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BÉZIER VARIANT OF MODIFIED SRIVASTAVA–GUPTA

OPERATORS

TRAPTI NEER, NURHAYAT ISPIR, AND PURSHOTTAM NARAIN AGRAWAL

Abstract. Srivastava and Gupta proposed in 2003 a general family of linear

positive operators which include several well known operators as its special
cases and investigated the rate of convergence of these operators for functions

of bounded variation by using the decomposition techniques. Subsequently,
researchers proposed several modifications of these operators and studied their

various approximation properties. Yadav, in 2014, proposed a modification of

these operators and studied a Voronovskaya-type approximation theorem and
statistical convergence. In this paper, we introduce the Bézier variant of the

operators defined by Yadav and give a direct approximation theorem by means

of the Ditzian–Totik modulus of smoothness and the rate of convergence for
absolutely continuous functions having a derivative equivalent to a function

of bounded variation. Furthermore, we show the comparisons of the rate of

convergence of the Srivastava–Gupta operators vis-à-vis its Bézier variant to
a certain function by illustrative graphics using Maple algorithms.

1. Introduction

In order to approximate Lebesgue integrable functions on [0,∞), Gupta and
Srivastava [14] introduced a general family of summation-integral type operators
as

Ln,c(f, x) = n

∞∑
k=1

pn,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)f(t) dt+ pn,0(x, c)f(0), (1.1)

where

pn,k(x, c) =
(−x)k

k!
φ(k)
n,c(x)

and

φn,c(x) =

{
e−nx, c = 0,

(1 + cx)−n/c, c ∈ N := {1, 2, 3, . . . }.
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Ispir and Yuksel [11] introduced the Bézier variant of the operators (1.1) and stud-
ied the estimate of the rate of convergence of these operators for functions of
bounded variation. Verma and Agrawal [15] introduced the generalized form of
the operators (1.1) and studied some of its approximation properties. Deo [6]
gave a modification of these operators and established the rate of convergence
and Voronovskaya-type result. Recently, Acar et al. [1] introduced a Stancu-type
generalization of the operators (1.1) and obtained an estimate of the rate of con-
vergence for functions having derivatives of bounded variation and also studied the
simultaneous approximation for these operators.

Yadav [16] introduced a modification of the operators (1.1) as

Gn,c(f, x) = n

∞∑
k=1

pn,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)f

(
(n− c)t

n

)
dt

+ pn,0(x, c)f(0).

(1.2)

and studied its moment estimates, direct estimate, asymptotic formula and statisti-
cal convergence. Very recently, Maheshwari [13] studied the rate of approximation
for the functions having derivative of bounded variation on every finite subinterval
of [0,∞) for the operators (1.2).

It is well known that Bézier curves are the parametric curves used in computer
graphics and designs. In vector graphics they are used to model smooth curves
and also used in animation designs. Zeng and Piriou [18] pioneered the study
of Bézier variants of Bernstein operators. The papers by other researchers (e.g.,
[3, 5, 8, 13, 17]) motivate us to study further in this direction.

The present paper is an attempt to continue the study of Bézier variants of
different sequences of operators. We propose a Bézier variant of the operators
given by (1.2) as

Gαn,c(f, x) = n

∞∑
k=1

Q
(α)
n,k(x, c)

∫ ∞
0

pn+c,k−1(t, c)f

(
(n− c)t

n

)
dt

+Q
(α)
n,0(x, c)f(0),

(1.3)

where Q
(α)
n,k(x, c) = [Jn,k(x, c)]

α − [Jn,k+1(x, c)]
α

, α ≥ 1, with Jn,k(x, c) =∑∞
j=k pn,j(x, c) when k <∞ and 0 otherwise. Clearly, Gαn,c(f, x) is a linear positive

operator. If α = 1, then the operators Gαn,c(f, x) reduce to the operators Gn,c(f, x).
In the last decade, the study of the rate of convergence for functions with a deriv-

ative of bounded variation has become an active area of research in approximation
theory. Recently, Ispir et al. [10] considered the Kantorovich modification of Lupas
operators based on Polya distribution and studied the rate of approximation of the
functions having derivative of bounded variation. Very recently, Maheswari [13]
considered the operators (1.2) and studied the rate of approximation of the func-
tion having derivative of bounded variation on every finite subinterval of [0,∞).
The order of approximation of the summation-integral type operators for functions
with derivatives of bounded variation is estimated in [2, 4, 9, 12].
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The aim of this paper is to investigate a direct approximation result and the
rate of convergence for functions having a derivative equivalent with a function
of bounded variation on every finite subinterval of [0,∞) for the operators (1.2).
Lastly, a comparison of the rate of convergence of the operators (1.2) vis-à-vis
operators (1.3) to a certain function is illustrated by some graphics.

2. Auxiliary results

Lemma 2.1 ([16]). For Gn,c(t
m, x), m = 0, 1, 2, one has

(1) Gn,c(1, x) = 1
(2) Gn,c(t, x) = x

(3) Gn,c(t
2, x) = (n−c)(x2(n+c)+2x)

n(n−2c) .

Consequently,

Gn,c((t− x)2, x) =
x2c(2n− c) + 2(n− c)x

n(n− 2c)

and

Gn,c((t− x)2, x) ≤ λx(1 + cx)

n
for sufficiently large n and λ > 1. From [13], one has

Gn,c((t− x)2r, x) = O(n−r). (2.1)

Remark 2.2. We have

Gαn,c(1;x) =

∞∑
k=0

Q
(α)
n,k(x, c) = [Jn,0(x, c)]

α

=

 ∞∑
j=0

pn,k(x, c)

α = 1,

since
∑∞
j=0 pn,k(x, c) = 1.

Let CB [0,∞) denote the space of all bounded and continuous functions on [0,∞)
endowed with the norm

‖f‖ = sup
[0,∞)

|f(x)|.

Lemma 2.3. For every f ∈ CB [0,∞), we have

‖Gαn,c(f ; .)‖ ≤ ‖f‖.

Applying Remark 2.2, the proof of this lemma easily follows. Hence the details
are omitted.

Remark 2.4. For 0 ≤ a, b ≤ 1, α ≥ 1, using the inequality

|aα − bα| ≤ α|a− b|

and from the definition of Q
(α)
n,k(x, c), for all k = 0, 1, 2, . . . , we have

0 < [Jn,k(x, c)]
α − [Jn,k+1(x, c)]

α ≤ α(Jn,k(x, c)− Jn,k+1(x, c)) = αpn,k(x, c).
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Hence from the definition of Gαn,c(f ;x) we get

|Gαn,c(f, x)| ≤ αGn,c(|f |, x).

3. Main results

To describe our first result, we recall the definitions of the Ditzian–Totik first
order modulus of smoothness and the K-functional [7]. Let φ(x) =

√
x(1 + cx), f ∈

C[0,∞). The first order modulus of smoothness is given by

ωφ(f, t) = sup
0<h≤t

{ ∣∣∣∣f(x+
hφ(x)

2

)
− f

(
x− hφ(x)

2

)∣∣∣∣ , x± hφ(x)

2
∈ [0,∞)

}
,

and the appropriate Petree’s K-functional is defined by

Kφ(f, t) = inf
g∈Wφ

{‖f − g‖+ t‖φg′‖+ t2‖g′‖, t > 0}, (3.1)

where Wφ = {g : g ∈ ACloc, ‖φg′‖ < ∞, ‖g′‖ < ∞} and g ∈ ACloc means that g
is an absolutely continuous function on every [a, b] ⊂ [0,∞). It is well known ([7]
Theorem 3.1.2) that Kφ(f, t) ∼ ωφ(f, t), which means that there exists a constant
C > 0 such that

C−1ωφ(f, t) ≤ Kφ(f, t) ≤ Cωφ(f, t). (3.2)

Now, we establish a direct approximation theorem by means of the Ditzian–Totik
modulus of smoothness.

Theorem 3.1. Let f ∈ C[0,∞) and φ(x) =
√
x(1 + cx), then for every x ∈ [0,∞),

we have

|Gαn,c(f ;x)− f(x)| ≤ Cωφ
(
f ;

1√
n

)
, (3.3)

where C is a constant independent of n and x.

Proof. For fixed n and x, choosing g = gn,x ∈Wφ and using the representation

g(t) = g(x) +

∫ t

x

g′(u) du,

we get

|Gαn,c(g;x)− g(x)| =
∣∣∣∣Gαn,c(∫ t

x

g′(u) du;x

)∣∣∣∣. (3.4)

Now to find the estimate we split the domain into two parts: F cn = [0, 1
n ] and

Fn = ( 1
n ,∞). First, if x ∈ ( 1

n ,∞) then Gαn,c((t− x)2;x) ∼ 2α
n φ

2(x).
We have ∣∣∣∣ ∫ t

x

g′(u) du

∣∣∣∣ ≤ ‖φg′‖∣∣∣∣ ∫ t

x

1

φ(u)
du

∣∣∣∣. (3.5)
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For any x, t ∈ (0,∞), we find that∣∣∣∣ ∫ t

x

1

φ(u)
du

∣∣∣∣ =

∣∣∣∣ ∫ t

x

1√
u(1 + cu)

du

∣∣∣∣
≤
∣∣∣∣ ∫ t

x

(
1√
u

+
1√

1 + cu

)
du

∣∣∣∣
≤ 2

(√
t−
√
x+

√
1 + ct−

√
1 + cx

c

)
= 2|t− x|

(
1√

t+
√
x

+
1√

1 + ct+
√

1 + cx

)
< 2|t− x|

(
1√
x

+
1√

1 + cx

)
≤ 2(c+ 1)√

c(c− 1)

|t− x|
φ(x)

.

(3.6)

Combining (3.4)-(3.6) and using the Cauchy–Schwarz inequality, we obtain

|Gαn,c(g;x)− g(x)| < 2(c+ 1)√
c(c− 1)

‖φg′‖φ−1(x)Gαn,c(|t− x|;x)

≤ 2(c+ 1)√
c(c− 1)

‖φg′‖φ−1(x)

(
Gαn,c((t− x)2;x)

)1/2

≤ 2(c+ 1)√
c(c− 1)

‖φg′‖
(

2α

n

)1/2

≤ C‖φg′‖ 1√
n
.

(3.7)

For x ∈ F cn = [0, 1/n], Gαn,c((t− x)2;x) ∼ 2α
n2 and∣∣∣∣ ∫ t

x

g′(u) du

∣∣∣∣ ≤ ‖g′‖ |t− x|.
Therefore, using the Cauchy–Schwarz inequality we have

|Gαn,c(g;x)− g(x)| ≤ ‖g′‖Gαn,c(|t− x|;x)

≤ ‖g′‖
(
Gαn,c((t− x)2;x)

)1/2

≤ ‖g′‖
√

2α

n
≤ C‖g′‖ 1

n
.

(3.8)

From (3.7) and (3.8), we obtain

|Gαn,c(g;x)− g(x)| < C

(
‖φg′‖ 1√

n
+ ‖g′‖ 1

n

)
. (3.9)
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Using Lemma 2.3 and (3.9), we can write

|Gαn,c(f ;x)− f(x)| ≤ |Gαn,c(f − g;x)|+ |f(x)− g(x)|+ |Gαn,c(g;x)− g(x)|

≤ C
(
‖f − g‖+ ‖φg′‖ 1√

n
+ ‖g′‖ 1

n

)
.

(3.10)

Taking the infimum on the right hand side of the above inequality over all g ∈Wφ,
we get

|Gαn,c(f ;x)− f(x)| = CKφ

(
f ;

1√
n

)
.

Using Kφ(f, t) ∼ ωφ(f, t) and (3.2), we get the desired relation (3.3). This com-
pletes the proof of the theorem. �

Lastly, we shall discuss the rate of approximation of functions with a derivative
of bounded variation on [0,∞). Let DBVγ [0,∞), γ ≥ 0, denote the class of all
absolutely continuous functions f defined on [0,∞), having a derivative f ′ equiva-
lent with a function of bounded variation on every finite subinterval of [0,∞) and
|f(t)| ≤Mtγ .

We observe that the functions f ∈ DBVγ [0,∞) possess a representation

f(x) =

∫ x

0

g(t) dt+ f(0),

where g ∈ BV [0,∞), i.e., g is a function of bounded variation on every finite
subinterval of [0,∞).

In order to discuss the approximation of functions with derivatives of bounded
variation, we express the operators Gαn,c in an integral form as follows:

Gαn,c(f ;x) =

∫ ∞
0

Kα
n,c(x, t)f

(
(n− c)t

n

)
dt, (3.11)

where the kernel Kα
n,c(x, t) is given by

Kα
n,c(x, t) =

∞∑
k=1

Q
(α)
n,k(x, c)pn+c,k−1(t, c) +Q

(α)
n,0(x, c)δ(t),

δ(u) being the Dirac delta function.

Lemma 3.2. For a fixed x ∈ (0,∞) and sufficiently large n, we have

(1) ξαn,c(x, y) =
∫ y

0
Kα
n,c(x, t) dt ≤ α

λx(1+cx)
n

1
(x−y)2 , 0 ≤ y < x,

(2) 1− ξαn,c(x, z) =
∫∞
z
Kα
n,c(x, t) dt ≤ α

λx(1+cx)
n

1
(z−x)2 , x < z <∞.
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BÉZIER VARIANT OF MODIFIED SRIVASTAVA–GUPTA OPERATORS 205

Proof. (1) Using Lemma 2.1 and Remark 2.4, we get

ξαn,c(x, y) =

y∫
0

Kα
n,c(x, t) dt ≤

∫ y

0

(
x− t
x− y

)2

Kα
n,c(x, t) dt

≤ Gαn,c((t− x)2;x)(x− y)−2

≤ αGn,c((t− x)2;x)(x− y)−2

≤ λαx(1 + cx)

n

1

(x− y)2
.

The proof of (2) is similar, hence the details are omitted. �

Theorem 3.3. Let f ∈ DBVγ [0,∞). Then, for every x ∈ (0,∞) and sufficiently
large n, we have

|Gαn,c(f ;x)− f(x)| ≤ 1

α+ 1
|f ′(x+) + αf ′(x−)|

√
2αx(1 + cx)

n

+
α

α+ 1
|f ′(x+)− f ′(x−)|

√
2αx(1 + cx)

n

+
λα(1 + cx)

n

[
√
n]∑

k=1

x+x/k∨
x−x/k

f ′x +
x√
n

x+x/
√
n∨

x−x/
√
n

f ′x

+
λα(1 + cx)

nx
|f(2x)− f(x)− xf ′(x+)|

+
αC(n, c, r, x)

nr
+
|f(x)|
x

λα(1 + cx)

n
,

where
∨b
a f(x) denotes the total variation of f(x) on [a, b] and f ′x is defined by

f ′x(t) =


f ′(t)− f ′(x−), 0 ≤ t < x

0, t = x

f ′(t)− f ′(x+), x < t <∞.
(3.12)

Proof. Since Gαn,c(1;x) = 1, using (3.11), for every x ∈ (0,∞) we get

Gαn,c(t;x)− f(x) =

∫ ∞
0

Kα
n,c(x, t)(f(t)− f(x)) dt

=

∫ ∞
0

Kα
n,c(x, t)

∫ t

x

f ′(u) du dt.

(3.13)

For any f ∈ DBVγ [0,∞), from (3.12) we may write

f ′(u) = f ′x(u) +
1

α+ 1
(f ′(x+) + αf ′(x−))

+
1

2
(f ′(x+)− f ′(x−))

(
sgn(u− x) +

α− 1

α+ 1

)
× δx(u)[f ′(u)− 1

2
(f ′(x+) + f ′(x−))],

(3.14)
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where

δx(u) =

{
1, u = x

0, u 6= x.

From equations (3.13) and (3.14), we get

Gαn,c(t;x)− f(x) =

∫ ∞
0

Kα
n,c(x, t)

∫ t

x

[
f ′x(u) +

1

α+ 1
(f ′(x+) + αf ′(x−))

+
1

2
(f ′(x+)− f ′(x−))

(
sgn(u− x) +

α− 1

α+ 1

)
+ δx(u)

[
f ′(u)− 1

2
(f ′(x+) + f ′(x−))

]
du

]
dt

= A1 +A2 +A3 +Aαn,c(f
′
x, x) +Bαn,c(f

′
x, x),

where

A1 =

∫ ∞
0

(∫ t

x

1

α+ 1
(f ′(x+) + αf ′(x−)) du

)
Kα
n,c(x, t) dt,

A2 =

∫ ∞
0

Kα
n,c(x, t)

(∫ t

x

1

2
(f ′(x+)− f ′(x−))

(
sgn(u− x) +

α− 1

α+ 1

)
du

)
dt,

A3 =

∫ ∞
0

(∫ t

x

(
f ′(u)− 1

2
(f ′(x+) + f ′(x−))

)
δx(u) du

)
Kα
n,c(x, t) dt,

Aαn,c(f
′
x, x) =

∫ x

0

(∫ t

x

f ′x(u) du

)
Kα
n,c(x, t) dt,

Bαn,c(f
′
x, x) =

∫ ∞
x

(∫ t

x

f ′x(u) du

)
Kα
n,c(x, t) dt.

Obviously,

A3 =

∫ ∞
0

(∫ t

x

(
f ′(u)− 1

2
(f ′(x+) + f ′(x−))

)
δx(u) du

)
Kα
n,c(x, t) dt

= 0.

(3.15)

We get

A1 =

∫ ∞
0

(∫ t

x

1

α+ 1
(f ′(x+) + αf ′(x−)) du

)
Kα
n,c(x, t) dt

=
1

α+ 1
(f ′(x+) + αf ′(x−))

∫ ∞
0

(t− x)Kα
n,c(x, t) dt

=
1

α+ 1
(f ′(x+) + αf ′(x−))Gαn,c((t− x);x)

(3.16)
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BÉZIER VARIANT OF MODIFIED SRIVASTAVA–GUPTA OPERATORS 207

and

A2 =

∫ ∞
0

Kα
n,c(x, t)

(∫ t

x

1

2
(f ′(x+)− f ′(x−))

(
sgn(u− x) +

α− 1

α+ 1

)
du

)
dt

=
1

2

(
f ′(x+)− f ′(x−)

)[
−
∫ x

0

(∫ x

t

(
sgn(u− x) +

α− 1

α+ 1

)
du

)
Kα
n,c dt

+

∫ ∞
x

( t∫
x

(
sgn(u− x) +

α− 1

α+ 1

)
du

)
Kα
n,c(x, t) dt

]

≤ α

α+ 1

(
f ′(x+)− f ′(x−)

)∫ ∞
0

|t− x|Kα
n,c(x, t) dt

=
α

α+ 1

(
f ′(x+)− f ′(x−)

)
Gαn,c

(
|t− x| ;x

)
.

(3.17)

Using Lemma 2.4 and equations (3.13–3.17) and applying the Cauchy–Schwarz
inequality we obtain

|Gαn,c(f ;x)− f(x)| ≤ 1

α+ 1
|f ′(x+) + αf ′(x−)|(αGn,c((t− x)2;x))1/2

+
α

α+ 1
|f ′(x+)− f ′(x−)|(αGn,c((t− x)2;x))1/2

+ |Aαn,c(f ′x, x)|+ |Bαn,c(f ′x, x)|

≤ 1

α+ 1
|f ′(x+) + αf ′(x−)|

√
λαx(1 + cx)

n

+
α

α+ 1
|f ′(x+)− f ′(x−)|

√
λαx(1 + cx)

n

+ |Aαn,c(f ′x, x)|+ |Bαn,c(f ′x, x)|.

(3.18)

Thus our problem is reduced to calculate the estimates of the terms Aαn,c(f
′
x, x)

and Bαn,c(f
′
x, x). Since

∫ b
a
dtξ

α
n,c(x, t) ≤ 1 for all [a, b] ⊆ [0,∞), using integration by

parts and applying Lemma 3.2 with y = x− x/
√
n, we have

|Aαn,c(f ′x, x)| =
∣∣∣∣ ∫ x

0

(∫ t

x

f ′x(u) du

)
dtξ

α
n,c(x, t)

∣∣∣∣ =

∣∣∣∣ ∫ x

0

ξαn,c(x, t)f
′
x(t) dt

∣∣∣∣
≤
∫ y

0

|f ′x(t)| |ξαn,c(x, t)| dt+

∫ x

y

|f ′x(t)| |ξαn,c(x, t)| dt

≤ λαx(1 + cx)

n

∫ y

0

x∨
t

f ′x)(x− t)−2 dt+

∫ x

y

x∨
t

f ′x dt

≤ λαx(1 + cx)

n

∫ y

0

x∨
t

f ′x(x− t)−2 dt+
x√
n

x∨
x−x/

√
n

f ′x

=
λαx(1 + cx)

n

∫ x− x√
n

0

x∨
t

f ′x(x− t)−2 dt+
x√
n

x∨
x−x/

√
n

f ′x.
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Substituting u = x/(x− t), we get

λαx(1 + cx)

n

∫ x−x/
√
n

0

(x− t)−2
x∨
t

f ′x dt =
λαx(1 + cx)

n
x−1

∫ √n
1

x∨
x−x/u

f ′x du

≤ λα(1 + cx)

n

[
√
n]∑

k=1

∫ k+1

k

x∨
x−x/k

f ′x du

≤ λ(1 + cx)

n

[
√
n]∑

k=1

x∨
x−x/k

f ′x.

Thus,

|Aαn,c(f ′x, x)| ≤ λ(1 + cx)

n

[
√
n]∑

k=1

x∨
x−x/k

f ′x +
x√
n

x∨
x−x/

√
n

f ′x. (3.19)

Again, using integration by parts in Bρn(f ′x, x) and applying Lemma 3.2 and the
Cauchy–Schwarz inequality, we have

|Bαn,c(f ′x, x)| ≤
∣∣∣∣ ∫ ∞

2x

(∫ t

x

f ′x(u) du

)
dtK

α
n,c(x, t)

∣∣∣∣
+

∣∣∣∣ ∫ 2x

x

(∫ t

x

f ′x(u) du

)
dt(1− ξαn,c(x, t))

∣∣∣∣
≤
∣∣∣∣ ∫ ∞

2x

(f(t)− f(x))Kα
n,c(x, t)

∣∣∣∣+ |f ′(x+)|
∣∣∣∣ ∫ ∞

2x

(t− x)Kα
n,c(x; t) dt

∣∣∣∣
+

∣∣∣∣ ∫ 2x

x

f ′x(u) du

∣∣∣∣ |1− ξαn,c(x, 2x)|+
∣∣∣∣ ∫ 2x

x

f ′x(t)(1− ξαn,c(x, t)) dt
∣∣∣∣

≤
∣∣∣∣ ∫ ∞

2x

f(t)Kα
n,c(x, t)

∣∣∣∣+ |f(x)|
∣∣∣∣ ∫ ∞

2x

Kα
n,c(x, t)

∣∣∣∣
+ |f ′(x+)|

(∫ ∞
2x

(t− x)2Kα
n,c(x; t) dt

)1/2

+
λα(1 + cx)

nx

∣∣∣∣ ∫ 2x

x

((f ′(u)− f ′(x+)) du

∣∣∣∣+

∣∣∣∣ ∫ x+x/
√
n

x

f ′x(t) dt

∣∣∣∣
+
λαx(1 + cx)

n

∣∣∣∣ ∫ 2x

x+x/
√
n

(t− x)−2f ′x(t) dt

∣∣∣∣.
We see that there exists an integer r (2r ≥ γ), such that f(t) = O(t2r), as t→∞.
Now proceeding in a manner similar to the estimate of Aαn,c(f

′
x;x), on substituting
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t = x+ x
u we get

|Bαn,c(f ′, x)| ≤M
∫ ∞

2x

t2rKα
n,c(x, t) dt+ |f(x)|

∫ ∞
2x

Kα
n,c(x, t) dt

+ |f ′(x+)|
√
λαx(1 + cx)

n
+
λα(1 + cx)

nx
|f(2x)− f(x)− xf ′(x+)|

+
x√
n

x+x/
√
n∨

x

(f ′x) +
λαx(1 + cx)

n

∣∣∣∣ ∫ 2x

x+x/
√
n

(t− x)−2f ′x(t) dt

∣∣∣∣
≤M

∫ ∞
2x

t2rKα
n,c(x, t) dt+ |f(x)|

∫ ∞
2x

Kα
n,c(x, t) dt

+ |f ′(x+)|
√
λαx(1 + cx)

n
+
λα(1 + cx)

nx
|f(2x)− f(x)− xf ′(x+)|

+
x√
n

x+x/
√
n∨

x

f ′x +
λα(1 + cx)

n

[
√
n]∑

k=1

x+x/
√
n∨

x

f ′x.
(3.20)

For t ≥ 2x, we get t ≤ 2(t − x) and x ≤ t − x. Now using equation (2.1) and
Lemma 3.2, we obtain∫ ∞

2x

t2rKα
n,c(x, t) dt+ |f(x)|

∫ ∞
2x

Kα
n,c(x, t) dt

≤ 22r

∫ ∞
2x

(t− x)2rKα
n,c(x, t) dt+

|f(x)|
x2

∫ ∞
2x

(t− x)2Kα
n,c(x, t) dt

≤ αC(n, c, r, x)

nr
+
|f(x)|
x2

λαx(1 + cx)

n
.

(3.21)

Collecting the estimates (3.18)–(3.21), we get the required result. This completes
the proof. �

Next, we illustrate the comparison of the rate of convergence of the operators
(1.2) and (1.3) to a certain function by some graphics using Maple algorithms.

Let us consider the function

f(x) =

{
0, x = 0

x1/3 sin(π/x), x 6= 0.
(3.22)

Then, f is of bounded variation on [0, 1].

Example 1. For c = 150, α = 10, n = 160 and n = 200, the convergence of
the Bézier–Gupta–Srivastava (named as BzGS in figures) operators given by (1.3)
(green and red) to f(x) (blue), for x ∈ [0, 1], x ∈ [0, 2/π], x ∈ [0, 5] and x ∈ [0, 10]
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is given in Figures 1, 2, 3 and 4.

Figure 1 Figure 2

Figure 3 Figure 4

Example 2. For c = 150, α = 10 and n = 160, the convergence of the Gupta–
Srivastava (named as GS in Figures) operators given by (1.1) and the Bézier–
Gupta–Srivastava operators given by (1.3) to the function f(x) given by (3.22), for

Rev. Un. Mat. Argentina, Vol. 58, No. 2 (2017)
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x ∈ [0, 2/π] and x ∈ [0, 10] is shown in Figures 5 and 6 respectively.

Figure 5 Figure 6

Example 3. In case c = 0, α = 10 for n = 160, n = 200 and n = 50, n = 100,
the convergence of Bézier–Gupta–Srivastava operators to the function f(x) given
by (3.22) for x ∈ [0, 1] is shown in Figures 7 and 8, respectively.

Figure 7 Figure 8

Example 4. In Figure 9, for c = 1, n = 160, 200 and α = 10, the convergence
of the the Bézier–Gupta–Srivastava operators given by (1.3) to the function f(x)

Rev. Un. Mat. Argentina, Vol. 58, No. 2 (2017)



212 T. NEER, N. ISPIR, AND P. N. AGRAWAL

given by (3.22) is illustrated.

Figure 9

Now let us compare the convergence of the operators Gn,c given by (1.2) and Gαn,c
given by (1.3)

In case c = 0, for n = 50 and α = 10, the comparison of the convergence of the
operators (1.2) (named as Ydv in Figures) and the operators (1.3) to the function
(3.22) is shown in Figure 10.

Figure 10

In Figures 11 and 12, in cases c = 1 and c = 150, for α = 10 and n = 160, the
comparison of the convergence of the operators (1.2) and (1.3) to the function f(x)
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given by (3.22) is illustrated.

Figure 11 Figure 12

From the above comparisons, it turns out that the operator given by (1.3) yields
a better rate of convergence than the operator given by (1.2) in certain cases.
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in Lp spaces, Acta Math. Sci. Ser. A Chin. Ed. 30 (2010), 1424–1434. MR 2789202.
[9] N. Ispir, Rate of convergence of generalized rational type Baskakov operators, Math. Comput.

Modelling 46 (2007), 625–631. MR 2333526.
[10] N. Ispir, P. N. Agrawal and A. Kajla, Rate of convergence of Lupas Kantorovich operators

based on Polya distribution, Appl. Math. Comput. 261 (2015), 323–329. MR 3345281.
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variation functions, II, J. Approx. Theory 104 (2000), 330–344. MR 1761905.

[18] X. Zeng and A. Piriou, On the rate of convergence of two Bernstein–Bézier type operators
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