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QUOTIENT p-SCHATTEN METRICS ON SPHERES

ESTEBAN ANDRUCHOW AND ANDREA C. ANTUNEZ

Abstract. Let S(H) be the unit sphere of a Hilbert space H and Up(H) the

group of unitary operators in H such that u−1 belongs to the p-Schatten ideal
Bp(H). This group acts smoothly and transitively in S(H) and endows it with

a natural Finsler metric induced by the p-norm ‖z‖p = tr
(
(zz∗)p/2

)1/p
. This

metric is given by

‖v‖x,p = min{‖z − y‖p : y ∈ gx},
where z ∈ Bp(H)ah satisfies that (dπx)1(z) = z · x = v and gx denotes the

Lie algebra of the subgroup of unitaries which fix x. We call z a lifting of v.

A lifting z0 is called a minimal lifting if additionally ‖v‖x,p = ‖z0‖p. In
this paper we show properties of minimal liftings and we treat the problem

of finding short curves α such that α(0) = x and α̇(0) = v with x ∈ S(H)

and v ∈ TxS(H) given. Also we consider the problem of finding short curves
which join two given endpoints x, y ∈ S(H).

1. Introduction

Let H be an infinite dimensional Hilbert space and B(H) be the space of
bounded linear operators. Denote by Bp(H) the p-Schatten class

Bp(H) = {v ∈ B(H) : ‖v‖pp = tr((v∗v)p/2) <∞},

where tr is the usual trace in B(H).
Denote by U(H) the unitary group of H and consider the following classical

Banach-Lie group:

Up(H) = {u ∈ U(H) : u− 1 ∈ Bp(H)},
where 1 ∈ B(H) denotes the identity operator. The Lie algebra of Up(H) can be
identified with Bp(H)ah, the space of skew-hermitian elements of Bp(H).

Let S(H) = {x ∈ H : ‖x‖ = 1} be the unit sphere in H. The group Up(H) acts
on S(H),

π : Up(H)× S(H)→ S(H), u · x := ux.

It is clear that this action is smooth and transitive.
The purpose of this paper is to study the Finsler metric induced in S(H) by the

action of Up(H).
For x ∈ S(H), let Gx ⊂ Up(H) be the isotropy group at x, i.e.,

Gx := {u ∈ Up(H) : u · x = x}.
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22 E. ANDRUCHOW AND A. C. ANTUNEZ

The Lie algebra gx of Gx consists of operators w in Bp(H) such that w∗ = −w and
w · x = 0. Consider the quotient p-metric in TxS(H): if v ∈ TxS(H) then

‖v‖x,p = min{‖z − y‖p : y ∈ gx},

where z ∈ Bp(H)ah satisfies (dπx)1(z) = z · x = v. We call z a lifting of v. A
lifting z0 is called a minimal lifting if ‖v‖x,p = ‖z0‖p. The quotient norm induces
a metric in S(H):

dS(H),p(x, ux) = inf
{
Lp(γ) :=

∫ 1

0

‖γ̇(t)‖γ(t),p : γ ⊂ S(H), γ(0) = x, γ(1) = ux
}
.

We study the problem of finding the geodesic curves, or short paths, for this met-
ric. The results are obtained by applying techniques developed in [2] for abstract
homogeneous spaces of Up(H), to the case of S(H).

This paper is organized as follows. In Section 2 we collect some preliminary facts
concerning the geometry of S(H) and Up(H). The quotient p-metric is introduced
in Section 3. In Section 4 we study minimal liftings of v ∈ TxS(H). In Section 5
we show the consequence of these facts on the existence and uniqueness of geo-
desic curves in S(H). Section 6 is devoted to the case p = 2, where a reductive
homogeneous structure is introduced.

2. Preliminary facts

In this section, we introduce the necessary definitions and we recall certain
known facts on the Riemmanian differentiable structure of the sphere S(H), as
well as some results on the metric in the unitary group Up(H).

The tangent space at x, denoted TxS(H), may be identified with the set of
vectors v ∈ H satisfying Re(〈v, x〉) = 0. By this condition, the double-tangent
TTS(H) consists of the set{

(x, v, u, w) : x ∈ S(H); v, u ∈ TxS(H); w ∈ H; Re
(
〈w, x〉+ 〈v, u〉

)
= 0
}
. (1)

We consider the metric in Up(H) given by the length functional Lp:

Lp(α) :=

∫ t1

t0

‖α̇(t)‖pdt,

where α : [t0, t1] → Up(H) is a piecewise smooth curve. Recall that ‖ · ‖p denotes
the p-norm of operators:

‖z‖p = tr
(

(z∗z)p/2
)1/p

.

The rectifiable distance between u1 and u2 in Up is

dp(u1, u2) := inf{Lp(α) : α ⊂ Up(H), α joins u0 and u1}.

The following theorem collects several results concerning the rectifiable p-distance
in Up(H). Proofs can be found in [2].

Theorem 2.1. Let 2 ≤ p <∞. The following facts hold:
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QUOTIENT p-SCHATTEN METRICS ON SPHERES 23

(1) Let u ∈ Up(H) and v ∈ Bp(H)ah with ‖v‖ ≤ π. Then the curve µ(t) =
u etv, t ∈ [0, 1], is shorter than any other smooth curve in Up(H) joining
the same endpoints. Moreover, if ‖v‖ < π, this curve is unique with this
property.

(2) Let u0, u1 ∈ Up(H). Then there exists a minimal geodesic curve joining
them. Moreover, if ‖u0 − u1‖ < 2, this geodesic is unique.

(3) There are in Up(H) minimal geodesics of arbitrary length. Thus the diam-
eter of Up(H) is infinite.

(4) If u, v ∈ Up(H), then√
1− π2

12
dp(u, v) ≤ ‖u− v‖p ≤ dp(u, v).

In particular, the metric space (Up(H), dp) is complete.

Next, we recall the following results concerning the geodesic distance. These
results are the key in obtaining minimality of geodesics en S(H). Proofs for these
statements can be found in [2].

Theorem 2.2. Let p be an even positive integer, u ∈ Up(H) and β : [0, 1]→ Up(H)
be a non-constant geodesic such that

β ⊂ Bp
(
u,
π

2

)
= {w ∈ Up(H) : dp(u,w) < π/2}.

Assume further that u does not belong to any prolongation of β. Then

fp(s) = dp(u, β(s))p

is a strictly convex function.

Corollary 2.3. Let u1, u2, u3 ∈ Up(H) with u2, u3 ∈ Bp(u1,
π
4 ) and assume that

they are not aligned (i.e., they do not lie in the same geodesic). Let γ be the short
geodesic joining u2 with u3. Then dp(u1, γ(s)) < π

2 for s ∈ [0, 1] and π
4 is the radius

of convexity of the metric balls of Up(H).

3. Quotient p-metric in S(H)

In this section, we describe the quotient metric in S(H). Note that S(H) is the
orbit of any x in S(H) by the action of Up(H).

The action of Up(H) in S(H) induces two kinds of maps. If one fixes x ∈ S(H),
one has the submersion

πx : Up(H)→ S(H), πx(u) := ux.

If one fixes u ∈ Up(H), one has the diffeomorphism

`u : S(H)→ S(H), `u(x) := ux.

We will consider the orthogonal decomposition induced by x, H = 〈x〉 ⊕ 〈x〉⊥,
in order to describe operators in B(H).
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24 E. ANDRUCHOW AND A. C. ANTUNEZ

If x ∈ S(H), the isotropy Gx is the subgroup π−1(x), which consists of all
operators of the form (

1 0
0 u0

)
,

where u0 : 〈x〉⊥ → 〈x〉⊥ is an operator in Up(〈x〉⊥).
We will denote by (dπx)v : Bp(H)ah → TS(H) the differential of πx at v. In

particular, if v = 1 := Id ∈ Up(H) then

(dπx)1(v) = vx.

Its kernel is the Lie algebra gx. In terms of the decomposition of H with respect
to x, an element in gx has the form(

0 0
0 c

)
,

where c : 〈x〉⊥ → 〈x〉⊥ is skew-hermitian and belongs to Bp(〈x〉⊥).
Since dπx is an epimorphism, we can identify the tangent space TxS(H) with the

quotient Bp(H)ah/ ker(dπx). This viewpoint enables to define the following Finsler
metric in S(H):

‖v‖x,p = min{‖z − y‖p : y ∈ gx},
where z ∈ Bp(H)ah is any lifting of v, i.e. an element such that (dπx)1(z) = z·x = v.

If z0 satisfies ‖v‖x,p = ‖z0‖p, z0 is called a minimal lifting. We denote by Lp the
length functional for piecewise smooth curves in S(H), measured with the quotient
norm defined by

Lp(γ) :=

∫ 1

0

‖γ̇‖γ,p.

As usual the metric distance in S(H) is defined as the infimum of the lengths of
the arcs in S(H), namely,

dp(x, ux) = inf
{
Lp(γ) : γ ⊂ S(H), γ(0) = x, γ(1) = ux

}
.

A straightforward computation shows that this metric dp is invariant by the
action of Up(H), i.e., given u ∈ Up(H), x ∈ S(H) and v ∈ TxS(H),

‖(d`u)x(v)‖ux = ‖v‖x.
In [2] it was proved that if Up(H) acts transitively and smoothly on a manifold

O and we endow the tangent bundle of O with the quotient metric as above, then
(O, dp) is complete.

We are interested in describing the minimal liftings of a given v ∈ TxS(H). Note
that these satisfy

‖z0‖p ≤ ‖z0 − y‖p for all y ∈ gx.

Let Q be the (non linear) projection Q : Bp(H)ah → gx
p which sends z ∈

Bp(H)ah to its best approximant Q(z) ∈ Bah(H) satisfying

‖z −Q(z)‖p ≤ ‖z − y‖p
for all y ∈ ḡx

p. The map Q is continuous and single-valued because Bp(H) is
uniformly convex and uniformly smooth (see for instance [5]).
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In particular, a minimal lifting z0 of v ∈ TxS(H) belongs to the set

g⊥x := Q−1(0) = {z ∈ Bp(H)ah : ‖z‖p ≤ ‖z − y‖p for all y ∈ gx}.

4. Characterization of minimal liftings

Note that any z ∈ Bp(H)ah can be decomposed as

z = z −Q(z) +Q(z),

where Q is the (non linear) projection onto gx, z−Q(z) ∈ g⊥x and Q(z) ∈ gx. Since
πx is submersion, the differential (dπx)1 is surjective and then, for any v ∈ TxS(H),
there exists z ∈ Bp(H)ah such that (dπx)1(z) = zx = v. Then a minimal lifting is

z0 = z −Q(z) ∈ g⊥x .

The following theorem establishes the uniqueness of minimal liftings in S(H).

Theorem 4.1. Let p be a positive even integer, x ∈ S(H) and v ∈ TxS(H). An
element z0 ∈ Bp(H)ah such that z0x = v is a minimal lifting of v if and only if

tr(zp−1
0 y) = 0 for all y ∈ gx. The lifting z0 satisfies this condition if and only if its

matrix with respect to the decomposition H = 〈x〉 ⊕ 〈x〉 is

zp−1
0 =

(
λi −b∗
b 0

)
,

where b : 〈x〉 → 〈x〉⊥ and λ ∈ R.

Proof. Suppose that z0 ∈ Bp(H)ah is a minimal lifting. For a fixed y ∈ gx, let
f(t) = ‖z0 − ty‖pp. It is clear that f is a smooth map with a minimum at t = 0.

Then f ′(0) = 0. Since f ′(t) = −p tr((z0 − ty)p−1y), then tr(zp−1
0 y) = 0.

Conversely, let z0 ∈ Bp(H)ah be a lifting such that tr(zp−1
0 y) for all y ∈ gx.

Suppose that z0 is not minimal, namely, there is y0 such that ‖z0 − y0‖p < ‖z0‖p.
Then, the convex function f(t) = ‖z0 − ty0‖pp (with f ′(0) = 0) would not have a
minimum at t = 0, and this is contradiction.

Note that the condition tr(zp−1
0 y) = 0 is equivalent to

tr

((
λi −b∗
b a

)(
0 0
0 c

))
= tr

(
0 0
0 ac

)
= tr(ac)

for all c ∈ Bp(〈x〉⊥) skew-hermitian. Then a is the null operator in Bp(〈x〉⊥). �

Corollary 4.2. Let x ∈ S(H), v ∈ TxS(H) and p = 2. Then the unique minimal
lifting of v is given by

z0 =

(
λi −v∗0
v0 0

)
,

where v0 := v − 〈v, x〉x ∈ 〈x〉⊥, λ ∈ R and λi = 〈v, x〉.

In the special case when the velocity vector v is (complex) orthogonal to the
position x, the minimal lifting z0 is easy to compute.
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Corollary 4.3. Let x ∈ S(H), v ∈ 〈x〉⊥ and p ≥ 2 an even integer. Then
z0 ∈ Bp(H)ah is the unique minimal lifting of v in x if and only if it has the form

z0 =

(
0 −v∗
v 0

)
with respect to the decomposition H = 〈x〉 ⊕ 〈x〉⊥.

Proof. Since v ∈ 〈x〉⊥ and z0 ∈ Bp(H)ah satisfies z0x = v, then

〈z0x, x〉 = 〈v, x〉 = 0.

Then pxz0px = 0, where px denotes the orthogonal projection onto 〈x〉. Therefore
the minimal lifting of v has the matrix form

z0 =

(
0 −a∗
a 0

)
.

It remains to prove that the column a of z0 is precisely v. Let {e0 = x, e1, e2, . . . }
be an orthonormal basis of H. The infinite matrix of z0 in this basis is

z0 =


0 −ā1 −ā2 −ā3 . . .
a1 0 0 0 . . .
a2 0 0 0 . . .
a3 0 0 0 . . .
...

...
...

...
. . .

 .

Since p ≥ 2 is an even integer, the map f(s) = sp−1 induces a bicontinuous map
from Bp(H)ah onto itself. Accordingly, the minimal lifting of v should satisfy

zp−1
0 =


0 −b̄1 −b̄2 −b̄3 . . .
b1 0 0 0 . . .
b2 0 0 0 . . .
b3 0 0 0 . . .
...

...
...

...
. . .

 ,

where bi ∈ C.
The relationship between the coefficients of z0 and zp−1

0 is:

aj =
bj

(
∑
|bj |2)

p−2
2

1
p−1

.

Since z0x = v, this implies:

z0x =


0 −ā1 −ā2 ā3 . . .
a1 0 0 0 . . .
a2 0 0 0 . . .
a3 0 0 0 . . .
...

...
...

...
. . .




1
0
0
0
...

 =


0
v1

v2

v3

...

 = v,

where vi = 〈v, ei〉 for all i ∈ N. Then, ai = vi. �

So far we have considered a complex Hilbert space.
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Corollary 4.4. If H is a real Hilbert space and p is a positive even integer, then
the unique minimal lifting of v ∈ TxS(H) = 〈x〉⊥ has the form (with respect to the
decomposition H = 〈x〉 ⊕ 〈x〉⊥)

z0 =

(
0 −v∗
v 0

)
.

Let us present some properties of the minimal lifting of v when 〈v, x〉 6= 0. Since
p is even, for a ∈ B(H), λ is an eigenvalue of a if and only if λp−1 is an eigenvalue of
ap−1. Namely, there exists a bijection between the spectrum of a and the spectrum
of ap−1.

Lemma 4.5. Let x ∈ S(H) and consider the decomposition H = 〈x〉 ⊕ 〈x〉⊥. If
m ∈ Bp(H)ah is

m =

(
λi −b∗
b 0

)
,

where 0 6= λ ∈ R and 0 6= b ∈ 〈x〉⊥, then its eigenvalues are µ0 = 0 and

µ1 =
sg(λ)i

2

[√
|λ|2 + 4‖b‖2 + |λ|

]
,

µ2 =
sg(λ)i

2

[√
|λ|2 + 4‖b‖2 − |λ|

]
.

Moreover, the eigenvectors {e1, e2} of µ1, µ2 are (respectively)

e1 =

√
2

[|λ|2 + 4‖b‖2]
1
4


sg(λ)i

2
[
√
|λ|2 + 4‖b‖2 + |λ|2]

1
2

v

[
√
|λ|2 + 4‖b‖2 + |λ|2]

1
2

 ,

e2 =

√
2

[|λ|2 + 4‖b‖2]
1
4


sg(λ)i

2
[
√
|λ|2 + 4‖b‖2 − |λ|2]

1
2

b

[
√
|λ|2 + 4‖b‖2 − |λ|2]

1
2

 .

The nullspace of µ = 0 is 〈b〉⊥ ∩ 〈x〉⊥.

Proof. Note that m is a rank 2 operator, thus 0 ∈ σ(m). Let be w = w0 + w1 ∈
〈x〉 ⊕ 〈x〉⊥ such that(

λi −b∗
b 0

)(
w0

w1

)
=

(
λiw0 − b∗w1

w0b

)
=

(
0
0

)
.

This equality holds if and only if w0 = 0 and b∗w1 = 0. Namely, ker(m) =
〈x〉⊥ ∩ 〈b〉⊥.

Next, we will prove µi, i = 1, 2, are eigenvalues of m. Let

v1 :=

(
µ1

b

)
.
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28 E. ANDRUCHOW AND A. C. ANTUNEZ

Then

mv1 =

(
λi −b∗
b 0

)(
µ1

b

)
=

(
λiµ1 − ‖b‖2

µ1b

)
.

µ1v
1 =

(
−µ2

1

µ1b

)
It follows that µ2

1 = λiµ1 − ‖b‖2, because

µ2
1 =
−1

4

[√
|λ|2 + 4‖b‖2 + |λ|

]2
=
−1

4

[
|λ|2 + 4‖b‖2 + |λ|2 + 2

√
|λ|2 + 4‖b‖2|λ|

]
=
−|λ|2

2
− ‖b‖2 − |λ|

2

√
|λ|2 + 4‖b‖2

=
−|λ|

2

[
|λ|+

√
|λ|2 + 4‖b‖2

]
− ‖b‖2 = λiµ1 − ‖b‖2.

These facts imply that mv1 = µ1v
1. The normalization of v1 is e1. The other

computation is similar. �

Proposition 4.6. Let p ≥ 2 be an even integer and x ∈ S(H), and let v = αi+a ∈
TS(H)x (where a ∈ 〈x〉⊥). Then there exists a unitary operator u such that the
unique minimal lifting z0 ∈ Bp(H)ah of v in x is

z0 = U


p−1
√
µ1 0 0 . . .

0 p−1
√
µ2 0 . . .

0 0 0 . . .
...

...
...

. . .

U−1.

Proof. Straightforward using 4.1 and 4.5. �

We close this section with the following result, which determines the norm of
the minimal liftings.

Proposition 4.7. Let x ∈ S(H) and z0 ∈ Bp(H)ah, such that

zp−1
0 =

(
λi −b∗
b 0

)
with respect to the decomposition H = 〈x〉 ⊕ 〈x〉⊥. If λ 6= 0, then

‖z0‖pp =
1

2
p

p−1

{[
|
√
|λ|2 + 4‖b‖2 + |λ|

] p
p−1

+
[√
|λ|2 + 4‖b‖2 − |λ|

] p
p−1

}
.

If λ = 0, then

‖z0‖pp = 2‖b‖p.

Proof. The proof is apparent. �
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Remark 4.8. In the case p = 2, the above result shows the difference between the
quotient metric and the usual metric in S(H). If γ is a curve parametrized in the
interval [0, 1] with constant velocity, then[

L2(γ)
]2

=

[∫ 1

0

‖v‖x
]2

= ‖z0‖22 = |λ|2 + 2‖b‖2

in the quotient metric. However, its length measured with usual metric is

[L2(γ)]
2

=

[∫ 1

0

‖v‖
]2

= ‖v‖2 = |λ|2 + ‖b‖22.

This shows that the quotient metric in the sphere of a complex Hilbert space is
different from the usual metric. If H is a real Hilbert space, both metrics coincide.

5. Minimality of geodesic curves in S(H)

Let ada : Bp(H)→ Bp(H) be the operator ada(x) := xa− ax.

Proposition 5.1. Let x ∈ S(H) and Q = Qgx
the best approximant projection.

Let γ(t) := Γ(t)x ⊂ S(H), where Γ : [0, 1] → Up(H) is a piecewise C1 curve.

Put F (z) :=
ez − 1

z
. Then there exists a piecewise C1 curve z : [0, 1] → gx with

z(0) = 0 such that

F (adz)ż = −Q(Γ∗Γ̇).

If uΓ = ez ∈ Gx then uΓ(t) ∈ Bp(H) is a solution of the differential equation

u̇Γu
∗
Γ = −Q(Γ∗Γ̇)

and Lp(uΓ) ≤ 2Lp(Γ).

Proof. See [2]. �

Remark 5.2. Let x ∈ S(H) and γ := Γx ⊂ S(H) parametrized in the interval
[0, 1]. Let uγ be the curve of the previous proposition. Since uΓ ∈ Gx, we have

ΓuΓx = γ. Moreover, by this same proposition Lp[β] = L[γ] ≤ Lp(Γ). The curve
β is called an isometric lifting of γ.

Theorem 5.3. Let p be an even positive integer, x ∈ S(H), v ∈ TxS(H) and
z0 ∈ Bp(H)ah the unique minimal lifting of v. Let µ : [0, 1]→ S(H) be the curve

µ(t) = etz0x

which satisfies µ(0) = x and µ̇(0) = v = αi+ v0 ∈ H = 〈x〉 ⊕ 〈x〉⊥. If

‖z0‖p ≤
π

4

then the curve µ is shorter than any other curve in S(H) joining the same end-
points.

Proof. The proof is based on the existence of minimal lifting of curves (in Re-
mark 5.2) and the convexity of the maps fp(t) = dp(1, e

z0ety) for any y ∈ gx (by
Theorem 2.2). This theorem was proved in [2] for homogeneous manifolds on which
Up(H) acts transitively and smoothly and the group Gx is locally exponential. �
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The previous theorem establishes conditions which guarantee that a short arc of
the curve γ(t) := etzx minimizes length among all curves with the same endpoints.

When v ∈ 〈x〉⊥, by Corollary 4.3, the minimal lifting of v has matrix form, with
respect to H = 〈x〉 ⊕ 〈x〉⊥,

z0 =

(
0 −v∗
v 0

)
.

Note that this lifting is independent of p ≥ 2. Hence, we obtain a uniform bound
for all p even in terms of ‖v‖, in order that the curve γ(t) := etz0x is short.

Theorem 5.4. Let p be an even positive integer, x ∈ S(H), v ∈ 〈x〉⊥ ⊂ TxS(H)
and z0 ∈ Bp(H)ah be the unique minimal lifting of v. If

‖v‖ ≤ π

4 p
√

2

then the curve µ(t) = etz0x, which satisfies µ(0) = x and µ̇(0) = v, is minimal in
the interval [0, 1]. Moreover, if ‖v‖ < π

4
√

2
, this curve is short for all p-quotient

metrics (p an even integer).

Proof. The result follows from Corollary 5.3 and Theorem 4.7. �

Corollary 5.5. Let H be a real Hilbert space and p ≥ 2 an even integer. Given
x ∈ S(H), the minimal lifting of v ∈ TxS(H) defines a minimal geodesic in the
interval [0, 1] if

‖v‖ ≤ π

4 p
√

2
.

6. The case p = 2

In this section, we describe the quotient 2-metric of the sphere S(H). S(H)
is an infinite dimensional homogeneous reductive space. The geometry of these
spaces has been studied in [6] in the C∗-algebra context. From this reference we
take definitions and calculations.

Given x ∈ S(H), we consider the decomposition H = 〈x〉⊕ 〈x〉⊥ and the matrix
form of the operators in terms of this decomposition.

We define the metric induced by the decomposition

B2(H)ah = gx ⊕ g⊥x ,

where gx is the Lie algebra of G at x ∈ S(H).
Consider again the map πx and its derivative (dπx)1. We denote by

δx := (dπx)1 |g⊥x : g⊥x → TxS(H)

given by δx(z) := zx. This map is a linear bounded isomorphism between these
spaces. Then, we can define its inverse

κx(v) := z, if (δx)1(z) = v.

By Corollary 4.2, κx(v) has matrix form

κx(v) :=

(
λi −v∗0
v0 0

)
,
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where v = iλx+ v0, v0 ∈ 〈x〉⊥, and λ = Im〈v, x〉 ∈ R.
Let z, w ∈ H. Denote z ⊗ w ∈ B(H) the elementary rank one operator

z ⊗ w(h) := w∗z(h) = 〈h,w〉z.
We can write κx as

κx(v) = v ⊗ x− x⊗ v − 〈v, x〉x⊗ x.
By definition, it is clear that δx ◦ κx = IdTxS(H) and κx ◦ δx = Pg⊥ the orthogonal

projection onto g⊥. Indeed,

δx ◦ κx(v) = δx(v ⊗ x− x⊗ v − 〈v, x〉x⊗ x)

= −〈x, v〉x+ ‖x‖2v − 〈v, x〉x = v.

Here we use that 〈v, x〉 = −〈x, v〉, because v ∈ TxS(H), i.e. Re〈v, x〉 = 0.
To prove the other equality, note that the projection onto g⊥x is given by

Pg⊥(z) = pxzpx + (1− px)zpx + pxz(1− px),

where px is the projection onto 〈x〉 given by x⊗ x. Then

Pg⊥(z) = (x⊗ x)z(x⊗ x) + (1− x⊗ x)z(x⊗ x) + (x⊗ x)z(1− x⊗ x)

= z − (1− x⊗ x)z(1− x⊗ x).

Then,

κx ◦ δx(z) = κx(zx)

= z(x⊗ x)− (x⊗ x)z∗ − 〈zx, x〉(x⊗ x)

= (x⊗ x)z(x⊗ x) + (1− (x⊗ x))z(x⊗ x) + (x⊗ x)z − (x⊗ x)(zx⊗ x)

= pxzpx + (1− px)zpx + pxz(1− px) = Pg⊥z.

Note that the decomposition B2(H)ah = gx⊕g⊥x is equivariant under conjugation
with u in Gx ⊂ U2(H). Namely,

uvu−1 ∈ g⊥x if v ∈ g⊥x and u ∈ Gx.
Indeed, using the matrix representation with respect to H = 〈x〉 ⊕ 〈x〉⊥, let u0 ∈
Up(〈x〉⊥) and v0 ∈ H such that

u =

(
1 0
0 u0

)
, v =

(
λi −v∗0
v0 0

)
;

then

uvu−1 =

(
1 0
0 u0

)(
λi −v∗0
v0 0

)(
1 0
0 u−1

0

)
=

(
λi −v∗0
u0v0 0

)(
1 0
0 u−1

0

)
=

(
λi −v∗0u−1

0

u0v0 0

)
,

and this operator lies in g⊥x .
Summarizing, we constructed a map κx : TxS(H)→ g⊥x such that
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• (dπx)1 ◦ κx : TxS(H)→ TxS(H) is the identity mapping,
• κx(TxS(H)) is adu-invariant for u ∈ Gx.

This mapping allows us to induce a metric in S(H). Given x ∈ S(H), we define
the structure 1-form by

K : TyS(H)→ B2(H)ah, K(y) := adu ◦ κx ◦ (d`u)−1 if `ux = ux = y.

The inner product in TxS(H) is given by

〈v, w〉x = Re tr (κx(w)∗κx(v)) = − tr (κx(w)κx(v)) ,

where Re tr denotes the real part of the trace of operators in B(H).
In terms of elementary rank one operators

〈v, w〉x = −Re tr(κx(w)κx(v))

= 〈w, x〉〈v, x〉 tr(x⊗ x) + Re〈v, w〉 tr(x⊗ x) + tr(w ⊗ v)

= 〈w, x〉〈v, x〉+ 2 Re〈v, w〉.

Note that if z is a lifting of v ∈ TxS(H) then

〈v, v〉x = tr(κx(v)2) = ‖κx(v)‖22 = ‖κx(δx(z))‖22 = ‖z‖22 = ‖v‖2x.

Therefore, the metric induced by the inner product is the quotient 2-metric defined
in previous sections.

We can define a horizontal lifting of a curve on S(H) to U2(H) as follows: given
γ(t) ⊂ S(H) (t ∈ I, an interval with 0 ∈ I; γ(0) = x), there is Γ ⊂ U2(H) (t ∈ I)
such that Γ(0) = 1 and it satisfies

Γ̇ = κγ(t)(γ̇(t))Γ(t). (2)

This equation is called parallel transport equation for γ. A solution Γ satisfies

Γ(t) ∈ U2(H), t ∈ [0, 1]

πγ(Γ) = γ (Γ lifts γ)

Γ∗Γ ∈ gγ (Γ is horizontal).

Let x ∈ S(H) and consider the curve γ : [0, 1]→ S(H),

γ(t) := cos(kt)x+
sin(kt)

k
v,

where v ∈ TxS(H).
Note that if k = ‖v‖, γ describes an arc of a maximal circle that satisfies

γ(0) = x and γ̇(0) = v. Its length with respect to the usual metric is k. If
we choose to take v = y − x − Re〈y − x, x〉x for any y ∈ S(H), y 6= −x and
k = arccos(Re〈y, x〉) ∈ [−π, π], then γ is the arc of a maximal circle joining x
with y and its length is |k|. Note that these curves are precisely the great circles
(intersections of S(H) with 2-planes through the origin) with constant velocity
parametrizations.

Rev. Un. Mat. Argentina, Vol. 58, No. 1 (2017)



QUOTIENT p-SCHATTEN METRICS ON SPHERES 33

In this case,

κγ(t)(γ̇(t)) = γ̇(t)⊗ γ(t)− γ(t)⊗ γ̇(t)− 〈γ̇(t), γ(t)〉γ(t)⊗ γ(t)

= x⊗ v − v ⊗ x

+ 〈x, v〉
{

cos2(kt)(x⊗ x) +
sin2(kt)

k2
(v ⊗ v) +

sin(2kt)

2k
[x⊗ v + v ⊗ x]

}
.

(3)

Then, we deduce the following lemma.

Lemma 6.1. Let x ∈ S(H), v ∈ 〈x〉⊥ ⊂ TxS(H) and k = ‖v‖. Let γ : [0, 1] →
S(H) be the curve that satisfies γ(0) = x, γ̇(0) = v and is given by

γ(t) := cos(kt)x+
sin(kt)

k
v.

Then the parallel transport of the curve γ is the solution of{
Γ̇(t) = κx(v)Γ

Γ(0) = 1.

Proof. Using 〈v, x〉 = 0, the proof follows from (3) in (2). �

Lemma 6.2. Let x, y ∈ S(H) such that 〈y, x〉 ∈ R. Let v = y − x−Re〈y − x, x〉x
and k = 〈y, x〉. Let γ : [0, 1]→ S(H) be a curve that satisfies γ(0) = x, γ(1) = y,

γ(t) := cos(kt)x+
sin(kt)

k
v.

Then, the parallel transport of this curve is the solution of{
Γ̇(t) = κx(v)Γ

Γ(0) = 1.

Proof. As in the above lemma, it suffices to see that if 〈y, x〉 ∈ R then v ∈ 〈x〉⊥:

〈y − x− Re〈y − x, x〉x, x〉 = 〈y − 〈y, x〉x, x〉 = 0. �

Next we analyse the natural connection which is induced by the quotient metric.
In [6], two natural connections were introduced.

The first connection is called the reductive connection ∇r. For each x ∈ S(H),
this connection is given by

κx(∇rwV (x)) := κx(w)(κxV (x)) + [κx(V (x)), κx(w)],

where V is a tangent field and w ∈ TxS(H). Here Y (X) denotes the derivative of
X in the direction of Y and [X,Y ] is the commutator of operators in B(H).

Proposition 6.3. The reductive connection ∇r is compatible with the quotient
metric in S(H). Given x ∈ S(H), V a tangent field and w ∈ TxS(H), the connec-
tion is given by

∇rw(V ) = V̇ w − 〈V, x〉w +
[
〈v, x〉〈w, x〉 − 〈w, v〉

]
x. (4)
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Proof. Let x ∈ S(H) and w ∈ TxS(H) and consider β : I → TS(H) the curve
given by β(t) = (xt, wt) such that x0 = x and ẋ0 = w. Note that

κx(w)(κx(V (x))) =
d

dt
κxt

(V (xt))

∣∣∣∣
t=0

=
d

dt
(V (xt))⊗ xt + V (xt)⊗ ẋt − ẋt ⊗ V (xt)− xt ⊗

d

dt
(V (xt))

∣∣∣∣
t=0

−
[
〈 d
dt

(V (xt)), xt〉+ 〈V (xt), ẋt〉
]
xt ⊗ xt

∣∣∣∣
t=0

− 〈V (xt), xt〉(xt ⊗ ẋt + ẋt ⊗ xt)|t=0

Using the notation V := V (x0) and d
dt (V (xt))|t=0 = DV (x0)ẋ0 =: V̇ w we obtain

κx(w)(κx(V (x))) = V̇ w ⊗ x+ V ⊗ w − w ⊗ V − x⊗ V̇ w

− [〈V̇ w, x〉+ 〈V,w〉]x⊗ x− 〈V, x〉(x⊗ w + w ⊗ x). (5)

The latter is due to the fact that the curve β(t) ∈ TS(H), and then β̇(t) =

(xt, V (xt); ẋt, V̇ (xt)) ∈ TTS(H), i.e., its derivative satisfies (1):

Re
(
〈V̇ w, x〉+ 〈v, w〉

)
= 0.

On the other hand, the commutator between κx(V ) and κx(w) is

[κx(V ), κx(w)] = κx(V )κx(w)− κx(w), κx(V )

= w ⊗ V − V ⊗ w + [〈V,w〉 − 〈w, V 〉]x⊗ x.
(6)

Reordering (5) and (6), we obtain the formula

κx(∇rw(V ))) = V̇ w ⊗ x− x⊗ V̇ w − 〈V, x〉
[
w ⊗ x+ w ⊗ x

]
−
[
〈w, V 〉+ 〈V̇ w, x〉

]
x⊗ x.

Note that z = kx(∇rw(Vx)) satisfies z ∈ g⊥x , namely, z = −z∗ and (1− x⊗ x)z(1−
x⊗ x) = 0. Then

∇rw(V ) = δx(κx(∇rw(V )))

= V̇ w − 〈x, V̇ w〉x− 〈V, x〉
[
w + 〈x,w〉x

]
−
[
〈w, v〉+ 〈V̇ w, x〉

]
x

= V̇ w − 〈V, x〉w +
[
〈v, x〉〈w, x〉 − 〈w, v〉

]
x.

Since the mappings κx are isometries, the reductive connection is compatible with
the quotient metric. �

The second connection is called the classifying connection ∇c. Using the above
notations, this connection is defined by

κx(∇cw(V )) = P xg⊥(κx(w)(κx(V (x))))

= κx(w)(κx(Vx))− (1− x⊗ x)κx(w)(κx(Vx))(1− x⊗ x),
(7)

where V is a tangent field over S(H) and w ∈ TxS(H).
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Proposition 6.4. The classifying connection ∇c is compatible with the quotient
metric in S(H). For x ∈ S(H), V a tangent field and w ∈ TxS(H), this connection
is given by

∇cw(V ) = V̇ w +
[
〈V,w〉 − 〈w, x〉〈V, x〉

]
x− 〈w, x〉V. (8)

Proof. Using calculations similar to those in the above proposition (formula (7)),
we can write

κx(∇cw(V )) = V̇ w ⊗ x− x⊗ V̇ w

− 〈w, x〉[V ⊗ x+ x⊗ V ]− [〈V̇ w, x〉+ 〈V,w〉]x⊗ x.

Then

∇cw(V ) = δx(κx(∇cw(V )))

= V̇ w − 〈x, V̇ w〉x− 〈w, x〉[V + 〈x, V 〉x]− [〈V̇ w, x〉+ 〈V,w〉]x

= V̇ w +
[
〈V,w〉 − 〈w, x〉〈V, x〉

]
x− 〈w, x〉V.

The compatibility of this connection with the quotient metric was proved in [2]. �

Remark 6.5. The classifying connection (8) has the same geodesics as the reduc-
tive connection (4). These connections have opposite torsion (see [6]). Then we
can define ∇ = 1

2 (∇r+∇c). This new connection is symmetric and it has the same
geodesics as ∇r and ∇r.

The following result summarizes these remarks.

Proposition 6.6. Using the same hypothesis and notations as in the above propo-
sitions, the Levi-Civita connection for the quotient metric is given by

∇w(V ) = V̇ w − 1

2

[
〈v, x〉w + 〈w, x〉v

]
, (9)

for x ∈ S(H) and v ∈ TxS(H). The geodesic curve starting at x with velocity v is
given by

γ(t) = eκx(v)tx.

Proof. The connection ∇ = 1
2 (∇r + ∇c) is compatible with the quotient metric

because the reductive connection and the classifying connection are compatible. �

Using Propositions 6.1 and 6.2, we can prove the following results.

Proposition 6.7. Let x ∈ S(H).

• Let v ∈ TxS(H) such that v ∈ 〈x〉⊥. Then the curve γ : [0, 1] → S(H)
given by

γ(t) := cos(‖v‖t)x+
sin(‖v‖t)
‖v‖

v

is the geodesic curve of the homogeneous structure in S(H), which satisfies
γ(0) = x, γ̇(0) = v and L(γ) = |k|.
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• Let y ∈ S(H), y 6= −x such that 〈y, x〉 ∈ R. Define v = y − 〈x, y〉x and
k = arccos(〈y, x〉). Then the curve γ : [0, 1]→ S(H) given by

γ(t) := cos(kt)x+
sin(kt)

‖v‖
v

is the geodesic curve of the homogeneous structure in S(H), which joins x
to y with length L(γ) = k.

• Let y ∈ S(H), y = eθix such that θ ∈ [0, π4 ]. Then the curve γ : [0, 1] →
S(H) given by

γ(t) := eθitx

is the geodesic curve of the homogeneous structure in S(H), which joins x
to y with length L(γ) = θ.

Corollary 6.8. If H is a real Hilbert space, the geodesic curves of the reductive
structure are precisely the great circles with constant velocity parametrization.
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