ANOTHER PROOF OF CHARACTERIZATION OF BMO VIA BANACH FUNCTION SPACES

MITSUO IZUKI

Abstract. Our aim is to give a characterization of the BMO norm via Banach function spaces based on the Rubio de Francia algorithm. Our proof is different from the one by Ho [Atomic decomposition of Hardy spaces and characterization of BMO via Banach function spaces, Anal. Math. 38 (2012), 173–185].

1. Introduction

The BMO space $\text{BMO}(\mathbb{R}^n)$ is known as the dual space of the Hardy space, and plays an important role in real analysis. The space $\text{BMO}(\mathbb{R}^n)$ consists of all locally integrable functions b satisfying that the semi-norm

$$
\|b\|_{\text{BMO}} := \sup_{Q: \text{cube}} \frac{1}{|Q|} \int_Q |b(x) - b_Q| \, dx
$$

is finite, where, for each cube $Q \subset \mathbb{R}^n$, $|Q|$ is its Lebesgue measure and b_Q is the mean value of the function b on Q, namely

$$
b_Q := \frac{1}{|Q|} \int_Q b(y) \, dy.
$$

The definition above tells us that every function $b \in \text{BMO}(\mathbb{R}^n)$ has bounded mean oscillation. The semi-norm $\|b\|_{\text{BMO}}$ is called the BMO norm. If $b \in \text{BMO}(\mathbb{R}^n)$, then there exist positive constants C_1 and C_2 such that for all cubes Q and $\lambda > 0$,

$$
|\{x \in Q : |b(x) - b_Q| > \lambda\}| \leq C_1 |Q| \exp \left(- \frac{C_2 \lambda}{\|b\|_{\text{BMO}}} \right). \tag{1.1}
$$

The inequality (1.1) is proved by John and Nirenberg in [11] and implies that the BMO norm $\|b\|_{\text{BMO}}$ is equivalent to

$$
\|b\|_{\text{BMO},L_p} := \sup_{Q: \text{cube}} \frac{1}{\|\chi_Q\|_{L^p(\mathbb{R}^n)}} \|b - b_Q\chi_Q\|_{L^p(\mathbb{R}^n)} \tag{1.2}
$$

for any constant $1 \leq p < \infty$, where χ_Q is the characteristic function for Q.

2010 Mathematics Subject Classification. 42B35.
Key words and phrases. BMO norm, Banach function space, Rubio de Francia algorithm.

The author was partially supported by Grand-in-Aid for Scientific Research (C), No. 24540185, for the Japan Society for the Promotion of Science.
The author has considered generalization of the equivalent BMO norm and proved the following:

1. (The author, [7]) By using a bounded measurable function \(p(\cdot) : \mathbb{R}^n \to [1, \infty) \) we generalize the semi-norm \((1.2)\) to

\[
\|b\|_{\text{BMO}_{L^p(\cdot)}} := \sup_{Q \in \text{cube}} \frac{1}{|Q|} \| \chi_Q \|_{L^p(\cdot)(\mathbb{R}^n)} \| (b - b_Q) \chi_Q \|_{L^p(\cdot)(\mathbb{R}^n)},
\]

where the variable Lebesgue norm \(\| f \|_{L^p(\cdot)(\mathbb{R}^n)} \) is defined by

\[
\| f \|_{L^p(\cdot)(\mathbb{R}^n)} := \inf \left\{ \lambda > 0 : \int_{\mathbb{R}^n} \frac{|f(x)|^p}{\lambda} \, dx \leq 1 \right\}.
\]

The generalized Lebesgue space \(L^p(\cdot)(\mathbb{R}^n) \) consists of all measurable functions \(f \) such that the norm \(\| f \|_{L^p(\cdot)(\mathbb{R}^n)} \) is finite. If \(p(\cdot) \) satisfies \(1 < \inf p(x) \) and the Hardy–Littlewood maximal operator \(M \), defined by

\[
Mf(x) := \sup_{Q \ni x, Q \in \text{cube}} \frac{1}{|Q|} \int_Q |f(y)| \, dy,
\]

is bounded on \(L^p(\cdot)(\mathbb{R}^n) \), then the generalized BMO norm \(\| b \|_{\text{BMO}_{L^p(\cdot)}} \) is equivalent to the classical one \(\| b \|_{\text{BMO}} \).

2. (The author and Sawano, [9]) If a bounded measurable function \(p(\cdot) : \mathbb{R}^n \to [1, \infty) \) satisfies \(1 \leq \inf p(x) \) and the log-Hölder conditions:

\[
|p(x) - p(y)| \leq \frac{C}{-\log(|x - y|)} \quad \text{for } x, y \in \mathbb{R}^n, |x - y| \leq 1/2,
\]

\[
|p(x) - p_\infty| \leq \frac{C}{\log(e + |x|)} \quad \text{for } x \in \mathbb{R}^n,
\]

for some constants \(C \) and \(p_\infty \) independent of \(x, y \), then \(\| b \|_{\text{BMO}_{L^p(\cdot)}} \) is equivalent to \(\| b \|_{\text{BMO}} \).

3. (The author, Sawano and Tsutsui, [10]) If a variable exponent \(p(\cdot) : \mathbb{R}^n \to [1, \infty) \) is bounded and \(M \) is of weak type \((p(\cdot), p(\cdot)) \), that is, there exists a constant \(C > 0 \) such that for all \(f \in L^p(\cdot)(\mathbb{R}^n) \) and all \(\lambda > 0 \),

\[
\| \chi_{\{Mf > \lambda\}} \|_{L^p(\cdot)(\mathbb{R}^n)} \leq C \lambda^{-1} \| f \|_{L^p(\cdot)(\mathbb{R}^n)},
\]

then \(\| b \|_{\text{BMO}_{L^p(\cdot)}} \) is equivalent to \(\| b \|_{\text{BMO}} \).

On the other hand, Ho [6] has proved an interesting characterization in the context of general function spaces including Lebesgue spaces. Given a Banach function space \(X \) equipped with a norm \(\| \cdot \|_X \), we define a generalized BMO norm

\[
\| b \|_{\text{BMO}_X} := \sup_{Q \in \text{cube}} \frac{1}{\| \chi_Q \|_X} \| (b - b_Q) \chi_Q \|_X.
\]

If \(M \) is bounded on the associate space \(X' \), then \(\| b \|_{\text{BMO}_X} \) is equivalent to \(\| b \|_{\text{BMO}} \).

We remark that Ho's result [6] has included the authors' one [7, 9]. The statements in [7, 9] are deeply depending on Diening’s work [3] on variable exponent analysis. On the other hand, Ho’s proof is self-contained and obtained as a by-product of the new results about atomic decomposition introduced in [6].
In the present paper we give a new proof of the characterization of the BMO norm initially proved by Ho. We use the Rubio de Francia algorithm [13, 14, 15].

2. Preliminaries

2.1. Banach function spaces. We present the definition of Banach function space and some fundamental properties of it based on Bennett and Sharpley [1]. For further informations on the theory of Banach function space including the proof of Lemma 2.1 below we refer to that book.

Definition 2.1. Let \mathcal{M} be the set of all complex-valued measurable functions defined on \mathbb{R}^n, and X be a linear subspace of \mathcal{M}.

1. The space X is said to be a Banach function space if there exists a functional $\|\cdot\|_X : \mathcal{M} \rightarrow [0, \infty]$ satisfying the following properties: Let $f, g, f_j \in \mathcal{M}$ ($j = 1, 2, \ldots$), then
 (a) $f \in X$ holds if and only if $\|f\|_X < \infty$.
 (b) Norm property:
 (i) Positivity: $\|f\|_X \geq 0$.
 (ii) Strict positivity: $\|f\|_X = 0$ holds if and only if $f(x) = 0$ for almost every $x \in \mathbb{R}^n$.
 (iii) Homogeneity: $\|\lambda f\|_X = |\lambda| \cdot \|f\|_X$ holds for all complex numbers λ.
 (iv) Triangle inequality: $\|f + g\|_X \leq \|f\|_X + \|g\|_X$.
 (c) Symmetry: $\|f\|_X = \|f\|_X$.
 (d) Lattice property: If $0 \leq g(x) \leq f(x)$ for almost every $x \in \mathbb{R}^n$, then $\|g\|_X \leq \|f\|_X$.
 (e) Fatou property: If $0 \leq f_j(x) \leq f_{j+1}(x)$ for all j and $f_j(x) \rightarrow f(x)$ as $j \rightarrow \infty$ for almost every $x \in \mathbb{R}^n$, then $\lim_{j \rightarrow \infty} \|f_j\|_X = \|f\|_X$.
 (f) For every measurable set $F \subset \mathbb{R}^n$ such that $|F| < \infty$, $\|\chi_F\|_X$ is finite. Additionally there exists a constant $C_F > 0$ depending only on F such that for all $h \in X$,
 $$\int_F |h(x)| \, dx \leq C_F \|h\|_X.$$

2. Suppose that X is a Banach function space equipped with a norm $\|\cdot\|_X$. The associate space X' is defined by

$$X' := \{ f \in \mathcal{M} : \|f\|_{X'} < \infty \},$$

where

$$\|f\|_{X'} := \sup_g \left\{ \int_{\mathbb{R}^n} f(x)g(x) \, dx : \|g\|_X \leq 1 \right\}.$$

Lemma 2.1. Let X be a Banach function space. Then the following hold:

1. (The Lorentz–Luxemburg theorem.) $(X')' = X$ holds; in particular, the norms $\|\cdot\|_{(X')'}$ and $\|\cdot\|_X$ are equivalent.
(2) (The generalized Hölder inequality.) If \(f \in X \) and \(g \in X' \), then we have
\[
\int_{\mathbb{R}^n} |f(x)g(x)| \, dx \leq \|f\|_X \|g\|_{X'}.
\]

The usual Lebesgue space \(L^p(\mathbb{R}^n) \) with constant exponent \(1 \leq p \leq \infty \) is an example of Banach function spaces. Kováčik and Rákosník [12] have proved that the generalized Lebesgue space \(L^{p(\cdot)}(\mathbb{R}^n) \) with variable exponent \(p(\cdot) \) is a Banach function space and the associate space is \(L^{p'(\cdot)}(\mathbb{R}^n) \) with norm equivalence, where \(p'(\cdot) \) is the conjugate exponent given by \(\frac{1}{p(\cdot)} + \frac{1}{p'(\cdot)} = 1 \).

If we assume some conditions for boundedness of the Hardy–Littlewood maximal operator \(M \) on \(X \), then the norm \(\| \cdot \|_X \) has properties similar to the Muckenhoupt weights.

Lemma 2.2. Let \(X \) be a Banach function space. Suppose that the Hardy–Littlewood maximal operator \(M \) is weakly bounded on \(X \), that is, there exists a positive constant \(C \) such that
\[
\| \chi_{\{Mf>\lambda\}} \|_X \leq C \lambda^{-1} \|f\|_X
\]
is true for all \(f \in X \) and \(\lambda > 0 \). Then we have
\[
\sup_{Q: \text{cube}} \frac{1}{|Q|} \|\chi_Q \|_X \|\chi_Q \|_{X'} < \infty.
\]

Proof. The proof is found in the author’s papers [8, Lemmas 2.4 and 2.5] and [10, Lemmas G’ and H]. For the reader’s convenience we give the self-contained proof. Take a cube \(Q \) and a function \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \). Suppose that \(|f|_Q > 0 \). Because \(|f|_Q \chi_Q(x) \leq M(f \chi_Q)(x) \) holds for almost every \(x \in \mathbb{R}^n \), we obtain \(M(f \chi_Q)(x) > \lambda \) for almost every \(x \in Q \), where \(\lambda := |f|_Q/2 \). Hence by assumption (2.1) we get
\[
|f|_Q \chi_Q \leq |f|_Q \chi_{\{M(f \chi_Q) > \lambda\}} \leq |f|_Q \cdot C \lambda^{-1} \|f \chi_Q\|_X
\leq 2C \|f \chi_Q\|_X.
\]
Therefore we have
\[
\frac{1}{|Q|} \|\chi_Q \|_X \|\chi_Q\|_{X'} = \frac{1}{|Q|} \|\chi_Q \|_X \cdot \sup_g \left\{ \int_{\mathbb{R}^n} \left| g(x) \chi_Q(x) \right| \, dx : g \in X, \|g\|_X \leq 1 \right\}
= \sup_g \{ |g|_Q \chi_Q \|_X : g \in X, \|g\|_X \leq 1 \}
\leq \sup_g \{ 2C |g \chi_Q|_X : g \in X, \|g\|_X \leq 1 \}
\leq 2C.
\]

Remark 2.1. If \(M \) is bounded on \(X \), that is, there exists a positive constant \(C \) such that
\[
\|Mf\|_X \leq C \|f\|_X
\]
holds for all \(f \in X \), then we can easily check that (2.1) holds. On the other hand, if \(M \) is bounded on the associate space \(X' \), then Lemma 2.1 shows that (2.2) is true.
2.2. Muckenhoupt weights.

Definition 2.2. Let w be a locally integrable and positive function on \mathbb{R}^n. The function w is said to be a Muckenhoupt A_1 weight if there exists a positive constant C_1 such that $Mw(x) \leq C_1 w(x)$ holds for almost every $x \in \mathbb{R}^n$. The set A_1 consists of all Muckenhoupt A_1 weights. For every $w \in A_1$, the finite value

$$[w]_{A_1} := \sup_{Q: \text{cube}} \left\{ \frac{1}{|Q|} \int_Q w(x) \, dx \cdot \|w^{-1}\|_{L^\infty(Q)} \right\}$$

is said to be a Muckenhoupt A_1 constant.

We remark that if $w \in A_1$, then

$$\frac{1}{|Q|} \int_Q w(x) \, dx \leq [w]_{A_1} \inf_{x \in Q} w(x)$$

for all cubes Q. We will use a classical result on the Muckenhoupt weights.

Lemma 2.3 (Chapter 7 in [4], Chapter 9 in [5]). Let $w \in A_1$. We write $w(Q) := \int_Q w(x) \, dx$ for a cube Q. Then the reverse Hölder inequality holds, that is, there exist positive constants $q > 1$ and C depending on n and $[w]_{A_1}$ such that for all cubes Q,

$$\left(\frac{1}{|Q|} \int_Q w(x)^q \, dx \right)^{1/q} \leq C |Q|^{-1} w(Q).$$

3. The main result

Ho [6, Theorem 2.3] has proved the following characterization of the BMO norm via Banach function spaces.

Theorem 3.1. Let X be a Banach function space. If the Hardy–Littlewood maximal operator M is bounded on the associate space X', then there exist positive constants $C_1 \leq C_2$ such that for all $b \in \text{BMO}({\mathbb{R}^n})$,

$$C_1 \|b\|_{\text{BMO}} \leq \sup_{Q: \text{cube}} \frac{1}{\|\chi_Q\|_X} \|(b - b_Q)\chi_Q\|_X \leq C_2 \|b\|_{\text{BMO}}. \tag{3.1}$$

Ho’s proof is based on the theory of Hardy spaces. We will give another proof of Theorem 3.1 by virtue of the Rubio de Francia algorithm.

Proof. Below we take $b \in \text{BMO}({\mathbb{R}^n})$ arbitrarily and write $f := b - b_Q$ for any cube Q.

We first prove the left hand side inequality in (3.1). Using Lemma 2.2 and Remark 2.1 we get for all cubes Q:

$$\frac{1}{|Q|} \int_Q |f(x)| \, dx \leq \frac{1}{|Q|} \|f\chi_Q\|_X \|\chi_Q\|_X \leq C \cdot \frac{1}{\|\chi_Q\|_X} \|f\chi_Q\|_X,$$

where $C > 0$ is a constant independent of b and Q. This shows the desired estimate.
Next we prove the right hand side inequality in (3.1). Our idea is based on [2, Proof of Lemma 3.3]. Take \(g \in X' \) with \(\|g\|_{X'} \leq 1 \). Let \(B := \|M\|_{X' \to X'} \) and define a function
\[
Rg(x) := \sum_{k=0}^{\infty} \frac{M^k g(x)}{(2B)^k}, \quad (g \in X'),
\]
where
\[
M^k g := \begin{cases}
|g| & (k = 0), \\
Mg & (k = 1), \\
M(M^k - 1)g & (k \geq 2).
\end{cases}
\]
For every \(g \in X \), the function \(Rg \) satisfies the following properties:
1. \(|g(x)| \leq Rg(x) \) for almost every \(x \in \mathbb{R}^n \).
2. \(\|Rg\|_{X'} \leq 2\|g\|_{X'} \), namely the operator \(R \) is bounded on \(X' \).
3. \(M(Rg)(x) \leq 2BRg(x) \), that is, \(Rg \) is a Muckenhoupt \(A_1 \) weight.

By Lemma 2.3, there exist positive constants \(q > 1 \) and \(C \) independent of \(g \) such that for all cubes \(Q \),
\[
\left(\frac{1}{|Q|} \int_Q Rg(x)^q \, dx \right)^{1/q} \leq C \frac{|Q|}{|Q|} Rg(Q).
\]
By virtue of the generalized Hölder inequality, we obtain
\[
\| (Rg)\chi_Q \|_{L^q(\mathbb{R}^n)} = |Q|^{1/q} \left(\frac{1}{|Q|} \int_Q Rg(x)^q \, dx \right)^{1/q} \\
\leq |Q|^{1/q} \cdot \frac{C}{|Q|} Rg(Q) \\
\leq C \cdot |Q|^{-1/(q')} \|Rg\|_{X'} \|\chi_Q\|_X \\
\leq C \cdot |Q|^{-1/(q')} \|\chi_Q\|_X.
\]
Then we have
\[
\int_Q |f(x)g(x)| \, dx \leq \int_Q |f(x)| Rg(x) \, dx \\
\leq \|f\chi_Q\|_{L^{q'}(\mathbb{R}^n)} \| (Rg)\chi_Q \|_{L^q(\mathbb{R}^n)} \\
\leq C \left(\frac{1}{|Q|} \int_Q |f(x)|^{q'} \, dx \right)^{1/(q')} \|\chi_Q\|_X \\
\leq C \|b\|_{BMO} \|\chi_Q\|_X.
\]
By Lemma 2.1 we get
\[
\|(b - b_Q)\chi_Q \|_X = \|f\chi_Q\|_X \\
\leq C \sup_g \left\{ \int_Q |f(x)g(x)| \, dx : g \in X', \|g\|_{X'} \leq 1 \right\} \\
\leq C \|b\|_{BMO} \|\chi_Q\|_X.
\]
Consequently we have proved the theorem.
ACKNOWLEDGMENT

The author is very grateful to the referee whose comments improved the manuscript.

REFERENCES

M. Izuki
Department of Mathematics Education, Faculty of Education, Okayama University
Tsushima-naka 3-1-1, Okayama, 700-8530, Japan
izuki@okayama-u.ac.jp

Received: January 13, 2015
Accepted: July 24, 2015