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KHOVANOV HOMOLOGY OF BRAID LINKS

ABDUL RAUF NIZAMI, MOBEEN MUNIR, AND AMMARA USMAN

ABSTRACT. Although computing the Khovanov homology of links is common
in literature, no general formulae have been given for all families of knots and
links. We give the general formulae of the Khovanov homology of /tEe family
of 2-strand braid links m/\’f and the family of 3-strand braid links A2k where
A =x12277.

1. INTRODUCTION

Khovanov homology is an invariant for oriented links which was introduced by
Mikhail Khovanov in 2000 as a categorification of the Jones polynomial [g].

Khovanov assigned a bigraded chain complex C%J(L) to the oriented link dia-
gram L whose differential is graded of bidegree (1,0) and whose homotopy type
depends only on the isotopy class of L. The bigraded homology group H*’ (D) of
the chain complex C%J(D) provides an invariant of oriented links, now known as
Khovanov homology.

In 2002 Bar-Natan increased the interest of people in Khovanov homology by
showing its close relationship with the Kauffman bracket; he revealed that Kho-
vanov actually replaced the Kauffman bracket with a new bracket, which he called
the Khovanov bracket [4]. Later in 2007 Bar-Natan gave a new algorithm which
drastically reduces the computations of the Khovanov homology [5]. In 2005 Marko
proved that the first homology group of the positive braid knot is trivial [12], which
was conjectured by Khovanov [0]; all our results about positive braid knots agree
with this result.

In the present paper we compute the Khovanov homology of the family of 2-
strand braid links 5? (Theorem , and the family of 3-strand braid links A%*
(Theorem [6.2)).

This paper is organized as follows: Section [2]is devoted to links and Section [3]is
devoted to braids. The Kauffman bracket and the Jones polynomial are presented
in Section [4} Basic material relevant to Khovanov homology is given in Section
E/[\oreover7 a full example of computing the Khovanov homology of the trefoil knot

z3$ is also given here. The last section contains our main results.
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96 A. R. NIZAMI, M. MUNIR, AND A. USMAN

2. LINKS AND LINK INVARIANTS

A link in R? is a finite collection of disjoint circles smoothly embedded into
R3. These circles are called the components of the link. If an orientation of the
components is specified, we say that the link is oriented. A link consisting of only
one component is called a knot.

Links are usually studied via projecting them on the plane. A projection with
information of over- and under-crossing is called a link diagram. Throughout this
article by a link we shall mean its diagram.

OO CD I

Trivial 2-component link Hopf link Trefoil knot

Reidemeister gave a fundamental result about the equivalence of two links: Links
are equivalent if and only if one can be transformed into the other by a finite
sequence of ambient isotopies of the plane and the local Reidemeister moves [11]:

o= =20 g — X
:6/\?>>i

To classify links one needs a link invariant, which is a function I : Links —
{numbers, polynomials, colours, etc} that gives the same value for all links in an
isotopy class of links. To check whether a function is a link invariant one has to
show that it is invariant under all the Reidemeister moves.

3. BRAIDS

An n-strand braid is a set of n non intersecting smooth paths connecting n points
on a horizontal plane to n points exactly below them on another horizontal plane
in an arbitrary order. The smooth paths are called strands of the braid.

A 2-strand braid

The product ab of two n-strand braids, a and b, is defined by putting b below «a
and then gluing their common end points.

A braid with only one crossing is called the elementary braid; the i-th elementary
braid x; with n strands is:
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KHOVANOV HOMOLOGY OF BRAID LINKS 97

A useful property of elementary braids is that every braid can be written as
a product of elementary braids. For instance, the above 2-strand braid is 3 =
(1) (21)(21). R

The closure of a braid b is the link b obtained by connecting the lower ends of b
with the corresponding upper ends.

Remark 3.1. All the braids are oriented from top to bottom.
An important result by Alexander connecting knots and braids is:

Theorem 3.2 ([1]). FEach link can be represented as the closure of a braid.

4. THE KAUFFMAN BRACKET AND THE JONES POLYNOMIAL

In 1985, V. F. R. Jones revolutionized knot theory by defining the Jones poly-
nomial as a knot invariant via Von Neumann algebras [6]. However, in 1987 L. H.
Kauffman introduced a state-sum model construction of the Jones polynomial that
was purely combinatorial and remarkably simple [7].

A Kauffman state s of a link L is obtained by replacing each crossing (X) of
L with the 0-smoothing > or the 1-smoothing X (so that the result is a disjoint
union of circles embedded in the plane). We denote by S(L) the set of all Kauffman
states of L.

Let s be a state in S(L), v(s) the number of circles in the state, and a(s) and
B(s) the numbers of crossings in states 0 and 1. Then the Kauffman bracket for L
is defined by the relation

= a(s)=B(s)(_,2 _ ,—2\v(s)—1
(L) q (—¢*—q7?) :

It is well known that the Kauffman bracket satisfies the relations:
(L) = q(Lo) + ¢~ (L)
(LuQ) = (—¢* —a (L)
(O)=1

This bracket is not invariant under the first Reidemeister move; see, for instance,
[10]. To overcome this difficulty, one needs something more: Let us consider that
the link diagram L is now oriented. Then each crossing appears either as ><, which
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98 A. R. NIZAMI, M. MUNIR, AND A. USMAN

is called a positive crossing, or as »<, which is called a negative crossing. If we denote
the number of positive crossings by n, and the number of negative crossings by

~

n_, then the unnormalized Jones polynomial is defined by the relation J(L) =

A~

(—1)"-g™+~27- (L) and its normalized version by the relation J(L) = #J(L).
Since this polynomial is invariant under all three Reidemeister moves, it is an

invariant for oriented links.

5. KHOVANOV HOMOLOGY

Khovanov gives the idea of a graded chain complex whose differentials provide
a new invariant for oriented knots and links, known as Khovanov homology, which
is combinatorial and computable.

Definition 5.1. Let V = @, V,, be a graded vector space with homogeneous
components {V,,}.

Definition 5.2. The degree of the tensor product of graded vector spaces Vi ® V5
is the sum of the degrees of the homogeneous components of the graded vector
spaces, V7 and V5.

Here the graded vector space V' has basis (vy,v_), degree p(v+) = £1, and has

g-dimension ¢ + ¢~ 1.

Definition 5.3. The degree shift .{l} operation on a graded vector space V =PV,
is defined by

(v.{z})n =V

Before we proceed, we need some preliminary definitions: Let x be the set of
crossings of L, let n = |x|, let us number the elements of x from 1 to n in some
arbitrary way, and let us write n = ny +n_, where ny (n_) is the number of right-
handed (left-handed) crossings in . Label the crossing (fix an ordering) of x. We
call the >{ the 0-smoothing and X the 1-smoothing of ><. Consider the n-cube of
complete smoothing {0, 1}X of a link. With every vertex a of the cube {0, 1} we
relate the graded vector space V,, (L) := V&™{r} where m is the number of cycles
in the smoothing of L corresponding to o and r; |a| = ;¢ of a. The direct sum
of the vector spaces come out in the cube, along the column, is the chain groups
[[L]]", that is, r : [[L]]" := D,.,—ja| Va(L). Here r (0 < r < n) is the height of a
smoothing, the number of 1-smoothings in it.

Definition 5.4. The chain complez C of graded vector spaces C” is defined as:

—r+1 g™t —=r 47 —=r—1 47!
-C —C —C —_— ...,

where d” o d"+! = 0 for each 7.

We generally use the term “chain complex” when the differential decreases and

“co-chain complex” when it increases. In order to make a chain complex of graded
— —r+1

vector spaces C" we need the differential maps d"+! : " 5 T such that d” o

d™+1 = 0 for each r. For this purpose we can label the edges of the cube {0, 1}X by
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KHOVANOV HOMOLOGY OF BRAID LINKS 99

the sequence £ € {0, 1, x}X, where £ contains only one x at a time. Here x indicates
that we change a 1-smoothing to a 0-smoothing. The maps on the edges is denoted
by de¢; the height of edges, by |£|]. The direct sum of differentials in the cube along

the column is
d =Y (—1)%d.
lg|=r

Now we tell the reason behind the sign (—1)%. As we want from the differentials
to satisfy d o d = 0, the maps d¢ have to anti-commute on each of the vertex of the
cube. This can be done by multiplying the edge map d¢ by (—1)¢ := (—1)Zi<i &
where j is the location of the % in &. .

For better understanding, please see the n-cube of the trefoil knot, z3.

—

i v{1} Ve? {2}

4] g | = | §

001 o011

/ X N

Ve? V{1} Ve2{2} Ve {3}

N —

vil}

[

100 110

[[23]]° [[23]]" [[=3]]? (23]

It is useful to note that the ordered basis of V is <v+, v_> and the ordered basis
of VeV is <v+ ® Vy, V- @ V4, Uy @V_,V_ ®v_>.
Definition 5.5. The linear map m : V ® V' — V that merges two circles into a
single circle is defined as m(vy ® v4) = vy, m(vy @v_) =v_, m(v- @v4) = v_
and m(v_ ®v_) = 0.

The map A : 'V — V ® V that divides a circle into two circles is defined as
Alvy) =v4y Qv_ +v- ®vy and Av_) =v_ Qu_.

O0=CD
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100 A. R. NIZAMI, M. MUNIR, AND A. USMAN

Definition 5.6. The kernel ker d” of the map d” : V&"~1 — VT is the set of all
elements of V® 1 that go to the zero element of V®". The elements of the kernel
are called cycles, while the elements of im d"+! are called boundaries.

Remark 5.7. The image of the chain complex of d"! is a subset of the kernel d”
as, in general, d” o d"t! = 0.

Definition 5.8. The homology group associated with the chain complex of a link

ker d
L is defined as H"(L) = imejiirﬂ'

Definition 5.9. The graded Poincaré polynomial Kh(L) in the variables ¢ and ¢
of the complex is defined as

Kh(L) := > t"qdimH"(L).

Theorem 5.10 (Khovanov [8]). The graded dimension of the homology groups
H"(L) are link invariants. The graded Poincaré polynomial Kh(L) is also a link
invariant and Kh(L)‘tZ*1 =J(L).

Before computing the Khovanov homology, we think it is better to understand
the homological and the quantum gradings. The homological grading of the Kho-
vanov chain complex is defined as gr(z) = ¢;(v) —n_, where z € C(L) and ¢ (v)
is the number of 1-smoothings in the coordinates of v. In case of chain complex,
the quantum grading of the chain complex is ¢(z) = —p(z) + gr(z) + ny — n_,
and in case of co-chain complex it is g(z) = p(x) + gr(z) + no — n_. From now
onwards we shall use the notation Kh™? for the Khovanov homology, where the
first index r indicates the homological grading and the second index ¢ indicates the
quantum grading. We need these gradings to compute the Jones polynomial from
the Khovanov homology.

1

Ezample. Now we give the Khovanov homology of the link z$ : X

3

[
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1. The n-cube:

Vi{l} Ve{2}

a1 < |4

001 011

/ X N

y®2 V{1} Ve2(o} Ve3{3}

g - 1g A< d

000 111 101

N X /

V{1} Ve2{2}

100 110

3-cube of z}
2. Chain complex: The chain complex of E is
4 3 2 1 0
0L v L gave? & gy Ly ve2 L,

3. Ordered basis of the chain complex: The vector spaces of the chain
complex along with their ordered bases:

V®V®V=<v+®v+®v+,v_®v+®v+,v+ RU_ ®V4,v4 ®Vvy Qu_,
v_®11_®v+,v_®v+®v_,v+®v_®v_,v_®v_®v_>,

VeaV)e(VeV)e(VeV)=/{(v ®uvy,0,0),(0,vy @vy,0),(0,0,v4 @vy),
(v— ®v4,0,0),(0,v—- ®v4,0),(0,0,v- ®@vy),
(vy ®v_,0,0),(0,v+ ®v_,0),(0,0,v4 Rv_),
(v- ®v-,0,0)(0,v_ ®v_,0),(0,0,v- ®v_)),

VaVaeV=/{(v,0,0),/(0,v,0),(0,0,v4),(v-,0,0),(0,0-,0),(0,0,v-)),

VeV= <v+®v+,v,®v+,v+®v,,07®07>.
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102 A. R. NIZAMI, M. MUNIR, AND A. USMAN

4. Differential maps in matrix form: The differential map d® (vl Qg ®v3> =

(m(m ® vg) ®v3,v1 @ M(v2 @ v3),v2 @ M(vy ® 113)) in terms of a matrix is

10 00 0 0 0 O
10 00 00 0 O
1 0 00 00 0 O
01 1 0 0 0 00O
01 0 0 0 0 0 O
&= 0 0 1 0 0 0 0O
00 01 0 000’
001 10 0O00O0
01 0 1 0 0 00O
0O 0 0 0 0 1 10
0O 0 0 0 1 1 00
00 0 01 010
and the map d? (vl ® U2, V3 ® Vg, V5 @ Vﬁ) = (m(vg ® vg) — m(v1 ® v2), m(vs ®
vg) — m(vy ® va),m(vs ® vg) — m(vs ® 114)) is d? = ( 61 21 Sl 8 >, where
-1 1 0
A= -1 0 1 |]. Also,d" (vl,vg, 113) = A(vy) — A(vg) + A(vs) is
0 -1 1
0 0 0 O 0 0
a1t 110 00
1 -1 1 0 0 0
0 0 01 -1 1

5. Khovanov homology: On solving d>.X = 0 or

10 00 0 00O

100 0 0 0 0 O

100 0 0 0 0 O 1
01100000 T2
0100 0O0O0O T3
001 00O0O00O 0 e | _y
00010 O0O00O0 T5 ’
001 10000 Te
01010000 T7

0 000O0T1T1FPO g
00001100
00001010
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KHOVANOV HOMOLOGY OF BRAID LINKS 103

we obtain ¥y = 9 = 23 = x4 =0, 29+ 23 =0, 23+ 24 = 0, 23 + 24 = 0,
x6+ 27 =0, x5 + 6 = 0, and 5 + 27 = 0. So the kernel of d° is

/\
_ o0 OO0 oo oo
\/

Similarly, the image of d® is

1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
< of’'foj’rof’'fr|’1o0f’'fo]’]o0 >
0 0 1 1 0 0 0
0 1 0 1 0 0 0
0 0 0 0 0 1 1
0 0 0 0 1 1 0
o] Lo o] o] 1] o] [1]
Thus,
- ker d3 Z V_QU_Qu_
,Hg(x%) = im d4 == ®0 av) Z(v,®v7®v,)-

To compute the homology at the next level we use a special trick: We first simply
cancel out the terms which appear in both ker d? and im d®. However, the last three
summands of ker d?> make up all of Z‘E’u @v_)> where the last three summands of
im d3 span the subspace of Z?L v generated by the vectors (0,1,1), (1,1,0) and
(1,0,1). Since the matrix whose columns are these vectors has eigenvalues 2,1,
and —1, we can write

VA ~ Z ® Z ® Z 7
((0,1,1),(1,1,0),(1,0,1)) _ 2Z  Zy  Z_, =

Reducing the remaining matrices of kernel of d? and image of d> into reduced row
2

ker
echelon form the quotient P becomes isomorphic to Z. Hence
im

-3 ker d?
2(23) = — =Z & L».
H) imd3 © £
The range of d? is Ly ws,0) D Livy 0,—04) DL(0ws 0p) DZLu_ w_,0) D Lw_,0,—v_) D
Z(O,v_,v_)v and the kernel of d' is Z(1J+,1J+,O) @Z(O,1J+,1)+) @Z(q)+707—1)+) EBZ(U_,U_,O) @
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104 A. R. NIZAMI, M. MUNIR, AND A. USMAN

Z(O,v,,v,) D Z(v,,O,—v,)- Since ker d' = im d2,
' (a) = 0.
It is clear from the chain complex that the kernel of d° is the full space V @ V.
-3 ker dO o Z(v+®1;+) @ Z(v_®v+) 3] Z(v+®1;_) @ Z(v_@v_)

HO 3) — i — =7 vp@uy) D Z.
(131) im dl Z(U_®U++v+®v_) &) Z(U_®v_) (v4®vy)
Now
Kh(z) = Y " qdim A" («})
0<r<3

= 10 qdim HO(z7) + ! qdim H' (23) + 12 qdim H2(z%) + £ qdim H3 (27)
=13¢° + 2¢° + 10+ 1°(¢* + ¢"),

which is actually the Poincaré polynomial of E
Since the homological grading varies from 0 to 3 and (n_,ny) = (0, 3), we get

the following table:

Homological grading
& Kh™1 3 2 |1 0
,% 1 ZU+®U+
sl 3 Z
5 z
g7 Zs
s
@ 9 Zv,®v,®v,

6. The Jones polynomial: The unnormalized Jones polynomial of z?$ is

Kh(x?)(q) = +¢+¢+4q"

t=—1
6. THE MAIN THEOREM
Theorem 6.1 (The main theorem). a) If n is even then

Zv, RU_R--Qu_ D

th(@) = Zv+®v7®~~®v7—v7®v+®~~~®v7+~~~—v7®v7®~~~®v+ ka =n,
Za ifk=n—1.
b) If n is odd then
Kh* (a0 = Ly_gv_@-cv_ Z:fk =n,
7D Lo ifk=n—1.

c) Ifn € Zy then

—~ 0 ifn—1<k<1
v+®v+@Z sz;—O
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Proof. We prove it for the i-th level of the chain complex, which is

o[ " yein 2 (Mypei L,
1+ 1 7

a) (n is even.) Since im d"™! = 0, there does not exist any space at the (n + 1)-th
level. We only need the kernel of d”. The linear map d”™ has order n2" ! x 2" and
is

X21
X2
Xo3
X24
d" =

Here X, is a matrix of order n x 2™:

1.0 0 0
1.0 0 0

o O
(el )
o o
o o
o O

=
o

10
10

o O
o O

0
0

o
o

0 1

o
—
o o
o
o O
o o
o o
o o
o O

—_
S e

oo =
— = =
o O o O

S e
S e

(en)
(e
[an} (an] o O

oS O O -
=

Xoa= | o0 |

o
)
)
—
je)
o
o

Rev. Un. Mat. Argentina, Vol. 57, No. 2 (2016)



106 A. R. NIZAMI, M. MUNIR, AND A. USMAN

01 110000
00011000

Xy = 0 1 0100 0 7
0 0 : 0000
01 1 0 000
000100UO0T10
000110000
000O0T1T1UO0TUO0O0

Xono1 =

00 0O0O0OT1T1TO0FPO
00 0O0O0OO0OT1T1@®O0

The last n+1 columns of Xy.—1 are (1,0,...,0,1), (1,1,0,0,...), (0,1,1,0,...),
(0,0,1,1,...), ..., (0,...,0,1,1) and (0,0,...,0,0). Thus,

ker d" =Zy_gv_g--@v_ @ L, @v_0-@v_—v_ @48 @U_+..—v_@U_@--Qv -

Finally, we get

Khn(x?) = Zv7®v7®~~-®v7 ® Zv+®v7®-~~®v77v7®v+®~-®v7+~~~7v7®v7®~--®v+'

Now if 4 = n — 1, then the differential d"~! of order (Z) 2772 % (711) 27—l ig

A 0 0 0 0 0 0 0 0
0 A As Ag O 0 0 0 0
_— 0 0 Ay A3 0 0 0 0 0
d""=1 0 0 0 0 Ay, A3 A, 0 0
0 0 0 0 0 0 0 Ay Aj
Here the matrix A; of order (g) X (?) is

-1 1 0 0

-1 0 1 0

0 -1 1 0

-1 0 0 1

A= 0 -1 01

o -1 1

0 0 0 0
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As is generated by converting the last non zero entry of each column of A; to 0:

-1
-1

Il
o

Ao

0

0

= eEel

0

== 0O O O

o

0

Similarly, A3 is generated by converting the first non zero entry of each column of
A; into 0, A, is generated by converting the second non zero entry of each column
of A; into 0, As is generated by converting each non zero entry into 0 except the
first 1-element of each column of A;, and in the same way Ag is generated by
converting each non zero entry into 0 except the last 1-element of each column of

A;. Using the same trick as in the example above, we get Kh"’l(ﬁ) = 7.

b) (n is odd.) Since im d"*! = 0, there does not exist any space at the (n + 1)-th
level. We only need the kernel of d”. The linear map d™ has order n2"~! x 2" and

is

dTL

Yon-1

Here each matrix Y5: has order n x 2™:

1 0 0 O
1 0 0 O
Yor = ;
1 0 0 O
1 0 0 O
01 00
01 00
Yo = ;
01 01
0110

o O

You
Yoo
Yos
Yau

Yoi

o O

o o

S e

o O

o O
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o
(an)
— =

e}
—

(an)
o
(an)

o
o
o

o
o
o

o
an)
[an}

Yy =

o o o oo

o O O

an—l ==
0
0

Here, the last n+1 columns of Y3.-1 are (1,0, ..

(0,0,1,1,...),..., (0, ...,

Hence, Kh"(ﬂ/c?) =Zy_ov_0-@v_-

If i = n — 1, the differential d"~* of order (5)2"7% x (7)2"~ ! is

B, 0 0 0
0 B, Bs; B,
0O 0 B, Bs
a"'=1 09 0o 0o o0
0O 0 0 0

o o

o

0
0

0
0
0

0
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1 00 00
00000
00000
1 00 00
01000
1 : 000
1 : 00 0
01000
100 00
1 100 0
01000
00 00
0 00 0
0100010
0110000
0011000
0001100
0000110
.,0,1), (1,1,0,0,..
h

0,1,1) and (0,0, . ..

o O O

o

o O o o

Bs

B,

), (0,1,1,0,..
,0,0). Thus, kerd™ =Zy_gu_g.-.0uv_ -

),
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Here each matrix B; has order (g) X (’f)

1 -1 0 0 0
1 0 0 -1 0
0 1 0 -1 0
0 0 1 -1 0
1 0 -1 0 0
B=|1 0 0 0 -1
0 0 0 1 -1
0 0 1 0 -1
0 1 -1 0 0
0o 1 0 0 -1

B> is generated by converting the last non zero entry of each column of By to 0, Bs
is generated by converting each non zero entry into 0 except the first non zero entry
of each column of B;, By is generated by converting each non zero entry into 0
except the last non zero entry of each column of By, Bj is generated by converting
the first non zero entry of each column of B; into 0, Bg is generated by converting
the second non zero entry of each column of B;j into 0.

Using the same trick as in the example above, we finally get

Kh" Y20 = Z.& Zo.

c) Note that ker d° = Loy @vy ® Loy, @v_ DZLoy_n, ®ZLy_gov_- The differential d! of
order 4 x 2n is

0 00 0/0 0 0 0
P IR 10 0 0 0
1 -1 1 10 0 0 0
0 00 01 -1 1 1

Each of the first n columns appears with alternate signs; the first column receives
the positive sign. Each of the columns from n+1 to 2n appears with alternate signs.
It follows that the image of d' is spanned by two spaces, that is, Loy, @v_—v_v,

and Z, @, . S0 KhO(z7) = Zy, gu, 7. Now if i = 1, then

d2< 0 0 0>
0O P PO 2nx4(g)7

where

Rev. Un. Mat. Argentina, Vol. 57, No. 2 (2016)



110 A. R. NIZAMI, M. MUNIR, AND A. USMAN

Here each matrix P; has order n — (n —i):

1 0 0 -1 0 0
0 1 0
1 -1 0
0 11 1 0 -1
“=l0 0 =10 -1 0 ’
0 0 1
-1 0 1 0 1
0 1 0 -1 0
0 0 0 0 0
P3 = 1 0 ) ) Pn—2 = . y and Pn—l =
-1 :
0 1 0 0
0 1 1

It follows from simple computation that kerd' = imd°. This completes the
proof. O

The homology of the link ZQ\’“, where A = xix9x1, is given in the following
theorem.

Theorem 6.2.

7> ® 7% if i = 6k,

0 if 3 <i<6k—1,
Khi(A%) ={Z&®Z ifi=2,
0 ifi=1,

Z&Z  ifi=0.

Proof. The cochain complex of the link A% s
—1 0 1
0 d—> Vs d_> @6kv®2 d_> @(21k) (41k)v®1 ®(22k)+(42k) Ve
d? a3
R N V@2 Ny VO S
“leneneeml’ i)
d6k72 9 defl

6k
—_— @(41k)V®2k @(211«) yek+2 &, e+l d—> 0,

where the symbol (’Z) is a binomial coefficient and V®! is actually V. If i = 0, then

ker d9

imd-1"

KhO(A%) =
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A 0 0 0 0O O 0 O
0 A 0 0O B 0 0 0
: 0 5o 70 _
The linear map d° is d” = 00 A0 C 0 0 0 Here the
00 0A 0 C B 0)/,,.s
matrices A, B, and C of order 6k x 1 are:
1 0 1
! 1 0
1 0 1
1 0 1
A= ., B=| 1|, c=|0
0 1
1 1 0
1 0 1

Since the image of d~! is zero, there does not exist any space at the (—1)-th
level. Thus, the homology at this level is spanned by two spaces Z,_gv_gv_ and

Z?)+ RU_QRUV_—V_ QU4 QU_+V_QV_ QU4 :

e
Kh (AQk) = Zv,®v,®v, &) ZU+®U,®U,7v,®v+®v,+v,®v,®v+~

Now if i =1,
R, 0 0 0 0
0 R, 0 0 0
0 0 R 0 0
0 0 0 R 0
0 0 0 0 Ry
R, 0 0 0 0
0 R, 0 0 0
0 0 Ry 0 0
g | o 0o 0 R 0
0 0 0 0 R,
R, 0 0 0 0
0 R, 0 0 0
0 0 R, 0 0
0 0 0 R, 0
0 0 0 0 ... R,

12(6k) x 4(6k)
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Here the order of R; is (6k — i) x (6k — (i — 1)):

L 1o 0 01 1 0 O 0

1 0 1 0 0

100 1 0 01 0 1 0 0
Rl: ) R2_ 5

100 0 1 01 0 0 0 ... 1

001100 ... 0

o 01000 ... 1

It follows from a simple computation that ker d' = im d°.
If i = 2, then the differential map d? of order 2°k(9k? — 6k + 1) x 23k(12k — 3)
is:

Sn78 Snf'? Snfﬁ Sn75 Sn74 Sn73 Sn72 Snfl Sn

Here the order of S; is 23k(9k? — 6k + 1) x 2k(12k — 3):

0 -1 00 00 0 000000 0
1 0 0001 0 000000 0
1 0 0001 0 000O0GO0O 0
0 0 00 00 0 000000 1
Si=10 0 -1 000 0 [-5%=]100000 0 K
1 0 0000 0 000000 0
0 0 0000 0 000000 1
0 00000 0 000000 0
-1 0000 0 0 00000 0 0
0 00000 0 000000 0
0 00010 0 000000 0
S3 = 0 00000 05=]1000000 0|,
0 -1 0000 0 000000 1
0 0000 1 0 000000 0
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00 000D 0 0 00 0
00 0000 0 0 00 0
00 -1 00 0 0 0 00 0
00 0000 0 -1 000
Sp—2= 00 0000 0 | Sn1= 0 0 0 0
00 000 O 0 0 00 0
00 0000 0 0 -1 0 0
00000O0GO0 ...0
000000 ...0
0000O0GO0 ...0
0000O0GO0 ...0
and S, = 00000O0 ... 0
000000 ...0
-1 00000 ... 0

It follows that
Kh*(A?) =Z @ Z.

(el e e e il el e

[eviN e e e il el e

For 3 < i < 6k — 1 we prove for the i-th level of the cochain complex, which is

e Q @ 2k 4k 2k 4k 2k 4k
v [(1)(i—l)‘*‘(2)(i—2)+"'+(7ﬁ—1)(1)
- @[(21k)(4ik)+(22k)(714—k1)+“'+( k)(41k>} ve @[(ﬁl)'*'(ﬁl)

The differential d*~! of order [(21k) (
()2 i

KA (EOT)

] \%

A= (W, W Wy Wi Ws We ... Weey W, ).
Here the order of W; is [(21k) (i4—k1) + (22k) (i4—k2) +-ot (iZ—kl) (41k
(]2
1 0 00O0O-1 0001 0
0 -1 0100 0 0O0O00O0 0
0 -1 0100 0O 0O0O00O 0
0 0 00O0O0O O O0O0O0O0 0
0 0 000O0O O 12000 0
0 0 0010 O 0O0O0O0 0
Wi=lo 0 -1010 0 0000 0
1 0 -1000 0 0O0GO0O 1
1 0 00O0O O 0O0OUO 1
0 0 000O0O O O0O0O0O 0
O 0 000O0 O 00O O 0

V®’i+1

)2t [(

®it2 4

2k
i

oo = O OO

113

i4—kl) + (22k) (i4—k2) oot (iz—kl) (41k)] 207 x [(sz) +

) +
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00 0O
00 00
00 0O
00 0O
-1 0 0 O

-1
0
0
0
0

-1

1
0
0

0 0 O

1

1
-1

00 0O
00 0O
00 0O
00 0O

0
0
0
0

0
0

00 0O

1

0 01

0

0

Wa

0
0
0

-1 0 0 0 0 O

010

-1

0 000 0O

0
0

0
0
-1 0 O

0 000 O0°TFO

0 000 0O

0

0 000 0O

0
0

0
0
-1 0 0
-1 0 0

0
0
0

0 000 0O

0 000 0O

0
0

0
0

0 000 0O

0 000 0O

0
0

0
0

0 000 0O

0 0001FPO

0

0

Wy =

0
0

00 0O0O0OO0OTO0ODT 0@

-1 0 00 00 0 O0 O

0
1

000 O0O0OO0OTO0OTUO0OSF® 0
00 0O0O0OO0OO0OTUO0OF®
00 0 O0O0OO0OO0OTO0OF©
00 0O0O0OO0OTO0OT 0O
00 0O0O0OO0OTO0ODTO0O®O

0
0
0
-1

0
0
0

1

000 O0O0O0O0TO
000 O0O0O0OO0OTO0O@ O
00 0 O0O0OO0OO0OTO0OSF®

0

0

0 00O0O0O0OO0OTO0OF@ O

Wr—l =
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0 00 0O
0 00 0O
01 0 0O
0 00 0O
0 00 0O
0 00 0O
0 00 0O
0 0 0 01
0 0 0 0O
0 00 0O

0
0
0
-1

0 0 0 0

0
-1
0

0 0 0 O

0 0 0 O

1.0 0 0

0 0 0 0

0
0
0
0
0
0

0 0 0 0

0
-1
0
0

0 0 0 O

0 0 0 O

0 0 0 O

0 0 0 O

-1 0 0 0 O

)

-1 0 0 O

0

0

)+ (

and W, =

i—1)+"

4k

2k
2

4k
i

) (%
d'=(Q1 Q Q3

2k
1

The differential d* of order [(

is

Qi1 Q).

2k
i—1

()2

2k
%

)21

) (Y
000 1

)+...+(

)+
00 00
01 00
01 00
0 0 00
00 00
00 10

-1 0 1 0

2k
1

Here the order of Q; is [(

-1
0
0
0
0
0
0
0
0
0

0
0
0

00 0O
00 0O
00 0O

-1

-1
-1

0

0 0 O

0 0 0O
00 0O
00 0O
0 0 0O
0 0 0O

0
1
1

0
0
0

0
1

-1 0 0 O

00 0O
00 0O

00 0O

00 0O

0

0

0

Q=

0
1

0 0 0O

0 0 0O

-1

-1

0

0
0
1
-1

-1 0 0 O

0
0
0

1
-1

1 0 00
0 0 0O
0 0 0O

00 0 0 O

0

0 0 00

1

0 0 1

0

Q2 =

Rev. Un. Mat. Argentina, Vol. 57, No. 2 (2016)



A. R. NIZAMI, M. MUNIR, AND A. USMAN

116

010 -1 0000 O

-1

0
0
0

0 000 O0O0
0 00 00O
0 00 0O0O0
0 000 O0O0
0 000 O0O0
0 000 O0O0
0 000 O0O0
0 00 0O0O0
0 00 0O0O

0
0

0
0
-1 0 0

0

1

0
0

0
0
-1 0 0
-1 0 0

0
0
0
0

0
0

0
0

0
0

0
0

0 00010

0

0

Qs =

000 O0O0OO0OO0OO0OTO0O O

-1 0 00 0 00 0O

0
1

000 O0O0OO0OO0OTUO0F®
00 0 O0O0OO0OO0OTO0F®
00 0 O0O0OO0OTO0ODTO0@®
000 O0O0OO0OTO0ODT 0@
000 O0O0OO0OTO0ODT 0@
000 O0O0O0OTUO0OTO O

0
0
0

0
0
0
0

-1

1

0
0

000 O0O0OO0OO0OTO0F®

000 O0O0OO0OTO0ODT 0@

0
0

00 0O0O0O0OO0OTQO0OF@ O

—1 —

Qt

0
0
-1

0 00 0O
0 00 0O
01 00O
0 00 0O
01 00O
01 0 0O
0 00 0O
01 0 01
0 00 0O
0 00 0O

0
0

10 -1 0
10 -1 0

0 0 0 -1

1

0
0
0
-1

1
0
0
1

0
0
0

1

0

0

0

0

-1 0 0 0 O

0

0

and Qt

If i = 6k, then d%1

The matrices Y; have order 2ZF+1 x

imdi-1,

By simple computation, we get ker d’

(Yl Y, YS Yy YS 0)22k+1><3k22k+2'
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22k+1 and are:
1 -1 0 0 0 0 0 0
0 01 -1 0 0 0 0
0 0 01 -1 0 0
i=| . . . . :
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Vy=| ¢ : Coo ],
0 0 -1 1 0 0 0 0
0 0 00 -1 1 0 0
0 0 0 0 00 -1 1
0 0 0 0 0 0 0 0
1 0 -1 01 -1 0 0
-1 1 1 -1 0 0 1 -1
Y; = 0 -1 0 1 0 0 0 0 7
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
Ys=1 1 0 -1 01 -1 0 0 ;
—1 1 1 -1 0 0 1 -1
0 -1 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 - 0
0 0 0 0 0 0 0 - 0
0 0 0 0 0 0 0 - 0
and¥s=f 09 00 00 00 -~ 0
1 -1r1 -1 1 -1 1 --- 1
Since the kernel of d* is VE2k+1 we get
KRO*(A%) = 77 & 72, 0
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