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INEQUALITIES FOR GENERALIZED δ-CASORATI

CURVATURES OF SUBMANIFOLDS IN REAL SPACE FORMS

ENDOWED WITH A SEMI-SYMMETRIC METRIC

CONNECTION

JAE WON LEE, CHUL WOO LEE, AND DAE WON YOON

Abstract. We study two sharp inequalities involving the instrinsic scalar

curvature and extrinsic generalized normalized δ-Casorati curvature of sub-

manifolds of real space forms endowed with a semi-symmetric metric connec-
tion, which are the generalization of some recent results related to the Casorati

curvature for submanifolds in a real space form with a semi-symmetric metric

connection, obtained by Lee et al. [J. Inequal. Appl. 2014, 2014:327].

Introduction

The theory of Chen invariants (or δ-invariants), initiated by Chen ([4]) in a
seminal paper published in 1993, is presently one of the most interesting research
topics in differential geometry of submanifolds. Chen established a sharp inequal-
ity for a submanifold in a real space form using the scalar curvature and the sec-
tional curvature, and the squared mean curvature. That is, he established in [5]
simple relationships between the main intrinsic invariants and the main extrinsic
invariants of a submanifold in real space forms with any condimensions. Many
famous results concern Chen invariants and inequalities for the different classes
of submanifolds in various ambient spaces, like complex space forms ([6, 7, 21]).

Recently, in [18, 19], Özgür and Mihai proved Chen inequalities for submanifolds
of real, complex, and Sasakian space forms endowed with semi-symmetric metric
connections, and in [22, 23], Özgür and Murathan gave Chen inequalities for sub-
manifolds of a locally conformal almost cosymplectic manifold and a cosymplectic
space form endowed with semi-symmetric metric connections. Moreover, Zhang et
al.[28] obtained Chen-like inequalities for submanifolds of a Riemannian manifold
of quasi-constant curvature endowed with a semi-symmetric metric connection by
using an algebraic approach.
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Instead of concentrating on the sectional curvature with the extrinsic squared
mean curvature, the Casorati curvature of a submanifold in a Riemannian mani-
fold was considered as an extrinsic invariant defined as the normalized square of
the length of the second fundamental form. The notion of Casorati curvature ex-
tends the concept of the principal direction of a hypersurface of a Riemannian
manifold. Several geometers in [1, 3, 12, 25, 26] found geometrical meaning and
the importance of the Casorati curvature. Therefore, it is of great interest to ob-
tain optimal inequalities for the Casorati curvatures of submanifolds in different
ambient spaces. Some inequalities involving Casorati curvatures were proved in
[8, 9, 16, 11, 24] in real, complex and quaternionic space forms. Recently, Lee et al.
in [17] obtained optimal inequalities for submanifolds in real space forms, endowed
with a semi-symmetric metric connection.

In this paper, we establish two optimal inequalities involving the generalized
normalized δ-Casorati curvatures for submanifolds in real space forms with semi-
symmetric metric connections and also characterize those submanifolds for which
the equalities hold, generalizing some recent results from [17].

1. Preliminaries

This section gives several basic definitions and notations for our framework based
on [16, 17]. We will consider a Riemannian manifold Nm endowed with a semi-

symmetric metric connection ∇̃ and the Levi-Civita connection, denoted by
˚̃∇. Let

M be an n-dimensional submanifold of an m-dimensional Riemannian manifold N .
On the submanifold M , we consider the induced semi-symmetric metric connection,

denoted by ∇, and the induced Levi-Civita connection, denoted by ∇̊. Let R̃ be

the curvature tensor of N with respect to ∇̃ and
˚̃
R the curvature tensor of N with

respect to
˚̃∇. We also denote by R and R̊ the curvature tensors of ∇ and ∇̊,

repectively, on M .
The Gauss formulas with respect to ∇ and ∇̊, respectively, can be written as

∇̃XY = ∇XY + h(X,Y ), X, Y ∈ χ(M),

˚̃∇XY = ∇̊XY + h̊(X,Y ), X, Y ∈ χ(M),

where h̊ is the second fundamental form of M in N and h is a (0, 2)-tensor on M .

According to the formula (7) from [20], h is also symmetric. One denotes by H̊
the mean curvature vector of M and N . Let N(c) be a real space form of constant

sectional curvature c endowed with a semi-symmetric metric connection ∇̃. Then,

the curvature tensor R̃ with respect to the semi-symmetric metric connection ∇̃
on N(c) can be written as (see [15]):

R̃(X,Y, Z,W ) =
˚̃
R(X,Y, Z,W )− α(Y,Z)g(X,W )

+ α(X,Z)g(Y,W )− α(X,W )g(Y, Z)

+ α(Y,W )g(X,Z),
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for any vector fields X, Y , Z, W ∈ χ(M), where α is a (0, 2)-tensor field defined
by

α(X,Y ) =
(

˚̃∇Xφ
)
Y − φ(X)φ(Y ) +

1

2
φ(P )g(X,Y ),∀X,Y ∈ χ(M).

It follows that the curvature tensor R̃ can be expressed as

R̃(X,Y, Z,W ) = c{g(X,W )g(Y,Z)− g(X,Z)g(Y,W )}
− α(Y,Z)g(X,W ) + α(X,Z)g(Y,W )

− α(X,W )g(Y, Z) + α(Y,W )g(X,Z).

(1.1)

The Gauss equation for the submanifold M into the real space form N(c) is

˚̃
R(X,Y, Z,W ) = R̊(X,Y, Z,W ) + g

(̊
h(X,Z), h̊(Y,W )

)
− g

(̊
h(X,W ), h̊(Y,Z)

)
.

Let π ⊂ TxM , x ∈M , be a 2-plane section. Denote by K(π) the sectional curvature
of M with respect to the induced semi-symmetric metric connection ∇. For any
orthonormal basis {e1, . . . , en} of the tangent space TxM and {en+1, . . . , em} an
orthonormal basis of the normal space T⊥x M , the scalar curvature τ at x is defined
by

τ(x) =
∑

1≤i<j≤n

K (ei ∧ ej) ,

and the normalized scalar curvature ρ of M is defined by

ρ =
2τ

n(n− 1)
.

We denote by H the mean curvature vector, that is,

H(x) =
1

n

n∑
i=1

h(ei, ei),

and we also set

hαij = g (h(ei, ej), eα) , i, j ∈ {1, . . . , n}, α ∈ {n+ 1, . . . ,m}.

Then, the squared mean curvature of the submanifold M in N is defined by

‖H‖2 =
1

n2

m∑
α=n+1

(
n∑
i=1

hαii

)2

,

and the squared norm of h over dimension n is denoted by C and is called the
Casorati curvature of the submanifold M . Therefore, we have

C =
1

n

m∑
α=n+1

n∑
i,j=1

(
hαij
)2
.

The submanifold M is called invariantly quasi-umbilical if there exist m − n
mutually orthogonal unit normal vectors ξn+1, . . . , ξm such that the shape operators
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with respect to all directions ξα have an eigenvalue of multiplicity n− 1 and that
for each ξα the distinguished eigendirection is the same ([2]).

Suppose now that L is an r-dimensional subspace of TxM , r ≥ 2, and {e1, . . . , er}
is an orthonormal basis of L. Then the scalar curvature τ(L) of the r-plane section
L is given by

τ(L) =
∑

1≤α<β≤r

K (eα ∧ eβ) ,

and the Casorati curvature C(L) of the subspace L is defined as

C(L) =
1

r

m∑
α=n+1

r∑
i,j=1

(
hαij
)2
.

The normalized δ-Casorati curvature δc(n− 1) and δ̂c(n− 1) are given by

[δc(n− 1)]x =
1

2
Cx +

n+ 1

2n
inf{C(L)|L : a hyperplane of TxM},

and

[δ̂c(n− 1)]x = 2Cx −
2n− 1

2n
sup{C(L)|L : a hyperplane of TxM}.

For any positive real number r (6= n(n− 1)), set

a(r) :=
(n− 1)(n+ r)(n2 − n− r)

rn
,

in order to define the generalized normalized δ-Casorati curvatures δC(r;n−1) and

δ̂C(r;n− 1) of the submanifold Mn as follows:

[δC(r;n− 1)]p = rCp + a(r) · inf{C(L) | L : a hyperplane of TpM},

if 0 < r < n2 − n, and[
δ̂C(r;n− 1)

]
p

= rCp + a(r) · sup{C(L) | L : a hyperplane of TpM},

if r > n2 − n.

2. Main theorem

Theorem 2.1. Let M be a submanifold of a real space form N(c). Then:

(i) The generalized normalized δ-Casorati curvature δC(r;n− 1) satisfies

ρ ≤ δC(r;n− 1)

n(n− 1)
+ c− 2

n
λ, (2.1)

for any real number r such that 0 < r < n(n− 1).

(ii) The generalized normalized δ-Casorati curvature δ̂C(r;n− 1) satisfies

ρ ≤ δ̂C(r;n− 1)

n(n− 1)
+ c− 2

n
λ, (2.2)

for any real number r > n(n− 1), where λ is the trace of α.
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Moreover, the equality sign holds in the inequalities (2.1) and (2.2) if and only
if M is an invariantly quasi-umbilical submanifold with trivial normal connection
in N(c), such that with respect to suitable orthonormal tangent frame {ξ1, . . . , ξn}
and orthonormal normal frame {ξn+1, . . . , ξm}, the shape operators Ar ≡ Aξr ,
r ∈ {n+ 1, . . . ,m}, take the following forms:

An+1 =



a 0 0 . . . 0 0
0 a 0 . . . 0 0
0 0 a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a 0

0 0 0 . . . 0 n(n−1)
r a


, An+2 = · · · = Am = 0.

Proof. (i) Let x ∈M and {e1, e2, . . . , en} and {en+1, . . . , em} be orthonormal basis
of TxM and T⊥x M , respectively. For X = W = ei, Y = Z = ej , i 6= j, from
equation (1.1) it folllows that

R̃ (ei, ej , ej , ei) = c− α(ei, ei)− α(ej , ej). (2.3)

From (2.3) and the Gauss equation with the semi-symmetric metric connection, we
get

c− α(ei, ei)− α(ej , ej)

= R(ei, ej , ej , ei) + g(h(ei, ej), h(ei, ej))− g(h(ei, ei), h(ej , ej)).

By summation over 1 ≤ i, j ≤ n, it follows from the previous relation that

2τ = n2‖H‖2 − nC + n(n− 1)c− 2(n− 1)λ,

where λ is the trace of α.
We define now the following function P, which is a quadratic polynomial in the

components of the second fundamental form:

P = rC + a(r) · C(L)− 2τ + n(n− 1)c− 2(n− 1)λ.

Without loss of generality, by assuming that L is spanned by e1, . . . , en−1, one
derives that

P =
n+ r

n

m∑
α=n+1

 n∑
ij=1

(
hαij
)2+

a(r)

n− 1

m∑
α=n+1

 n−1∑
i,j=1

(
hαij
)2− m∑

α=n+1

(
n∑
i=1

hαii

)2

,

and now we obtain easily that

P =

m∑
α=n+1

n−1∑
i=1

[(
n+ r

n
+

a(r)

n− 1

)
(hαii)

2
+

2(n+ r)

n
(hαin)

2

]

+

m∑
α=n+1

[
2

(
n+ r

n
+

a(r)

n− 1

) n−1∑
i<j=1

(
hαij
)2 − 2

n∑
i<j=1

hαiih
α
jj +

r

n
(hαnn)

2

]
.

(2.4)
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From (2.4), it follows that the critical points

hc =
(
hn+1

11 , hn+1
12 , . . . , hn+1

nn , . . . , hm11, . . . , h
m
nn

)
of P are the solutions of the following system of linear homogeneous equations:

∂P
∂hαii

= 2

(
n+ r

n
+

a(r)

n− 1

)
hαii − 2

n∑
k=1

hαkk = 0,

∂P
∂hαnn

=
2r

n
hαnn − 2

n−1∑
k=1

hαkk = 0,

∂P
∂hαij

= 4

(
n+ r

n
+

a(r)

n− 1

)
hαij = 0,

∂P
∂hαin

=
4(n+ r)

n
hαin = 0,

(2.5)

with i, j ∈ {1, . . . , n − 1}, i 6= j, and α ∈ {n + 1, . . . ,m}. Thus, every solution
hc has hαij = 0 for i 6= j, and the determinant which corresponds to the first two
sets of equations of the above system is zero (there exist solutions for non-totally
geodesic submanifolds). Moreover, it is easy to see that the Hessian matrix of P
has the form

H(P) =

 H1 0 0
0 H2 0
0 0 H3

 ,

where

H1 =



2
(
n+r
n + a(r)

n−1

)
− 2 −2 . . . −2 −2

−2 2
(
n+r
n + a(r)

n−1

)
− 2 . . . −2 −2

...
...

. . .
...

...

−2 −2 . . . 2
(
n+r
n + a(r)

n−1

)
− 2 −2

−2 −2 . . . −2 2r
n


,

0 denotes the null matrix of corresponding dimensions, and H2, H3 are the diagonal
matrices

H2 = diag

(
4

(
n+ r

n
+

a(r)

n− 1

)
, 4

(
n+ r

n
+

a(r)

n− 1

)
, . . . , 4

(
n+ r

n
+

a(r)

n− 1

))
and

H3 = diag

(
4(n+ r)

n
,

4(n+ r)

n
, . . . ,

4(n+ r)

n

)
.
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Therefore, we find that H(P) has the following eigenvalues:

λ11 = 0, λ22 = 2

(
2r

n
+

a(r)

n− 1

)
, λ33 = · · · = λnn = 2

(
n+ r

n
+

a(r)

n− 1

)
,

λij = 4

(
n+ r

n
+

a(r)

n− 1

)
, λin =

4(n+ r)

n
, ∀i, j ∈ {1, . . . , n− 1}, i 6= j.

Therefore, P is parabolic and reaches a minimum P(hc) = 0 for the solution hc

of the system (2.5). It follows that P ≥ 0, and hence

2τ ≤ rC + a(r) · C(L) + n(n− 1)c− 2(n− 1)λ.

Hence, we deduce that

ρ ≤ r

n(n− 1)
C +

a(r)

n(n− 1)
C(L) + c− 2

n
λ,

for every tangent hyperplane L of M . Taking the infinum over all tangent hyper-
planes L, the theorem trivially follows. Moreover, we can easily check that the
equality sign holds in the theorem if and only if

hαij = 0, ∀i, j ∈ {1, . . . , n}, i 6= j, and α ∈ {n+ 1, . . . ,m} (2.6)

and

hαnn = 2hα11 = · · · = 2hαn−1 n−1, ∀α ∈ {n+ 1, . . . ,m}. (2.7)

From (2.6) and (2.7) we conclude that the equality holds if and only if the sub-
manifold M is invariantly quasi-umbilical with trivial normal connection in N such
that with respect to suitable orthonormal tangent and orthonormal normal frames.

In a similar way one can prove (ii). �

Corollary 2.2. Let M be a submanifold of a real space form N(c) with a semi-
symmetric metric connection. Then:

(i) The normalized δ-Casorati curvature δc(n− 1) satisfies

ρ ≤ δc(n− 1) + c− 2

n
λ.

Moreover, the equality sign holds if and only if M is an invariantly quasi-
umbilical submanifold with trivial normal connection in N(c), such that
with respect to suitable orthonormal tangent frame {ξ1, . . . , ξn} and or-
thonormal normal frame {ξn+1, . . . , ξm} the shape operators Ar ≡ Aξr ,
r ∈ {n+ 1, . . . ,m}, take the following forms:

An+1 =



a 0 0 . . . 0 0
0 a 0 . . . 0 0
0 0 a . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . a 0
0 0 0 . . . 0 2a


, An+2 = · · · = Am = 0.
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(ii) The normalized δ-Casorati curvature δ̂c(n− 1) satisfies

ρ ≤ δ̂c(n− 1) + c− 2

n
λ.

Moreover, the equality sign holds if and only if M is an invariantly quasi-
umbilical submanifold with trivial normal connection in N(c), such that
with respect to suitable orthonormal tangent frame {ξ1, . . . , ξn} and or-
thonormal normal frame {ξn+1, . . . , ξm} the shape operators Ar ≡ Aξr ,
r ∈ {n+ 1, . . . ,m}, take the following forms:

An+1 =



2a 0 0 . . . 0 0
0 2a 0 . . . 0 0
0 0 2a . . . 0 0
...

...
...

. . .
...

0 0 0 . . . 2a 0
0 0 0 . . . 0 a


, An+2 = · · · = Am = 0.

Proof. (i) It is easy to see that the following relation holds:[
δC

(
n(n− 1)

2
;n− 1

)]
p

= n(n− 1) [δC(n− 1)]p (2.8)

in any point p ∈M . Therefore, taking r = n(n−1)
2 in (2.1) and making use of (2.8)

we obtain the conclusion.
(ii) The following relation can be easily verified:[

δ̂C (2n(n− 1);n− 1)
]
p

= n(n− 1)
[
δ̂c(n− 1)

]
p
, ∀p ∈M.

Replacing r = 2n(n− 1) in (2.1), we derive the conclusion. �

Remark. We have a slightly modified coefficient in the definition of δC(n − 1);
in fact, we used the coefficient n+1

2n(n−1) , as in [8, 9, 24], instead of n+1
2n , like in the

present paper because we are working on the generalized normalized δ-Casorati
curvature δC(r;n− 1) for a positive real number r 6= n(n− 1), as in [16].
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