ (E).

So, we study the condition[
X, ([X, [X,E1]])p+(E1)

]
a

= 0.
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It is also clear, by definition of E1, that we have (writing H instead of H (E) to
simplify notation):[

X, ([X, [X,E1]])p+(E1)

]
a

= (cos θj)
[
X, ([X, [X,E]])p+(E1)

]
a

+ (sin θj)
[
X, ([X, [X,H]])p+(E1)

]
a
. (17)

Now we study the two terms in (17) separately,[
X, ([X, [X,E]])p+(E1)

]
a

and
[
X, ([X, [X,H]])p+(E1)

]
a
.

7.1. First term
[
X, ([X, [X,E]])p+(E1)

]
a
. Since p+ (E) = p+ (E1)⊕Dj , it is clear

that we have[
X, ([X, [X,E]])p+(E)

]
a

=
[
X, ([X, [X,E]])p+(E1)

]
a

+
[
X, ([X, [X,E]])Dj

]
a
.

Now we study [
X, ([X, [X,E]])Dj

]
a
.

Since, by definition, ([X, [X,E]])Dj
∈ Dj and X ∈ k+ (E1) ⊂ k+ (E) we have[

X, ([X, [X,E]])Dj

]
a
⊂ [k+ (E1) , Dj ]a ,

so we study [k+ (E1) , Dj ]a in the following lemma.

Lemma 4. [k+ (E1) , Dj ]a = 0.

Proof. By (15) we have to consider here

[k+ (E1) , Dj ] =

 ∑
λ∈∆R+(E1)

kλ,
∑

µ∈∆R0(E1)

pµ

 =
∑

λ∈∆R+(E1)

∑
µ∈∆R0(E1)

[kλ, pµ] .

It is well known [5] that

[kλ, pµ] ⊂ pλ+µ + pλ−µ,

and since λ ∈ ∆R+ (E1) and µ ∈ ∆R0 (E1) we see that λ+ µ and λ− µ belong to
∆R+ (E1). Then we have

[k+ (E1) , Dj ] ⊂ p+ (E1) ⊂ p+ (E) .

But p+ (E) is orthogonal to a and therefore the lemma follows. �

We see then that [
X, ([X, [X,E]])Dj

]
a

= 0

and hence we have the equality[
X, ([X, [X,E]])p+(E)

]
a

=
[
X, ([X, [X,E]])p+(E1)

]
a
. (18)
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7.2. Second term
[
X, ([X, [X,H]])p+(E1)

]
a
. Let us consider now the second term

in (17), that is [
X, ([X, [X,H]])p+(E1)

]
a
. (19)

Since H = Φs (E) (for s = π
2 ) we have two possibilities: either H is also regular (if

θk 6= π
2 , ∀k = 1, . . . , g) or it is a focal point of E (which requires θk = π

2 for some
k ∈ {1, . . . , g}). In any case we study (19) in the same way as before. We have
again the same decomposition[

X, ([X, [X,H]])p+(E)

]
a

=
[
X, ([X, [X,H]])p+(E1)

]
a

+
[
X, ([X, [X,H]])Dj

]
a
,

and since X ∈ k+ (E1) ⊂ k+ (E) we have here[
X, ([X, [X,H]])Dj

]
a
⊂ [k+ (E1) , Dj ]a ,

but also in this case Lemma 4 yields[
X, ([X, [X,H]])Dj

]
a

= 0,

so we have again a version of (18) but here with H instead of E. That is[
X, ([X, [X,H]])p+(E)

]
a

=
[
X, ([X, [X,H]])p+(E1)

]
a
. (20)

Then in view of (18) and (20) we may change the two terms in (17) and write[
X, ([X, [X,E1]])p+(E1)

]
a

= (cos θ1)
[
X, ([X, [X,E]])p+(E)

]
a

+ (sin θ1)
[
X, ([X, [X,H]])p+(E)

]
a
. (21)

Now we have the following proposition.

Proposition 5. For any X ∈ k+ (E1) we have that
[
X, ([X, [X,E]])p+(E)

]
a

is

orthogonal to E and
[
X, ([X, [X,H]])p+(E)

]
a

is orthogonal to H.

Proof. In fact we prove that for any nonzero vector V in a and E ∈ a regular we
have: [

X, ([X, [X,V ]])p+(E)

]
a

is orthogonal to V for any X ∈ k.

We have to compute〈[
X, ([X, [X,V ]])p+(E)

]
a
, V
〉

=
〈[
X, ([X, [X,V ]])p+(E)

]
, V
〉
.

Recall that the inner product that we have in p = a
⊥
⊕ p+ (E) is (1). Then we have

to compute:

−Bg

([
X, ([X, [X,V ]])p+(E)

]
, V
)

= Bg

([
([X, [X,V ]])p+(E) , X

]
, V
)

= Bg

(
([X, [X,V ]])p+(E) , [X,V ]

)
= Bg ([X, [X,V ]] , [X,V ])
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because [X,V ] ∈ p+ (E). Now

Bg ([X, [X,V ]] , [X,V ]) = −Bg ([[X,V ] , X] , [X,V ])

= −Bg ([X,V ] , [X, [X,V ]])

= −Bg ([X, [X,V ]] , [X,V ]) (by symmetry of Bg).

But the equality

Bg ([X, [X,V ]] , [X,V ]) = −Bg ([X, [X,V ]] , [X,V ])

clearly implies

Bg ([X, [X,V ]] , [X,V ]) = 0,

and in turn

Bg

([
X, ([X, [X,V ]])p+(E)

]
a
, V
)

= 0.

Now setting V = E and V = H we have both assertions in Proposition 5. �

Corollary 6. For any X ∈ k+ (E1), if
[
X, ([X, [X,E]])p+(E)

]
a

and[
X, ([X, [X,H]])p+(E)

]
a

are both non-zero then they are linearly independent in a.

8. Proof of Theorem 1

Proof. As we have observed above, if an X vanishes the left hand side of (16) then
it has to vanish each term on the right hand side. Therefore[

X, ([X, [X,E1]])p+(E1)

]
pF

= 0 =⇒
[
X, ([X, [X,E1]])p+(E1)

]
a

= 0;

on the other hand (21) and Corollary 6 show that

0 =
[
X, ([X, [X,E1]])p+(E1)

]
a

⇐⇒
[
X, ([X, [X,E]])p+(E)

]
a

= 0 and
[
X, ([X, [X,H]])p+(E)

]
a

= 0.

In fact, if one of the two terms on the right hand side of (21) vanishes then so does
the other one. On the other hand if both terms are non-zero then by Corollary 6
they must be linearly independent and this leads to a contradiction because cos θ1

and sin θ1 are not zero.
Since by definition

X̂ [M ] =
{
X ∈ k :

[
X, ([X, [X,E]])p+(E)

]
a

= 0
}

and

X̂
[
Mθj

]
=
{
X ∈ k+ :

[
X, ([X, [X,E1]])p+(E1)

]
pF

= 0
}
,

we get the inclusion

X̂
[
Mθj

]
⊂ X̂ [M ] . �
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