BEST SIMULTANEOUS APPROXIMATION ON SMALL REGIONS BY RATIONAL FUNCTIONS

H. H. CUENYA, F. E. LEVIS, AND A. N. PRIORI

Abstract. We study the behavior of best simultaneous \((l^q, L^p)\)-approximation by rational functions on an interval, when the measure tends to zero. In addition, we consider the case of polynomial approximation on a finite union of intervals. We also get an interpolation result.

1. Introduction

Let \(x_j \in \mathbb{R}, 1 \leq j \leq k, k \in \mathbb{N}\), and let \(B_j\) be pairwise disjoint closed intervals centered at \(x_j\) and radius \(\beta > 0\). Let \(n, m \in \mathbb{N} \cup \{0\}\) and we suppose that

\[n + m + 1 = kc + d, \quad c, d \in \mathbb{N} \cup \{0\}, \quad d < k.\]

We denote \(C_s(I), s \in \mathbb{N} \cup \{0\}\), the space of real functions defined on \(I := \bigcup_{j=1}^k B_j\), which are continuously differentiable up to order \(s\) on \(I\). For simplicity we write \(C(I)\) instead of \(C^0(I)\). We also denote \(\text{co}(I)\) the convex hull of \(I\). Let \(\Pi^n\) be the class of algebraic polynomials of degree at most \(n\), and \(\partial P\) the degree of \(P \in \Pi^n\).

We consider the set of rational functions

\[\mathcal{R}^n_{m} := \left\{ \frac{P}{Q} : P \in \Pi^n, \ Q \in \Pi^m, \ Q \neq 0 \right\}.\]

Clearly, we can assume \(\frac{P}{Q} \in \mathcal{R}^n_{m}\) with \(L^2\)-norm of \(Q\) equal to one on \(I\). Recall that \(\frac{P}{Q} \in \mathcal{R}^n_{m}\) is called normal if this expression is irreducible and either \(\partial P = n\) or \(\partial Q = m\), and the null function is called normal if \(m = 0\) (see [10]).

If \(h \in \mathcal{C}(I)\), we put

\[\|h\| := \left(\int_I |h(t)|^p \frac{dt}{|I|} \right)^{1/p}, \quad 1 \leq p < \infty,\]

where \(|I|\) is the Lebesgue measure of \(I\). If \(p = \infty\), as it is usual, \(\| \cdot \|\) will be the supreme norm. For each \(0 < \epsilon \leq 1\), we also put \(\|h\|_\epsilon = \|h^\epsilon\|\), where \(h^\epsilon(t) = h(\epsilon(t - x_j) + x_j), t \in B_j\).

2010 Mathematics Subject Classification. 41A65, 41A10.

Key words and phrases. Simultaneous approximation, Rational functions, \(L^p\)-norm, Padé approximant.

This work was supported by Universidad Nacional de Río Cuarto and CONICET.
If χ_{B_j} is the characteristic function of the set B_j, we write $\|h\|_{B_j} = \|h\chi_{B_j}\|$. We denote $I_\epsilon = \bigcup_{j=1}^k [x_j - \epsilon, x_j + \epsilon]$.

Let $f_1, \ldots, f_l \in \mathcal{C}(I)$ and $1 \leq q < \infty$. The rational function $u \in \mathcal{R}_m^n$, $0 < \epsilon \leq 1$, is called a best simultaneous (l^q, L^p)-approximation $((l^q, L^p)$-b.s.a.) of f_1, \ldots, f_l from \mathcal{R}_m^n on I_ϵ if

$$\left(\sum_{i=1}^l \|f_i - u\|_\epsilon^q \right)^{1/q} = \inf_{u \in \mathcal{R}_m^n} \left(\sum_{i=1}^l \|f_i - u\|_\epsilon^q \right)^{1/q}. \quad (1)$$

For $q = \infty$, we need to consider in (1) the supreme norm on \mathbb{R}^l.

If a net $\{u_\epsilon\}$ has a limit in \mathcal{R}_m^n as $\epsilon \to 0$, it is called a best simultaneous local (l^q, L^p)-approximation of f_1, \ldots, f_l from \mathcal{R}_m^n on $\{x_1, \ldots, x_k\}$ $((l^q, L^p)$-b.s.l.a.).

A pair $(P, Q) \in \Pi^n \times \Pi^m$ is a Padé approximant pair of f on $\{x_1, \ldots, x_k\}$ if $Q \neq 0$ and

$$(Qf - P)(x) = o((x - x_j)^{\epsilon - 1}), \quad as \ x \to x_j, \ 1 \leq j \leq k.$$ If $\left(f - \frac{P}{Q} \right)(x) = o((x - x_j)^{\epsilon - 1})$, as $x \to x_j$, $1 \leq j \leq k$, then $\frac{P}{Q}$ is called a Padé rational approximant of f on $\{x_1, \ldots, x_k\}$. This rational approximant may not exist. If $d = 0$ there is at most one, and we denote it by $Pa(f)$ when it exists.

In [6] the author studied properties of interpolation of best rational approximation to a single function with respect to an integral norm, which includes the L^p-norm, $1 \leq p < \infty$. In [7] the authors proved that the best approximation to $l^{-1} \sum_{j=1}^l f_j$ from an arbitrary class of functions, S, is identical with the (l^2, L^2)-b.s.a. of f_1, \ldots, f_l from S. However it is known that the (l^q, L^p)-b.s.a., in general, does not match with the best approximation to the mean of the functions f_1, \ldots, f_l when $S = \Pi^n$ (see [8]). The (l^∞, L^p)-b.s.l.a. from Π^n was studied in [4] and [5]. In [2], the authors showed that the (l^q, L^p)-b.s.l.a. to two functions is the average of their Taylor polynomials.

In this paper, we prove an interpolation property of any (l^q, L^p)-b.s.a. to two functions from \mathcal{R}_m^n. As a consequence, we prove the existence and characterization of the (l^q, L^p)-b.s.l.a. when $q > 1$ and $k = 1$. Analogous results over (l^q, L^p)-b.s.l.a. were obtained, for $m = 0$, in several intervals. All our theorems generalize previous results for a single function.

2. Preliminary results

Henceforward we suppose that $1 < p < \infty$ and $1 \leq q < \infty$, except in Lemma [4.3] and Theorem [4.4] where we assume $q > 1$. First, we establish an existence theorem for the (l^q, L^p)-b.s.a.

Theorem 2.1. Let $f_1, f_2 \in \mathcal{C}(I)$ and $0 < \epsilon \leq 1$. Then there exists a (l^q, L^p)-b.s.a. of f_1, f_2 from \mathcal{R}_m^n on I_ϵ.

Proof. Let \(\{ v_r = \frac{P_r}{Q_r} \in \mathcal{R}_m^n : r \in \mathbb{N} \} \) be such that
\[
\sum_{i=1}^{2} \| f_i - v_r \|^q \rightarrow \inf_{v \in \mathcal{R}_m^n} \sum_{i=1}^{2} \| f_i - v \|^q =: b \quad \text{as} \quad r \rightarrow \infty.
\]
It is easy to see that \(\{ \| v_r \|_\varepsilon : r \in \mathbb{N} \} \) is a bounded set. As the sequence \(\{ Q_r \}_{r \in \mathbb{N}} \) is uniformly bounded on compact sets, \(\{ \| P_r \|_\varepsilon : r \in \mathbb{N} \} \) is a bounded set. Now, following the same patterns of the proof of existence for best rational approximation to a single function (see [11, Theorem 2.1]), we can find a subsequence \(v_{r'} \), which converges to \(v \in \mathcal{R}_m^n \) verifying \(\sum_{i=1}^{2} \| f_i - v \|^q = b \), i.e., \(v \) is a \((l^q, L^p)\)-b.s.a. \(\Box \)

The following two lemmas can be proved analogously to [6, p. 88] and [11, p. 236], respectively.

Lemma 2.2. Let \(f_1, f_2 \in C(I) \) and \(0 < \varepsilon < 1 \). Suppose that \(u_\varepsilon = \frac{P_\varepsilon}{Q_\varepsilon} \in \mathcal{R}_m^n \) is a \((l^q, L^p)\)-b.s.a. of \(f_1, f_2 \), from \(\mathcal{R}_m^n \) on \(I_\varepsilon \), and \(f_j \neq u_\varepsilon \) on \(I_\varepsilon \), \(1 \leq j \leq 2 \). Then
\[
\sum_{j=1}^{2} \beta_j \left(\int_{I_\varepsilon} |f_j - u_\varepsilon|^{p-1} \text{sgn}(f_j - u_\varepsilon) \frac{P_\varepsilon Q - PQ_\varepsilon}{Q_\varepsilon} \right) \geq 0, \quad \frac{P_\varepsilon}{Q_\varepsilon} \in \mathcal{R}_m^n, \tag{2}
\]
where \(\beta_j = \beta_j(\varepsilon) := \frac{q}{p} \| f_j - u_\varepsilon \|_\varepsilon^{(\frac{q}{p} - 1)} \).

Remark 2.3. If \(q \geq p \), the constraints \(f_j \neq u_\varepsilon \) on \(I_\varepsilon \), \(1 \leq j \leq 2 \), are not necessary. Moreover, if \(q = p \) we observe that \(\beta_j = 1, 1 \leq j \leq 2 \).

Lemma 2.4. Let \(\gamma \in C(\text{co}(I)) \) be a strictly monotone function. If \(f \in C(I) \) and \(\int_I f \gamma^n = 0 \) for all \(n \in \mathbb{N} \cup \{0\} \), then \(f = 0 \).

Lemma 2.5. Let \(f_1, f_2 \in C(I) \) and \(0 < \varepsilon < 1 \). Suppose that \(u_\varepsilon = \frac{P_\varepsilon}{Q_\varepsilon} \in \mathcal{R}_m^n \) is a \((l^q, L^p)\)-b.s.a. of \(f_1, f_2 \), from \(\mathcal{R}_m^n \) on \(I_\varepsilon \) and \(f_j \neq u_\varepsilon \) on \(I_\varepsilon \), \(1 \leq j \leq 2 \). If \(u_\varepsilon \) is not normal then
\[
\sum_{j=1}^{2} \beta_j |f_j - u_\varepsilon|^{p-1} \text{sgn}(f_j - u_\varepsilon) = 0 \quad \text{on} \quad I_\varepsilon,
\]
where \(\beta_j \) was introduced in Lemma 2.2.

Proof. Suppose that \(u_\varepsilon \) is not normal. Let \(S = \{ S \in \Pi^1 : S(x) = x - a, a \in \mathbb{R} \setminus \text{co}(I) \} \). For \(\lambda \in \mathbb{R} \) and \(S \in S \), let \(P = P_\varepsilon S - \lambda \) and \(Q = Q_\varepsilon S \). Since \(u_\varepsilon = \frac{P_\varepsilon S}{Q_\varepsilon S} \) is a \((l^q, L^p)\)-b.s.a., by Lemma 2.2
\[
\sum_{j=1}^{2} \beta_j \left(\int_{I_\varepsilon} |f_j - u_\varepsilon|^{p-1} \text{sgn}(f_j - u_\varepsilon) \frac{\lambda}{Q_\varepsilon S} \right) \geq 0.
\]

Since \(\lambda \) is arbitrary, then
\[
\sum_{j=1}^{2} \beta_j \left(\int_{I_\varepsilon} |f_j - u_\varepsilon|^{p-1} \text{sgn}(f_j - u_\varepsilon) \frac{1}{Q_\varepsilon S} \right) = 0.
\]

Let \(h := \sum_{j=1}^{2} \beta_j |f_j - u_\varepsilon|^{p-1} \text{sgn}(f_j - u_\varepsilon) \frac{1}{Q_\varepsilon S} \in C(I) \). Then
\[
\int_{I_\varepsilon} h \frac{1}{S} = 0, \quad S \in S. \tag{3}
\]
Let \(\alpha < \min \text{co}(I) \) and \(\gamma(x) = \frac{a}{x-a}, \ a > 0 \). We choose a sufficiently small such that \(|\gamma(x)| < 1, \ x \in I \). For each \(\lambda \in [-1, 0] \) let \(S(x) = (x - \alpha) - \lambda a \). We observe that \(\sum_{n=0}^{\infty} [\lambda \gamma(x)]^n \) uniformly converges to \(\frac{1}{1-\lambda \gamma(x)} \) on \(I \). Since

\[
\int_{I_\epsilon} h(x) \frac{1}{S(x)} \, dx = \int_{I_\epsilon} \frac{h(x)}{(x - \alpha)(1 - \lambda \gamma(x))} \, dx
= \sum_{n=0}^{\infty} \lambda^n \int_{I_\epsilon} \frac{h(x)}{x - \alpha} \gamma^n(x) \, dx,
\]

from (3) we conclude that \(\int_{I_\epsilon} \frac{h(x)}{x-\alpha} \gamma^n(x) \, dx = 0, \ n \in \mathbb{N} \cup \{0\} \). As \(h \in C(I_\epsilon) \), using Lemma 2.4 for \(I_\epsilon \) instead of \(I \) we get the desired result. \(\Box \)

The following result was proved in [6, Theorem 2] for a single function.

Theorem 2.6. Let \(0 < \epsilon \leq 1 \) and \(f_1, f_2 \in C(I) \). Let \(u_\epsilon \in \mathcal{R}_m^n \) be a non normal rational function. Then \(u_\epsilon \) is a \((p, L^p) \)-b.s.a. of \(f_1 \) and \(f_2 \) from \(\mathcal{R}_m^n \) on \(I_\epsilon \) if and only if \(u_\epsilon = \frac{f_1 + f_2}{2} \) on \(I_\epsilon \).

Proof. By Remark 2.3, \(\beta_j = 1, \ j = 1, 2 \). Lemma 2.5 implies

\[|f_1 - u_\epsilon|^{p-1} \text{sgn}(f_1 - u_\epsilon) + |f_2 - u_\epsilon|^{p-1} \text{sgn}(f_2 - u_\epsilon) = 0 \] on \(I_\epsilon \).

If \(\text{sgn}(f_1 - u_\epsilon)(x) = - \text{sgn}(f_2 - u_\epsilon)(x) \), then \(u_\epsilon(x) = \frac{(f_1 + f_2)(x)}{2} \). Otherwise, \(u_\epsilon(x) = f_1(x) = f_2(x) = \frac{(f_1 + f_2)(x)}{2} \) on \(I_\epsilon \). Reciprocally, suppose \(u_\epsilon = \frac{f_1 + f_2}{2} \) on \(I_\epsilon \) and let \(u \in \mathcal{R}_m^n \). Then

\[
\|f_1 - u_\epsilon\|_p^p + \|f_2 - u_\epsilon\|_p^p = 2 \int_I \left(\frac{|f_1 - f_2|^p}{2} \right) \, dx
\leq 2 \int_I \left(\left(\frac{|f_1 - u|^p}{2} \right) + \left(\frac{|u - f_2|^p}{2} \right) \right) \, dx
\leq 2 \left(\int_I \|f_1 - u\|^p \, dx \right) + \left(\int_I \|f_2 - u\|^p \, dx \right)
= \|f_1 - u\|_p^p + \|f_2 - u\|_p^p.
\]

The proof is complete. \(\Box \)

3. An interpolation property

Next, we introduce some notation to prove an interpolation result. Let \(f_1, f_2 \in C(I) \) and \(0 < \epsilon \leq 1 \). We write

\[y_i = y_i(\epsilon) := x_i + \epsilon \beta, \quad y^\epsilon_i = y^\epsilon_i(\epsilon) := x_{i+1} - \epsilon \beta, \quad 1 \leq i \leq k - 1.
\]

If \(g \in C(I_\epsilon) \), we denote

\[\mathcal{A}(g) = \{ i : g(y_i(\epsilon))g(y^\epsilon_i(\epsilon)) < 0, \ 1 \leq i \leq k - 1 \}\]

and \(k^*(g) \) the cardinal of \(\mathcal{A}(g) \). If \(k = 1 \), we put \(k^*(g) = 0 \).

Let $\tilde{f}_1, \tilde{f}_2 \in C(\text{co}(I))$ be extensions of f_1 and f_2, respectively. Now, we suppose that β_j, $1 \leq j \leq 2$, introduced in Lemma 2.2 is well defined. For a) $m = 0$ or b) $m \geq 1$, $k = 1$, the function
\[
\tilde{h}_\epsilon := \beta_1|f_1 - u_\epsilon|^{p-1} \text{sgn}(f_1 - u_\epsilon) + \beta_2|f_2 - u_\epsilon|^{p-1} \text{sgn}(f_2 - u_\epsilon)
\]
(4)
is well defined on co(I_ϵ). We write
\[
\alpha_j(\epsilon) = (\beta_j)^{1/p} \left(\sum_{i=1}^2 \beta_i^{1/p} \right)^{-1}.
\]
(5)

Now, we establish the main result of this section.

Theorem 3.1. Let $f_1, f_2 \in C(I)$ and $0 < \epsilon \leq 1$. Suppose that $u_\epsilon \in \mathcal{R}_m^n$ is a (L^q, L^p)-b.s.a. of f_1 and f_2 from \mathcal{R}_m^n on I_ϵ. If $f_j \neq u_\epsilon$ on I_ϵ, $1 \leq j \leq 2$, and a) or b) holds, then u_ϵ interpolates to $\alpha_1(\epsilon)f_1 + \alpha_2(\epsilon)f_2$ in at least $n + m + 1$ different points of co(I_ϵ), where at least $n + m + 1 - k^*(\tilde{h}_\epsilon)$ of them belong to I_ϵ.

Proof. Since $f_j \neq u_\epsilon$ on I_ϵ, $1 \leq j \leq 2$, the function \tilde{h}_ϵ is defined. We consider two cases. First, suppose that u_ϵ is not normal, then Lemma 2.5 implies $\tilde{h}_\epsilon = 0$ on I_ϵ. Now, we assume that $u_\epsilon := \frac{P_\epsilon}{Q_\epsilon}$ is normal. It is well known that $P_\epsilon \Pi^m + Q_\epsilon \Pi^n = \Pi^{n+m}$ (see [1] p. 240). Therefore by Lemma 2.2 we have
\[
\int_{I_\epsilon} \frac{\tilde{h}_\epsilon}{(Q_\epsilon)^2} v = 0, \quad v \in \Pi^{n+m}.
\]
(6)
Suppose that \tilde{h}_ϵ exactly changes of sign in $z_1, \ldots, z_s \in I_\epsilon$, with $s \leq n + m + 1 - k^*(\tilde{h}_\epsilon)$. We can choose $r_1, \ldots, r_{k^*(\tilde{h}_\epsilon)}$, with $r_i \in (y_i, y_i')$ such that $\tilde{h}_\epsilon(r_i) = 0$, $i \in A(\tilde{h}_\epsilon)$. Let $v := \eta \Pi_{i=1}^{s} (x - z_i) \Pi_{i \in A(\tilde{h}_\epsilon)} (x - r_i)$, $\eta := \pm 1$ be such that v satisfies $\tilde{h}_\epsilon v \geq 0$ on I_ϵ and $\tilde{h}_\epsilon v > 0$ on a positive measure subset of I_ϵ. This contradicts (6), so $s \geq n + m + 1 - k^*(\tilde{h}_\epsilon)$. In this way we have proved that \tilde{h}_ϵ has at least $n + m + 1$ different zeros in co(I_ϵ), where at least $n + m + 1 - k^*(\tilde{h}_\epsilon)$ of them belong to I_ϵ.

Let $x \in \text{co}(I_\epsilon)$ be such that $\tilde{h}_\epsilon(x) = 0$, i.e.
\[
0 = \beta_1|f_1 - u_\epsilon|(x)^{p-1} \text{sgn}(f_1 - u_\epsilon)(x)
+ \beta_2|f_2 - u_\epsilon|(x)^{p-1} \text{sgn}(f_2 - u_\epsilon)(x).
\]
Now, the proof follows analogously to the first part in the proof of Theorem 2.6. \hfill \Box

We denote $l_j(\epsilon)$, $1 \leq j \leq k$, the cardinal of the set of points of B_j, where u_ϵ interpolates to the function $\alpha_1(\epsilon)f_1 + \alpha_2(\epsilon)f_2$, whenever $\alpha_j(\epsilon), 1 \leq j \leq 2$, are defined. The following corollary can be proved similarly to [5] Corollary 9.

Corollary 3.2. Under the same hypotheses of Theorem 3.1 there exists j, $1 \leq j \leq k$, such that $l_j(\epsilon) \geq c$.
4. Existence of (l^q, L^p)-b.s.l.a. from \mathcal{R}_m^n

First, in this section we obtain a general result about the asymptotic behavior of the error

$$\mathcal{E}_\epsilon := \|f_1 - u_\epsilon\|_q^q + \|f_2 - u_\epsilon\|_q^q.$$

Theorem 4.1. Let $f_1, f_2 \in \mathcal{C}(I), 0 < \epsilon \leq 1$, $u_\epsilon \in \mathcal{R}_m^n$ a (l^q, L^p)-b.s.a. of f_1 and f_2 from \mathcal{R}_m^n on I_ϵ. If there exists a Padé rational approximant of $\frac{f_1 + f_2}{2}$ on $\{x_1, \ldots, x_k\}$, then

$$\mathcal{E}_\epsilon^{1/q} = 2^{\frac{1}{q-2}}\|f_1 - f_2\|_\epsilon + o(\epsilon^{c-1}), \text{ as } \epsilon \to 0.$$

Proof. Let R be a Padé rational approximant of $\frac{f_1 + f_2}{2}$ on $\{x_1, \ldots, x_k\}$. Consider the semi-norm on $\mathcal{C}(I) \times \mathcal{C}(I)$ defined by

$$\|(g_1, g_2)\|_\epsilon = (\|g_1\|_q^q + \|g_2\|_q^q)^{1/q}.$$

By the triangle inequality we have

$$\|f_1 - u_\epsilon\|_q^q + \|f_2 - u_\epsilon\|_q^q \leq \|(f_1 - R)\|_q^q + \|(f_2 - R)\|_q^q$$

$$= \left\| \left(\frac{f_1 - f_2}{2}, \frac{f_2 - f_1}{2} \right) + \left(\frac{f_1 + f_2}{2} - R, \frac{f_1 + f_2}{2} - R \right) \right\|_\epsilon^q$$

$$\leq 2^{1/q} \left\| \frac{f_1 - f_2}{2} \right\|_\epsilon + 2^{1/q} \left\| \frac{f_1 + f_2}{2} - R \right\|_\epsilon^q$$

$$\leq 2 \left(\|f_1 - f_2\|_\epsilon + o(\epsilon^{c-1}) \right)^q$$

$$= \frac{1}{2^{q-1}} \left(\|f_1 - f_2\|_\epsilon + o(\epsilon^{c-1}) \right)^q.$$

Since

$$(a + b)^q \leq 2^{q-1}(a^q + b^q), a, b \geq 0,$$

we get

$$\|f_1 - u_\epsilon\|_q^q + \|f_2 - u_\epsilon\|_q^q \geq \frac{1}{2^{q-1}} \|f_1 - f_2\|_\epsilon^2.$$ \hspace{1cm} (9)

From (7) and (9) we obtain the theorem. \hfill \Box

Remark 4.2. If $m = 0$ and $f_1, f_2 \in \mathcal{C}^c(I)$, with an analogous proof we have

$$\mathcal{E}_\epsilon^{1/q} = 2^{\frac{1}{q-2}}\|f_1 - f_2\|_\epsilon + O(\epsilon^c), \text{ as } \epsilon \to 0.$$

For $c > 0$ and $h \in \mathcal{C}^{c-1}(I)$, we consider the set

$$\mathcal{H}(h) = \{ P \in \Pi^n : P^{(i)}(x_j) = h^{(i)}(x_j), \ 0 \leq i \leq c - 1, \ 1 \leq j \leq k \}.$$

We define

$$A_j = \{ i : 0 \leq i \leq c - 1, \ f_1^{(i)}(x_j) \neq f_2^{(i)}(x_j) \}, \ 1 \leq j \leq k.$$

Let $m_j = \min A_j - 1$ if $A_j \neq \emptyset$, and $m_j = c - 1$ otherwise. Set

$$m = \min \{ m_j : 1 \leq j \leq k \}.$$ \hspace{1cm} (10)
For \(c = 0 \), we put \(\mathcal{H}(h) = \Pi^n \), and \(\overline{m} = -1 \). With these notations, we obtain the following lemma.

Lemma 4.3. Let \(q > 1 \) and assume \(c > 0 \), \(f_1, f_2 \in C^{c-1}(I) \) and \(-1 \leq \overline{m} \leq c - 2\). Under the same hypotheses of Theorem 4.1 if \(f_j \neq u_{\epsilon} \) on \(I_{\epsilon} \), \(1 \leq j \leq 2 \), for small \(\epsilon \). Then \(\alpha_1(\epsilon) \) and \(\alpha_2(\epsilon) \) (see (3) above) are defined for small \(\epsilon \) and \(\lim_{\epsilon \to 0} \alpha_1(\epsilon) = \lim_{\epsilon \to 0} \alpha_2(\epsilon) = \frac{1}{2} \).

Proof. For simplicity all subnets \(\epsilon \to 0 \) will be denoted in the same way. Let \(g = \frac{1}{2}(f_1 + f_2) \), \(H = \frac{1}{2}(H_1 + H_2) \) with \(H_l \in \mathcal{H}(f_l) \), \(l = 1, 2 \), and \(u_{\epsilon} = \frac{P_{\epsilon}}{Q_{\epsilon}} \). Then \((g - H)(x) = o((x - x_j)^{c-1}) \), as \(x \to x_j \), \(1 \leq j \leq k \), and

\[
(f_1 - u_{\epsilon})(x) = \left(\frac{1}{2}(f_1 - f_2) + (g - H) + H - \frac{P_{\epsilon}}{Q_{\epsilon}} \right)(x).
\]

Hence

\[
\frac{Q_{\epsilon}(f_1 - u_{\epsilon})}{\|Q_{\epsilon}\|e^{m+1}}(x) = \frac{Q_{\epsilon}(x)}{\|Q_{\epsilon}\|e^{m+1}} \left(\frac{1}{2}(f_1 - f_2)(x) + (g - H(x)) \right)
\]

\[
+ \frac{Q_{\epsilon}(x)H(x) - P_{\epsilon}(x)}{\|Q_{\epsilon}\|e^{m+1}},
\]

for \(x \in B_j \), \(1 \leq j \leq k \). By Theorem 4.1 and the definition of \(\overline{m} \) we obtain \(\|f_1 - u_{\epsilon}\|_c \leq \frac{\varepsilon^{1/q}}{\varepsilon^{m+1}} = O(1) \). Since \(Q_{\epsilon} \in \Pi^m \) on each \(B_j \), and \(\|\cdot\| \) can be also considered as a norm in \((\Pi^m)^k \), the equivalence of norms in this space implies that there exists \(K > 0 \) such that \(\|Q_{\epsilon}^*\| := \max_{1 \leq j \leq k} \max_{B_j} |Q_{\epsilon}^*| \leq K \|Q_{\epsilon}\| \). As \(\overline{m} \leq c - 2 \), by (11) we get

\[
\left\| \frac{Q_{\epsilon}H - P_{\epsilon}}{\|Q_{\epsilon}\|} \right\|_c \leq \left\| \frac{Q_{\epsilon}^*}{\|Q_{\epsilon}^*\|} \right\|_c \left(\|f_1 - u_{\epsilon}\| + \sum_{j=1}^{k} \left(\frac{1}{2}(f_1 - f_2) + (g - H) \right) \chi_{B_j} \right)
\]

\[
\leq \left\| \frac{Q_{\epsilon}^*}{\|Q_{\epsilon}^*\|} \right\|_c \left(\varepsilon^{1/q} + \sum_{j=1}^{k} \left(\frac{1}{2}(f_1 - f_2) + (g - H) \right) \chi_{B_j} \right)
\]

\[
= O(\varepsilon^{m+1}).
\]

From (12) we have a subnet such that \(\frac{(Q_{\epsilon}H - P_{\epsilon})^s}{\|Q_{\epsilon}\|e^{m+1}} \to R \). Moreover, we can choose the subnet such that \(\frac{Q_{\epsilon}^*}{\|Q_{\epsilon}\|} \to S \). Here, \(R \) and \(S \) are polynomials on each \(B_j \). We denote

\[
\lambda(x) = \sum_{j=1}^{k} \frac{(f_1 - f_2 + 1)(m+1)(x_j)(x - x_j)^{m+1}}{(m+1)!} \chi_{B_j}(x) \quad \text{and} \quad T(x) = \frac{R(x)}{S(x)}.
\]

As \(-1 \leq \overline{m} \leq c - 2 \), \(\lambda \neq 0 \). Since \(\frac{(g - H)^s}{e^{m+1}} \to 0 \), from (11) we obtain

\[
\lim_{\epsilon \to 0} \frac{(f_1 - u_{\epsilon})^s}{e^{m+1}} = \frac{1}{2} \lambda + T
\]

on I except possibly by the zeros of S. Similarly, we have
\[
\lim_{\epsilon \to 0} \frac{(f_2 - u_\epsilon)^\epsilon}{\epsilon^m + 1} = -\frac{1}{2} \lambda + T. \tag{14}
\]
By Fatou's Lemma, (13) and (14), there exists a subnet such that
\[
\left\| \frac{1}{2} \lambda + T \right\| \leq \lim_{\epsilon \to 0} \left\| f_1 - u_\epsilon \right\|_\epsilon \text{ and } \left\| \frac{1}{2} \lambda - T \right\| \leq \lim_{\epsilon \to 0} \left\| f_2 - u_\epsilon \right\|_\epsilon.
\]
Therefore, from (8) we have
\[
\|\lambda\|^q = \left\| \frac{1}{2} \lambda + T + \frac{1}{2} \lambda - T \right\| \leq \left(\left\| \frac{1}{2} \lambda + T \right\| + \left\| \frac{1}{2} \lambda - T \right\| \right)^q
\]
\[
\leq 2^{q-1} \left(\left\| \frac{1}{2} \lambda + T \right\|^q + \left\| \frac{1}{2} \lambda - T \right\|^q \right)
\]
\[
\leq 2^{q-1} \lim_{\epsilon \to 0} \frac{\|f_1 - u_\epsilon\|^q_\epsilon + \|f_2 - u_\epsilon\|^q_\epsilon}{\epsilon^m + 1} = \|\lambda\|^q,
\]
where the last equality holds by Theorem 4.1. So,
\[
\left\| \frac{1}{2} \lambda + T + \frac{1}{2} \lambda - T \right\| = \left\| \frac{1}{2} \lambda + T \right\| + \left\| \frac{1}{2} \lambda - T \right\|
\] (15)
and
\[
\frac{\left\| \frac{1}{2} \lambda + T \right\|^q_\epsilon + \left\| \frac{1}{2} \lambda - T \right\|^q_\epsilon}{2} = \left(\frac{\left\| \frac{1}{2} \lambda + T \right\| + \left\| \frac{1}{2} \lambda - T \right\|}{2} \right)^q. \tag{16}
\]
As $\| \cdot \|$ is strictly convex, from (15) there exists $a \geq 0$ such that
\[
\frac{1}{2} \lambda + T = a \left(\frac{1}{2} \lambda - T \right), \tag{17}
\]
i.e., $T = \frac{(a-1)\lambda}{2(1+a)}$. Also, as x^q is strictly convex, from (16) we get
\[
\left\| \frac{1}{2} \lambda + T \right\| = \left\| \frac{1}{2} \lambda - T \right\|. \tag{18}
\]
If $\frac{1}{2} \lambda - T = 0$, then $\frac{1}{2} \lambda + T = 0$ and $\|\lambda\| = 0$, a contradiction. Therefore $\frac{1}{2} \lambda - T \neq 0$, so (17) and (18) imply $a = 1$. Therefore $T = 0$. Now, from (13) and (14), we have
\[
\lim_{\epsilon \to 0} \frac{(f_1 - u_\epsilon)^\epsilon}{\epsilon^m + 1} = \frac{\lambda}{2} \quad \text{and} \quad \lim_{\epsilon \to 0} \frac{(f_2 - u_\epsilon)^\epsilon}{\epsilon^m + 1} = -\frac{\lambda}{2}
\]
on I except possibly by the zeros of S. Again, an application of Fatou's Lemma implies $\frac{\|\lambda\|^q}{2} \leq \lim_{\epsilon \to 0} \frac{\|f_1 - u_\epsilon\|^q_\epsilon}{\epsilon^m + 1}$ and $\frac{\|\lambda\|^q}{2} \leq \lim_{\epsilon \to 0} \frac{\|f_2 - u_\epsilon\|^q_\epsilon}{\epsilon^m + 1}$ for some subnet. Theorem 4.1 implies
\[
\lim_{\epsilon \to 0} \left(\frac{\|f_1 - u_\epsilon\|^q_\epsilon}{\epsilon^m + 1} + \frac{\|f_2 - u_\epsilon\|^q_\epsilon}{\epsilon^m + 1} \right) = \frac{\|\lambda\|^q}{2^{q-1}}.
\]
So,
\[
\frac{\|\lambda\|^q}{2} = \lim_{\epsilon \to 0} \frac{\|f_1 - u_\epsilon\|^q_\epsilon}{\epsilon^m + 1} = \lim_{\epsilon \to 0} \frac{\|f_2 - u_\epsilon\|^q_\epsilon}{\epsilon^m + 1}. \tag{19}
\]
Note that there exists $\epsilon_0 > 0$, such that for all $0 < \epsilon \leq \epsilon_0$, we have $\|f_j - u_\epsilon\|_\epsilon \neq 0, j = 1, 2$, because $\lambda \neq 0$. So, $f_j \neq u_\epsilon$ on $I_\epsilon, 1 \leq j \leq 2$, for
0 < \epsilon \leq \epsilon_0$, and $\alpha_1(\epsilon)$ and $\alpha_2(\epsilon)$ are defined for $0 < \epsilon \leq \epsilon_0$. Finally, from (5) and (19) we conclude that $\lim_{\epsilon \to 0} \alpha_1(\epsilon) = \lim_{\epsilon \to 0} \alpha_2(\epsilon) = \frac{1}{2}$. \hfill \square

Next, we prove the main result of this section, which extends [10] Theorem 1.

Theorem 4.4. Let $q > 1$ and assume $k = 1$. Let $f_1, f_2 \in C^{n+m}(I)$, $0 < \epsilon \leq 1$, and $u_\epsilon = \frac{P_\epsilon}{Q_\epsilon} \in R_m^n \cap (l^q, L^p)$-b.s.a. of f_1 and f_2 from R_m^n on I_ϵ. Suppose that there exists a subnet $\epsilon' \to 0$ such that $P_{\epsilon'} \to P_0$, $Q_{\epsilon'} \to Q_0$, and (P_0, Q_0) is a Padé approximant pair of $\frac{f_1 + f_2}{2}$ on $\{x_1\}$. In addition, if the Padé approximant pair is unique, then u_ϵ converges pointwise to $\frac{P_0}{Q_0}$ as $\epsilon \to 0$, in a neighborhood of x_1 except possibly at x_1. Moreover, if $P_\epsilon \left(\frac{f_1 + f_2}{2} \right)$ is normal then u_ϵ uniformly converges to $P_\epsilon \left(\frac{f_1 + f_2}{2} \right)$, in a neighborhood of x_1.

Proof. Lemma 3.3 and Theorem 3.1 imply that for small ϵ there are $n + m + 1$ points in $co(I_\epsilon) = I_\epsilon$, say $z_0(\epsilon), \ldots, z_{n+m}(\epsilon)$, such that

$$P_\epsilon(z_i(\epsilon)) = Q_\epsilon(z_i(\epsilon))((\alpha_1(\epsilon)f_1(z_i(\epsilon)) + \alpha_2(\epsilon)f_2(z_i(\epsilon))) = 0 \leq i \leq n + m.$$ Consider $g_\epsilon = \alpha_1(\epsilon)f_1 + \alpha_2(\epsilon)f_2$. By the uniqueness of the interpolation polynomial of degree at most $n + m$, we get

$$P_\epsilon = H(z_0(\epsilon), \ldots, z_{n+m}(\epsilon))(Q_\epsilon g_\epsilon),$$

where the right-hand side denotes the interpolation polynomial of $Q_\epsilon g_\epsilon$ of degree $n + m$ on $\{z_0(\epsilon), \ldots, z_{n+m}(\epsilon)\}$. For a subnet $\epsilon' \to 0$, we have

$$Q_{\epsilon'} \to Q_0 \quad \text{and} \quad P_{\epsilon'} \to T_{n+m,x_1}(Q_0 g_\epsilon) =: P_0,$$

where g is the limit of $g_{\epsilon'}$, and $T_{n+m,x_1}(h)$ represents the Taylor polynomial of h of degree $n + m$ at x_1. First, we assume that $-1 \leq \overline{m} \leq c - 2$. By Lemma 4.3, $g = \frac{f_1 + f_2}{2}$ and

$$\left(Q_0 \left(\frac{f_1 + f_2}{2} - P_0 \right) \right)^{(i)}(x_1) = 0, \quad 0 \leq i \leq n + m.$$ Now, we suppose that $\overline{m} = c - 1$. Theorem 4.1 implies $\|f_1 - \frac{P_\epsilon}{Q_\epsilon}\|_\epsilon = o(\epsilon^{n+m})$. As a consequence $\|Q_\epsilon f_1 - P_\epsilon\|_\epsilon = o(\epsilon^{n+m})$, so

$$\|Q_\epsilon T_{n+m,x_1}(f_1) - P_\epsilon\|_\epsilon = o(\epsilon^{n+m}).$$

By definition of \overline{m} we can replace f_1 by $\frac{f_1 + f_2}{2}$, and from a Pólya type inequality (see 3 Theorem 3) we have

$$\left(Q_0 \left(\frac{f_1 + f_2}{2} - P_0 \right) \right)^{(i)}(x_1) = 0, \quad 0 \leq i \leq n + m.$$ In any case, we conclude that (P_0, Q_0) is a Padé approximant pair of $\frac{f_1 + f_2}{2}$ on $\{x_1\}$. On the other hand, if $P_\epsilon \left(\frac{f_1 + f_2}{2} \right)$ is normal, then (P_0, Q_0) is the unique Padé approximant pair of $\frac{f_1 + f_2}{2}$ on $\{x_1\}$ and $Q_0(x_1) \neq 0$ (see [10] Lemma 3). Therefore
We denote $a)$ Let\(\epsilon\) uniformly converges to $\frac{f_1 + f_2}{2}$ on a neighborhood of x_1. \(\square\)

5. Existence of $({l}^q, L^p)$-b.s.l.a. from Π^n

Next, we prove a result about uniform boundedness of a net of best simultaneous approximations from Π^n.

Theorem 5.1. Let $f_1, f_2 \in C^n(I)$, $0 < \epsilon \leq 1$, and let $P_\epsilon \in \Pi^n$ be a $({l}^q, L^p)$-b.s.a. to f_1 and f_2 from Π^n on I_ϵ. Then the net $\{P_\epsilon\}$ is uniformly bounded on compact sets as $\epsilon \rightarrow 0$.

Proof. Without loss of generality we can assume that the extensions \tilde{f}_1, \tilde{f}_2 considered in page 61 belong to $C^n(\text{co}(I))$. By Theorem 3.1 there exists $z_0(\epsilon) < \cdots < z_n(\epsilon)$ in $\text{co}(I)$ such that $P_\epsilon = H_{z_0(\epsilon), \cdots, z_n(\epsilon)}(\gamma_1 f_1 + \gamma_2 f_2)$, where as before $H_{z_0(\epsilon), \cdots, z_n(\epsilon)}$ denotes the interpolation polynomial of $\gamma_1 f_1 + \gamma_2 f_2$ of degree n on $\{z_0, \cdots, z_n\}$, $\gamma_1, \gamma_2 \geq 0$ and $\gamma_1 + \gamma_2 = 1$. Since the nets $\{z_0(\epsilon), \cdots, z_n(\epsilon)\}$ and $\{\gamma_1(\epsilon), \gamma_2(\epsilon)\}$ are bounded, we can find convergent subnets. Suppose that $\gamma_j(\epsilon') \rightarrow \gamma_j$, $j = 1, 2$, and $z_i(\epsilon') \rightarrow t_i$, $0 \leq i \leq n$, as $\epsilon' \rightarrow 0$. Clearly $t_0 \leq \cdots \leq t_n$. Using Newton’s divided difference formula and the continuity of the divided differences we get $P_{\epsilon'} \rightarrow H_{t_0, \cdots, t_n} (\gamma_1 \tilde{f}_1 + \gamma_2 \tilde{f}_2)$, as $\epsilon' \rightarrow 0$. Therefore the net $\{P_\epsilon\}$ is uniformly bounded on compact sets as $\epsilon \rightarrow 0$. \(\square\)

Now, we state results about the convergence of b.s.a. We consider a basis of Π^n, $\{u_{sv}\}_{0 \leq s \leq k}$ which satisfies

\[u_{su}^{(i)}(x_j) = \delta_{(i,j)(s,v)}, \quad w_{su}^{(i)}(x_j) = 0, \quad 0 \leq i \leq c - 1, \quad 1 \leq j \leq k, \]

where δ is the Kronecker delta function.

In the next theorem we need to recall the number m which was defined in [10].

Theorem 5.2. Assume $f_1, f_2 \in C^c(I)$, $0 < \epsilon \leq 1$. Let $P_\epsilon \in \Pi^n$ be a $({l}^q, L^p)$-b.s.a. to f_1 and f_2 from Π^n on I_ϵ, and let A be the cluster point set of the net $\{P_\epsilon\}$ as $\epsilon \rightarrow 0$. Then:

a) A is contained in $\mathcal{M}(f_1, f_2)$, the set of solutions of the following minimization problem:

\[
\min_{P_\epsilon \in \Pi^n} \left(\sum_{l=1}^{2} \sum_{j=1}^{k} \left(\frac{1}{|x_j|^{(m+1)}} \left| (f_l - P)^{(m+1)}(x_j) \right| \right)^{q/p} \right)^{p/q}
\]

with the constraints $P^{(i)}(x_j) = \frac{(f_1 + f_2)^{(i)}(x_j)}{2}$, $0 \leq i \leq m$, $1 \leq j \leq k$.

b) If $f_1, f_2 \in C^n(I)$, then $A \neq \emptyset$. In particular, if $\mathcal{M}(f_1, f_2)$ is unitary, there exists a unique $({l}^q, L^p)$-b.s.l.a. of f_1 and f_2 from Π^n on $\{x_1, \ldots, x_k\}$.

Proof. a) Let $P_0 \in A$. By definition of A, there is a net $\epsilon \downarrow 0$ such that $P_\epsilon \rightarrow P_0$. We denote $U_\epsilon = \frac{H_1 - P_0}{2}$ and $V_\epsilon = \frac{H_2 - P_0}{2}$, where $H_l \in \mathcal{H}(f_l)$, $l = 1, 2$. Clearly,

\[\epsilon_\epsilon \geq \left(\frac{\|f_1 - P_\epsilon\|_2 + \|f_2 - P_\epsilon\|_2}{2} \right)^q. \]

Since \((H_l - f_l)(x) = O(\|(x - x_j)^c\|),\) as \(x \to x_j, l = 1, 2, 1 \leq j \leq k,\) we obtain
\[
\|U_\varepsilon\|_\varepsilon + \|V_\varepsilon\|_\varepsilon \leq \mathcal{E}_\varepsilon^{1/q} + O(\varepsilon).
\] (21)

By Remark 4.2,
\[
\mathcal{E}_\varepsilon^{1/q} = 2 \frac{1 - q}{\varepsilon^{m+1}} \left\| f_1 - f_2 \right\|_\varepsilon + O(1).
\] (22)

Expanding \((f_1 - f_2)^\varepsilon\) by its Taylor polynomial at \(x_j, 1 \leq j \leq k,\) up to order \(m,\) we have
\[
\lim_{\varepsilon \to 0} \left\| \frac{f_1 - f_2}{\varepsilon^{m+1}} \right\|_\varepsilon = \frac{1}{(m+1)!} \left(\sum_{i=1}^{k} \left| (f_1 - f_2)(\varepsilon^{m+1}) (x_j) \right|^p \left\| (t - x_j)^{m+1} \right\|_{B_j} \right)^{1/p} =: L \] (23)

From (22) and (23) we obtain that \(\mathcal{E}_\varepsilon^{1/q} \) is bounded as \(\varepsilon \to 0.\) So, (21) implies that \(\left\| \frac{U_\varepsilon}{\varepsilon^{m+1}} \right\|_{B_j} \) and \(\left\| V_\varepsilon \right\|_{B_j} \), \(1 \leq j \leq k,\) are bounded. Since \(\frac{U_\varepsilon}{\varepsilon^{m+1}}, \frac{V_\varepsilon}{\varepsilon^{m+1}} \in \Pi^m\) on \(B_j,\) then \(\left(\frac{U_\varepsilon}{\varepsilon^{m+1}} \right)^{(i)}(x_j) = (f_1 - f_0)^{(i)}(x_j) \varepsilon^{i-m-1}\) and \(\left(\frac{V_\varepsilon}{\varepsilon^{m+1}} \right)^{(i)}(x_j) = (f_2 - f_0)^{(i)}(x_j) \varepsilon^{i-m-1} \) are bounded for all \(0 \leq i \leq c - 1, 1 \leq j \leq k.\) Therefore there exists \(d_{ij}\) such that
\[
\lim_{\varepsilon \to 0} (f_l - P_\varepsilon)^{(i)}(x_j) \varepsilon^{i-m-1} = d_{ij}, \quad 0 \leq i \leq m, 1 \leq j \leq k, \quad l = 1, 2 \] (24)

for some subnet, that we again denote by \(\varepsilon.\) For \(t \in B_j\) we have
\[
\frac{(f_1 - P_\varepsilon)^\varepsilon(t)}{\varepsilon^{m+1}} = \sum_{i=0}^{m} \frac{(f_1 - P_\varepsilon)^{(i)}(x_j)}{i!} \varepsilon^{-(m+1)} (t - x_j)^i + \frac{(f_1 - P_\varepsilon)^{(m+1)}(\varepsilon(\xi_j(t) - x_j) + x_j)}{(m+1)!} (t - x_j)^{m+1},
\]
where \(\xi_j(t)\) belongs to the segment with ends \(t\) and \(x_j.\) From (24) we get
\[
\lim_{\varepsilon \to 0} \frac{(f_1 - P_\varepsilon)^\varepsilon(t)}{\varepsilon^{m+1}} = \sum_{i=0}^{m} \frac{d_{ij}}{i!} (t - x_j)^i + \frac{(f_1 - P_0)^{(m+1)}(x_j)}{(m+1)!} (t - x_j)^{m+1},
\]
uniformly on \(B_j.\) Therefore
\[
\lim_{\varepsilon \to 0} \left\| \frac{(f_1 - P_\varepsilon)^\varepsilon}{\varepsilon^{m+1}} \right\|_\varepsilon^p = \sum_{j=1}^{k} \left\| \frac{d_{ij}}{i!} (t - x_j)^i + \frac{(f_1 - P_0)^{(m+1)}(x_j)}{(m+1)!} (t - x_j)^{m+1} \right\|_{B_j}^p \] (25)

\[
\geq \sum_{j=1}^{k} \left(\frac{(f_1 - P_0)^{(m+1)}(x_j)}{(m+1)!} \right)^p J^p_j,
\]
where \(J_j = \inf_{Q \in \Pi^{i+1}} \| (t - x_j)^{i+1} - Q(t) \|_{B_j} \). Clearly (25) holds for \(f_2 \) instead of \(f_1 \).

From (24) we can assume \(P_0^{(i)}(x_j) = f_1^{(i)}(x_j) \) for \(1 \leq j \leq k \), \(0 \leq i \leq m \), so we can write

\[
P_0 = \sum_{v=1}^{k} \sum_{s=0}^{m} f_1^{(s)}(x_v) u_{sv} + \sum_{e=1}^{d} b_e w_e + \sum_{v=1}^{k} \sum_{s=m+1}^{c-1} \tau_{sv} u_{sv},
\]

for some real numbers \(\{ \bar{b}_e \}_{1 \leq e \leq d} \) and \(\{ \tau_{sv} \}_{0 \leq s \leq c-1} \). Given two sets of real numbers (independent of \(\epsilon \)), say \(\{ c_{sv} \}_{1 \leq s \leq k} \) and \(\{ b_{ve} \}_{1 \leq e \leq d} \), consider the following net of polynomials in \(\Pi^n \),

\[
R_\epsilon = \sum_{v=1}^{k} \sum_{s=0}^{m} (f_1^{(s)}(x_v) - c_{sv} \epsilon^{m+1-s}) u_{sv} + \sum_{e=1}^{d} b_e w_e + \sum_{v=1}^{k} \sum_{s=m+1}^{c-1} c_{sv} u_{sv}.
\]

We observe that \(R_\epsilon^{(i)}(x_j) = f_1^{(i)}(x_j) - c_{ij} \epsilon^{m+1-i}, \; 1 \leq j \leq k, \; 0 \leq i \leq m \).

Let \(h = \sum_{v=1}^{k} \sum_{s=0}^{m} f_1^{(s)}(x_v) u_{sv} + \sum_{e=1}^{d} b_e w_e + \sum_{v=1}^{k} \sum_{s=m+1}^{c-1} c_{sv} u_{sv} \). Expanding \((f_1 - R_\epsilon)^e \) by its Taylor polynomial at \(x_j \) up to order \(m \), we obtain

\[
(f_1 - R_\epsilon)^e(t) = \sum_{i=0}^{c_{ij}} c_{ij} \frac{(t - x_j)^i}{i!} + \frac{(f_1 - h)^{(m+1)}(x_j - x_j)}{(m+1)!} (t - x_j)^m + \sum_{v=1}^{k} \sum_{s=0}^{m} c_{sv} \epsilon^{m+1-s} \frac{(t - x_j)^i}{i!} (x_v - x_j)^{m+1}, \quad t \in B_j,
\]

where \(\xi_j(t) \) belongs to the segment with ends \(t \) and \(x_j \). Since \(\lim_{\epsilon \to 0} \frac{(f_1 - R_\epsilon)^e(t)}{\epsilon^{m+1}} = \sum_{i=0}^{c_{ij}} c_{ij} \frac{(t - x_j)^i}{i!} + \frac{(f_1 - h)^{(m+1)}(x_j)}{(m+1)!} (t - x_j)^m + \sum_{v=1}^{k} \sum_{s=0}^{m} c_{sv} \epsilon^{m+1-s} \frac{(t - x_j)^i}{i!} (x_v - x_j)^{m+1}, \quad t \in B_j \), we have

\[
\lim_{\epsilon \to 0} \left\| \frac{(f_1 - R_\epsilon)^e}{\epsilon^{m+1}} \right\|_p = \sum_{j=1}^{k} \sum_{i=0}^{c_{ij}} \left(t - x_j \right)^i + \frac{(f_1 - h)^{(m+1)}(x_j)}{(m+1)!} (t - x_j)^m + \sum_{v=1}^{k} \sum_{s=0}^{m} c_{sv} \epsilon^{m+1-s} \frac{(t - x_j)^i}{i!} (x_v - x_j)^{m+1} \right\|_B_j.
\]

Let \(c_{ij}, \; 1 \leq j \leq k, \; 0 \leq i \leq m \), be such that \(\sum_{i=0}^{c_{ij}} \frac{c_{ij} \frac{(t - x_j)^i}{i!}}{(m+1)!} \) is the best approximation to \(\frac{(f_1 - h)^{(m+1)}(x_j)}{(m+1)!} (t - x_j)^m + \sum_{v=1}^{k} \sum_{s=0}^{m} c_{sv} \epsilon^{m+1-s} \frac{(t - x_j)^i}{i!} (x_v - x_j)^{m+1} \) with respect to \(\| . \|_{B_j} \). Then

\[
\lim_{\epsilon \to 0} \left\| \frac{(f_1 - R_\epsilon)^e}{\epsilon^{m+1}} \right\|_p = \sum_{j=1}^{k} \left| \frac{(f_1 - h)^{(m+1)}(x_j)}{(m+1)!} \right|^p J_j^p,
\]

and similarly we get

\[
\lim_{\epsilon \to 0} \left\| \frac{(f_2 - R_\epsilon)^e}{\epsilon^{m+1}} \right\|_p = \sum_{j=1}^{k} \left| \frac{(f_2 - h)^{(m+1)}(x_j)}{(m+1)!} \right|^p J_j^p.
\]
From (25)-(27) and the continuity of the function $|x|^{\frac{q}{p}} + |y|^{\frac{q}{p}}$, we have

$$\sum_{l=1}^{2} \left(\sum_{j=1}^{k} \left| \frac{(f_l - P_0)^{(m+1)}(x_j)}{(m+1)!} J_j^p \right|^{p} \right)^{q/p} \leq \liminf_{\epsilon \to 0} \frac{\mathcal{E}_\epsilon}{\epsilon^{(m+1)q}} \leq \sum_{l=1}^{2} \left(\sum_{j=1}^{k} \left| \frac{(f_l - h)^{(m+1)}(x_j)}{(m+1)!} J_j^p \right|^{p} \right)^{q/p},$$

(28)

for all $h = \sum_{s=0}^{\bar{m}} \sum_{v=1}^{d} j_l(s)(x_v)u_{sv} + \sum_{e=1}^{d} b_e w_e + \sum_{v=1}^{d} c_{sv} u_{sv}$.

For all $1 \leq j \leq k$, $J_j = \inf_{Q \in \Pi^{m+1}} \left(|f_j - h|^{m+1} - Q(y)|^{p \frac{dy}{n}} \right)^{\frac{1}{p}} \neq 0$. Then J_j does not depend on j. So, from (28) we obtain

$$\sum_{l=1}^{2} \left(\sum_{j=1}^{k} \left| (f_l - P_0)^{(m+1)}(x_j) \right|^{p} \right)^{q/p} \leq \sum_{l=1}^{2} \left(\sum_{j=1}^{k} \left| (f_l - h)^{(m+1)}(x_j) \right|^{p} \right)^{q/p}.$$

In addition, as $f_l^{(i)}(x_j) = f_l^{(i)}(x_j)$, $0 \leq i \leq m$, $1 \leq j \leq k$, then $P_0^{(i)}(x_j) = (f_{l_1/2})^{(i)}(x_j)$. The proof of a) is complete.

b) If $f_1, f_2 \in C^n(I)$, by Theorem 5.1 the net $\{P_{\epsilon}\}$ is uniformly bounded on compact sets, then there exists $P_0 \in A$. From a), $P_0 \in M(f_1, f_2)$. In particular, if $M(f_1, f_2)$ is unitary, there exists a unique (l^p, L^p)-b.s.l.a. of f_1 and f_2 from Π^n on $\{x_1, \ldots, x_k\}$.

The following theorem gives sufficient conditions for $M(f_1, f_2)$ to be a unitary set. Its proof is analogous to that of [5, Theorem 12].

Theorem 5.3. Let $f_1, f_2 \in C^{\alpha}(I)$ and $q > 1$. If either a) $\bar{m} = c - 2, d = 0$ or b) $\bar{m} = c - 1$, then $M(f_1, f_2)$ is a unitary set.

The next theorem shows that there always exists a unique (l^2, L^2)-b.s.l.a. of f_1 and f_2 from Π^n on $\{x_1, \ldots, x_k\}$.

Theorem 5.4. Let $f_1, f_2 \in C^{\alpha}(I)$. Then there exists a unique (l^2, L^2)-b.s.l.a. of f_1 and f_2 from Π^n on $\{x_1, \ldots, x_k\}$, and it is the best local approximation of $\frac{f_1 + f_2}{2}$ from Π^n on $\{x_1, \ldots, x_k\}$ with respect to the norm L^2.

Proof. Let $0 < \epsilon \leq 1$ and let $\{P_{\epsilon}\}$ be a net of (l^2, L^2)-b.s.a. of f_1 and f_2 from Π^n on I_ϵ; then it is well known that P_{ϵ} is the best approximation to $\frac{f_1 + f_2}{2}$ with respect to the norm L^2 (see [12, Theorem 3]). Hence, we deduce that $\{P_{\epsilon}\}$ converges to the best local approximation of $\frac{f_1 + f_2}{2}$ (see [9, Theorem 4]).

ACKNOWLEDGEMENT

The authors thank the referee by their suggestions for improving the readability of this paper.

References

H. H. Cuenya
Departamento de Matemática, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Argentina
hcuenya@exa.unrc.edu.ar

F. E. Levis
Departamento de Matemática, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Argentina
flevis@exa.unrc.edu.ar

A. N. Priori
Departamento de Matemática, Universidad Nacional de Río Cuarto, 5800 Río Cuarto, Argentina
apriori@exa.unrc.edu.ar

Received: October 2, 2014
Accepted: April 23, 2015