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METALLIC SHAPED HYPERSURFACES IN LORENTZIAN
SPACE FORMS

CIHAN OZGUR AND NIHAL YILMAZ OZGUR

ABSTRACT. We show that metallic shaped hypersurfaces in Lorentzian space
forms are isoparametric and obtain their full classification.

1. INTRODUCTION
Let p and ¢ be two positive integers. Consider the quadratic equation
22 —pr—q=0.
The positive solution of this equation is

_p+ VPP t4q
B 2

and called a member of the metallic means family (briefly MMF) [5]. These num-
bers are called (p, q)-metallic numbers [5]. For special values of p and ¢ de Spinadel
defined in [6] the following metallic means:

Op,q

i) For p =g =1 we obtain og = 1+2‘/5, which is the golden mean,
ii) For p =2 and ¢ = 1 we obtain opg = 1 + V2, which is the silver mean,

)
iii)
iv)

)

For p = 3 and ¢ = 1 we obtain op, = %, which is the bronze mean,

For p =1 and ¢ = 2 we obtain o¢, = 2, which is the copper mean,
1+13
2

v

v) For p=1 and ¢ = 3 we obtain on; = , which is the nickel mean.

Hence the metallic means family is a generalization of the golden mean. It is well-
known that the golden mean is used widely in mathematics, natural sciences, music,
art, etc. The MMF have been used in describing fractal geometry, quasiperiodic
dynamics (for more details see [9] and the references therein). Furthermore, El
Naschie [7] obtained the relationships between the Hausdorff dimension of higher
order Cantor sets and the golden mean or silver mean.

In [9], Hretcanu and Crasmareanu defined the metallic structure on a manifold
M as a (1,1)-tensor field J on M satisfying the equation

J? =pJ +ql,
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216 C. OZGUR AND N. Y. OZGUR

where I is the Kronecker tensor field of M and p, q are positive integers. If p = q =
1, one obtains a golden structure on a manifold M, which was defined and studied
in [4] and [g].

In [I1], the present authors defined the metallic shaped hypersurfaces and they
obtained the full classification of the metallic shaped hypersurfaces in real space
forms. A hypersurface M is called a metallic shaped hypersurface if the shape
operator A of M is a metallic structure, i.e., A2 = pA + ¢I, where I is the identity
on the tangent bundle of M and p, g are positive integers. If p = ¢ = 1, one obtains
a golden shaped hypersurface, defined by Crasmareanu, Hretcanu and Munteanu
in [3]. The full classification of golden shaped hypersurfaces in real space forms
was given in [3].

In [I3], Yang and Fu studied the golden shaped hypersurfaces in Lorentzian space
forms and gave the full classification of this type of hypersurfaces. In the present
study, as a generalization of [13], we consider the metallic shaped hypersurfaces in
Lorentzian space forms and obtain the classification of this type of hypersurfaces.
Using Mathematica [12], we draw some pictures (see Figures [I] and [2).

2. MAIN RESULTS

Let M be a hypersurface of the Lorentzian space form M7 (c) and for a certain
normal vector field NV, let A = Ay be the shape operator. Let Ai, Ao, ..., A, be the
principal curvatures of M. If M has constant principal curvatures and its shape
operator is diagonalized then it is called an isoparametric hypersurface [2].

Definition 2.1 ([11]). M is called a metallic shaped hypersurface if the shape
operator A is a metallic structure. Hence A satisfies

A? = pA+ql,

where [ is the identity on the tangent bundle of M, p and ¢ are positive integers.
If p = ¢ = 1, then we obtain a golden shaped hypersurface (see [3] and [13]). If
p =2 and ¢ = 1, then the hypersurface is called silver shaped; if p =3 and ¢ = 1,
then it is called bronze shaped; if p = 1 and g = 2, then it is called copper shaped;
if p=1 and ¢ = 3, then it is called nickel shaped.

It is known that if M is a Lorentzian hypersurface in M{"**(c), then the normal
vector is spacelike. In [I0], M. A. Magid showed that the shape operator is one of
the following forms:

ag 0 O 0
0 ax O 0

A= 0 0 as 0 , (1)
0O 0 0O an
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an 0 0 N 0
1 an 0 0
A= 0 0 a1 0 , (2)
0 0 0 ... ano
[ap 0 0 0 0 ]
0 a 1 O 0
-1 0 a O 0
A=10 0 0 a o | (3)
0 0 0 0 an—3 |
i ap b() 0 ce 0
—bo ao 0 0
A= 0 0 ay ... 0 . (4)
0 0 0 A2

First we give the following proposition:

Proposition 2.1. Let M be a metallic shaped hypersurface in a Lorentzian space
form M{‘H(c). Then the shape operator can be diagonalized and the principal

+y/p2+4 —V/p?+4
curvatures are op g = 172# PyprTa

and p — 0p g = —5——, which means that the
hypersurface is isoparametric.

Proof. Assume that M is a spacelike hypersurface in the Lorentzian space form
M7*1(c). Hence the normal vector is timelike and it is known that the shape
operator can be diagonalized by choosing the orthogonal frame field on M. Since
M is a metallic shaped hypersurface, the relation A2 = pA 4 ¢l gives us that
the principal curvatures of the spacelike metallic shaped hypersurface are o, ; and
p — 0p 4. Hence the hypersurface is isoparametric.

Now we consider the above four forms of the shape operators given by M. A.
Magid in [10].

If the shape operator is of the form and A% = pA + ¢I, then the principal
curvatures of the hypersurface are o, ; and p — 0, 4.

If the shape operator is of the form , then a2 = pag+q, 2a9 = p, a? = pa; +q,

.., a2 5 =1pa,_s+q. Sowe get q = 7% < 0, which is impossible because of the

definition of ¢.

If the shape operator is of the form , then a2 = pag + ¢, —1 = 0, which is a
contradiction.

If the shape operator is of the form ([]), then a2 — b2 = pao + ¢, 2apby = pbo,
a? =pa;+q, ..., a2_5 = pan_» + q. So it follows that by = 0 and a; = Op,q OF
D — 0p,q- This proves the proposition.
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In [1], Abe, Koike, and Yamaguchi showed that the isoparametric hypersurfaces
in RP™ have the following cases:

(R1) R* ={z = (z1,...,2nq1) €RP 12y =0}, A=0)],
n+1
(R2) H*(¢) = {x e R} . —a22 + 221:12 =1 <0}, A=+/=cl,

n+1
R3) RPxH' " ={z e RY™ : =22+ 3 a?=121c<0}, A==%(0, & vV—cln,),
1=r+2

(R4) R} = {z e R} . 1,1y = 0}, A =0],
n+1

R5) SH(e)={z eRY™ =22+ S a? =1 c>0}, A=+l
i=2

n+1
R6) R" xS} " ={zeR{" i =2+ Y 2?2=1c¢>0}, A=2(0, ®el,_).
1=r+2

Here (R1)—(R3) are spacelike hypersurfaces and (R4)—(R6) are Lorentzian hy-
persurfaces in R},
For the metallic shaped hypersurfaces in R?**, we give the following theorem:

Theorem 2.1. The only metallic shaped hypersurfaces of Minkowski space ]R;LH
are:
n+1
1) H'(c) = {z e R : —a? + Y 22 =1}, A= /=cI, where c = 02 .
i=2

n+1

2) H*(c) ={x € R?'H D —x2 + Z:zscf = %}, A= —/—cl, where c = —(p— 0, 4)%,
n+1

3) Sp(c) = {x e R} . —22 + ;xf =1}, A= /eI, where c =02,
il

4) Sp(c) ={z e RTT': —a? + 2290% = %}, A= —\/cl, where c = (p— 0, 4)°.

Proof. We know from Proposition [2.1] that a metallic shaped isoparametric hy-
persurface of a Lorentzian space form has non-zero constant principal curvatures

Tp,g = %M and p — 0y 4 = %}MI
(R3), (R4) and (R6) are impossible.

First we consider the case (R2). If the eigenvalue of the shape operator A is o, 4
then \/—c = 0,4, ¢ < 0. So the spacelike metallic shaped hypersurface is

. Because of this reason the cases (R1),

n+1

1
H"(c) = {x eRIT: g2 4 fo = c} . A=+/—cI,
i=2

where

CcC =

s _ PPApVPP+dg+2g
. .

o2 =

p.q
If the eigenvalue of the shape operator A is p — op 4 then —/—c=p —0p4, ¢ < 0.
Hence the spacelike metallic shaped hypersurface is

n+1
1
H(c) =qz € R —af + ) 2l =14, A=—V—cI,
(c) {x 4 x] i:2x1 - c

Rev. Un. Mat. Argentina, Vol. 58, No. 2 (2017)



METALLIC SHAPED HYPERSURFACES IN LORENTZIAN SPACE FORMS 219

20

1.5

1.0

0.5

0.

FIGURE 1. The golden shaped hypersurface H? (—3+T‘/5> C R3.

where

_ PP VPP t4a—-2g

c= *(p*%yq)z = B

Now we consider the case (R5). If the eigenvalue of the shape operator A is oy, 4
then /c = g, 4, ¢ > 0. So the Lorentzian metallic shaped hypersurface is

n+1
1
S7(c) = {xewl af Yyt = } A=
=2

where

— Upa

e o2 PP Hp/P? 4+ 2
. .

If the eigenvalue of the shape operator A is o, 4 then —/c =p—o0, 4, ¢ > 0. Hence
the Lorentzian metallic shaped hypersurface is

n+1
1
ST (c) = {x ERPM: —af+ ) af = } , A= /I,
=2 ¢

where

c=(p— Up7q)2 =

PP —pp? 4+ 2
5 .

This proves the theorem. O
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2

FIGURE 2. The golden shaped hypersurface S? ( ) C R3.

The isoparametric hypersurfaces of de Sitter space ST+ (1) were given by Abe,
Koike, and Yamaguchi in [I] as follows:

(S1) Rn:{xeg’f“(l) CRM2 2y =240+, to >0}, A= =+I,
o)={zeSTTTM) Rz =/1-1,0<ec<1}, A=+V1—cl,
1 1 c

(S2
(S3) H™(c) = {z € ST (1) CR}™? 120 = /1 -2, c <0}, A= VT —cl,
n+2
(S4) S™(e1) xH" " (¢p) = {z € ST (1) C RYH2 Zx =+, i+ Y ai =),
1=r+3
(é—l—c—l?:1,61>0,Cg<0),A:i(\/l—C1]r@\/1_C2In—r)7

(S5) St(c) ={z e ST (1) CRY ™ tapyo = /1 -1, c>1}, A=+Ve—11,
n+2

(S6) S"(c1) x ST ™" (e2) = {x € STH(1) C R Zw = —rit Y af =)
1=r+3

(F+L=160>06,>0),4= i(\/—c1 I @ (—Ves — 1,,)).

Here (S1)—(S4) are spacelike hypersurfaces and (S5), (S6) are Lorentzian hypersur-
faces of ST(1).

Theorem 2.2. The only metallic shaped hypersurfaces of de Sitter space S7(1)
are:

1) R"={ze S CRY™ 12y =apio+1t0,00 >0}, A=—1, g=p+1.
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2) S"(c) = {xesgl“(l)cm’;”;xlz./%—1,o<c<1}, A = —yI—d,
where c=1— (p—0p4)%, ¢—1<p.
3) H*(c) = {xES’fH(l) CRM? 2,00 = w/lf%}, A = V1—cl, where ¢ =

2
p,q°

4) H™(¢) = {a: eSTT1) C R ayq0 = (/1 — le< O}, A= —+/1—clI, where
c=1—(p—o0p4)? and ¢ > 1+p.

5) St(e) = {xES?H(l) CRY2: g0 = ,/1—%}, A = \c—1I, where ¢ =
1+o02

p,q-°

6) St(c) = {x eSTH (1) CRY™ i zyh0 = (/1 — %}, A = —vc—11I, where c =
L+ (p—0p,9)*

r42 n+2
7) S"(c1) xSy (e2) = {x ST CRYP?: Yaf =1, —af+ Y 2l = 32}
i= i=r+3

2
(é + é =1), A= (\/cl —1I, @ (—\/c2 — Un,r)), where ¢ = 1+ 012,,1 and
Co = 1+ (p — O'p71)2.
n—r n+1 n+2 32 2 1 2 nd2 2 1
8) S"(c1) xS} (o) =z € STT(1) CRYT?: Y a2 = o Tr Y x =
i=2

= ¢ =143 2
(% + é =1), A= (—\/cl - 11, @ (\/02 — 1In,r)), where c; =1+ (p — 0'1,’1)2

— 2
and co =1+ Opi-

1—0o

Proof. By the use of Proposition since a metallic shaped isoparametric hy-
persurface of a Lorentzian space form has non-zero constant principal curvatures

Opgq = Hi;ﬁ%z and p — 0, , = V21 Véﬂ+4q, the case (S4) is not possible.

First we consider the case (S1). If the eigenvalue of the shape operator A is oy, 4
then 1 = o, ;. This gives us p+ ¢ = 1. Since p and g are positive integers, this is
not possible. Now assume that the eigenvalue of the shape operator A is p — oy 4.
Then —1 = p — 0, 4. This gives us p+ 1 = ¢q. Hence the spacelike metallic shaped

hypersurface is
R" = {J: €SI C R 2y = x40 + to, to >O}, A=—-1 g=p+ 1.
Now we consider the case (S2). If the eigenvalue of the shape operator A is o, 4

then /1 — ¢ =0, ,. Hence ¢ = 2-p"—p ”2p2+4q72q. But for (S2), since 0 <c¢<1,p
and ¢ are positive integers, and this is not possible. If the eigenvalue of the shape
operator A is p — op 4, then —/1 —c=p— 0, 4. So we have ¢ — 1 < p. Hence the
spacelike metallic shaped hypersurface is

1
S"(c):{xeS{’“(l)cR?“:xl:\/6—1,0<c<1}, A=—V1-cl,

where

o 2-p"+pVp?+49—2g

c=1—(p—o0pq) = B
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Now we consider the case (S3). If the eigenvalue of the shape operator A is o, 4

p— 2_ —
then V1 —c =0, Hencec=1-02 = 2op p”2p2+4q 29 Since ¢ < 0 for (S3)
the spacelike hypersurface is

1
H"(c) = {xGS?‘H(l) CRM2 g, 00 = \/I—C,c<0}7 A=+v1-cl,

2

where ¢ = 1 — Tp g

— 2 —
—V1—c=p—o0,,. isgivesusc=1—(p—o = Vpitie—2q Since
1 p—0pg Thisg 1—(p—0p4)° e zp
¢ < 0, we obtain ¢ > 1 4 p. Then the spacelike hypersurface is

1
H"(c) = {xES?‘H(l) CRM2 2,00 = 1/1—6,0<0}7 A=—v1—cl,

where c=1— (p—0,4)% and ¢ > 1 +p.
Now we consider the case (S5). If the eigenvalue of the shape operator A is o, 4

2 /2
then /¢ —1 = o, 4. This gives us ¢ = 1+012,7q = Hptp 2p 24 For all positive
integers p, ¢ we have ¢ > 1. Hence the Lorentzian hypersurface of ST (1) is

St(c) = {x eSITH) C R a0 =1/1— 1}, A=+vc—1I,
c

If the eigenvalue of the shape operator A is p — o 4 then

where
_ 2
c=1+ Tpq

If the eigenvalue of the shape operator A is p — op 4 then —v/c — 1 =p—o0, 4. This

2+p° —py/p?+49+2¢

givesus c =1+ (p—o0,4)% = 5 . For all positive integers p, q, we
have ¢ > 1. Hence the Lorentzian hypersurface of ST+ (1) is

St(c) = {x €SP (1) C R im0 = /1 — 1}7 A=—vVec—-1I,
c

where

c=1+(p—opq)*
Now we consider the case (S6). If \/c; — 1 =0) 4 and —\/co — 1 = p—0p 4, then
2 .
o =1+o2, =22 +p\/2p2T4q+2q and 3 = 1+ (p— 0,9)% = 22 P\/Qm+2q'

Since é + é =1 we get ¢ = 1. Hence the Lorentzian hypersurface of ST (1) is

r+2 1 n+2 1
S"(e1) x ST (e2) = {x eSTTi(1) c RPT2 . wa = —x3 4 Z r? = 02} ,
=2 i=r+3
1 1
(C— + o= 1), A= (Vo =1L & (—Ver — 1,—y)) ,
1 2

where ¢; =140, and ¢a = 14+ (p—o0,1)% If —\/er =1 =p—0,4and Ve — 1 =
Op.q then ¢; =14 (p —0,4)% and ¢; = 1+ 07 . Since % + é =1 weget g =1.

Hence the Lorentzian hypersurface of S7'(1) is
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r+2 n+2
S™(e1) x ST (eg) = {z e STTH(1) c R Zm 77 i+ Yl

i=r+3

1 1

(; + ; = 1)a A= (_Vcl - 117 & (\/ C2 — 1In—7')) )
1 2
where c; =1+ (p—o0p1)%> and co = 1+ 05,1
This proves the theorem. O

Abe, Koike, and Yamaguchi classified isoparametric hypersurfaces of H} ! (—1)
as follows ([I]):

(H1) H"(c) = {x EHPT(—1) CRY™? oy = /141, e < 4}, A=+ —dl,

r+2
(H2) H"(c1) x H* " (cp) = {er?H( 1) CRIT?: —o? 4 Zx =, s+
n+2 1 1
22395 —02}, (z+5=-1La<0,ec<0),

A=+t (V-1-cal,&(—/-1-c) Inr).

H3) R} = {z e HI T (=1) C R : 2y = 240 + to, to > 0}, A =+,

1 1 2

H4) S7(c) = {o e HP (1) C R 2 a0y = /L +1,¢> 00, A=+y/TFcl,
1 2 c

(H5) Hf(c) = {g; EHM (1) CRIP2 iy =4 /-1 -1 —1<c< 0},

A==x1+cl,

r+2
(H6) ST(cy) x H" " (co) = {x cHI T (1) c R —22 + Zx = —T3+
2 2 1 1 1
Z:;rd.%‘l = 62}’ (a + o = 1,¢1 >0, c0 < 0),

A=+ (VT+al, ®VIT+caln,).

Theorem 2.3. The only metallic shaped hypersurfaces of anti-de Sitter space
H (1) are:

1) H"(c) = {x eHPM (-1) C R 1oy =/ + 1}, A =+/—1-clI, where c =
-(1+402,).
2) H"(c) = {x cHIM (1) C Ry iy = NEE } —v/—1—cl, where c =
— 1+ —0p0)°]-
r+2
3) H'(c1) x H* " (¢3) = {x c Hyt (—1) c Ry ™ —a? + 23502 =+, -3+

n+2
‘ Soa= 612}, (i—ké =-1),A= (\/—1 —cl, @ (—\/—1 — 62) In_r), where

Cc1 = —(1 -|-0'271), Cy = — [1 + (p— Jp71)2].
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r42
4) H(c1) x H" " (cp) = {m € Hy T (1) c RY2: —2? + Zx L, a3+
n+2
3 a? }, (%Jr% =-1),A= (f\/fl —cl, ® (\/71 — 02) In_r), where
i=r+3

c1 = [1 +(p— Up,1)2]7 e =—(1 +012’!1)'
5) Rn:{iEEHgH_l(_l)CR;H_Z:IIZ‘TTH-Z"'tm t0>0} A=-Lg=p+1
6) S?(C) _ {117 c H;H_l(fl) C RQL‘FQ Txy = \/T} m[ where ¢ =

2 _
Tp.q 1.

7) St(e) = {J: cHI (1) cRyP2 2y = i+l e> 0}, A= —/1+cl, where

c=(p—0pq9)°—1andqg>1+p.

8) Hy(c) = {a: eH (1) CRY*? iy = \/T_%7 —l=se< 0}’
A:

—V1+cl, wherec=(p—0p4)*>—1 and g < 1+p.

Proof. Here (H1) and (H2) are spacelike hypersurfaces and (H3)—(H6) are Lorentzian
hypersurfaces of Hf ™! (—1).

Since the eigenvalues of the shape operator of the hypersurface in H} T (—1) are
Op,q > 0and p—o,, <0, (H6) is not possible.

We consider the case (H1). If the eigenvalue of the shape operator is v/—1 — ¢ =

2 /2
-1+o02,) = 2y - +19+24  Hence the spacelike

Op,q; then we have ¢ =
hypersurface of H T (—1) is

H"(c) = {xGH?H(l) CRyP2i2 = \/1+1}, A=v-1-¢l,
c

where ¢ = —(1 + 012741)‘ If the eigenvalue of the shape operator is —v/—1—c¢ =
2+p® —py/p?+4q+29
— 5 . Hence the

P — 0pq, then we have ¢ = — [1 + (- apﬁq)ﬂ =
spacelike hypersurface of H ™ (—1) is

1
H"(c) = {x € H} T (-1) CR}™? . 2y = - +1}, A=—-vV-1-cl,

where ¢ = — [1 4 (p — 0,,4)%].
Now we consider the case (H2). If the eigenvalue of the shape operator is
V-1—¢1 = 0pq and —/=T—¢3 = p — 0,4, then we have ¢; = —(1+02,) =
2 /- 2 ./
-ty 2p2+4q+2q’ €2 = — [1+(p_gp,q)2] = X 2p2+4q+2q and ¢ = 1.

Hence the spacelike hypersurface of H?“(—l) is

H' (¢1) x H'" (cs)

r+2 n+2 1
- {weH’f“( 1) C Ry 901+Zx —, —z3+ Y x2=}7
i=r+3
Eylo AT ahe (V@) L),

C1 C2
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where ¢; = —(1+o02,) and ¢; = — [1+ (p—0,,1)%]. If the eigenvalue of the

shape operator is —/—1—c¢; =p — 0,4 and /-1 —ca = 0, 4, then we have ¢; =
- [1 +(p— prq)z], co=—(1+ 0’%7q) and g = 1. Hence the spacelike hypersurface
r+2

of HY™™(—1) is H" (c1) x H""(c2) = {w € By ™! (=1) C RE™: a4 Yoaf = o,
=3
n—+2
it Y= A (A d =0 A= (VT ake (VT a) h),

where ¢; = — [1 +(p— Up71)2] and ¢g = —(1+ 012)71).

Now we consider the case (H3). If the eigenvalue of the shape operator is 1 =
Op,q, then we have p+q = 1. Since p and g are positive integers, this is not possible.
If the eigenvalue of the shape operator is —1 = p — 0, 4, then p+1 = ¢. Hence the
Lorentzian hypersurface of H? (1) is

R’fz{er?H(—l)CRgH:ml:an—i—to, t0>0}, A=-1 qg=p+1.

Now we consider the case (H4). If the eigenvalue of the shape operator is

2 /. 2 _
V1+c = opg, then ¢ = Ug,q ] = PERVEP ;4q+2q 2 Hence the Lorentzian
hypersurface of H T (—1) is

/1
St(e) = {:c cHM (1) c Ry iy = —+le> o}, A=+V1+cl,

where ¢ = szq — 1. If the eigenvalue of the shape operator is —v/1+c=p— 0,4

2_ /2 —
then c = (p—0,,4)° — 1= PPVP ;4q+2q 2. Since ¢ > 0, this gives us ¢ > 1+ p.
Hence the Lorentzian hypersurface of H} ™! (—1) is

1
St(e) = {xEH?H(—l) CRIP2:z; = 1/C—|—1,c>0}, A=—V1+c¢l,

where c= (p—o0p4)? —1and ¢ > 1 +p.
Now we consider the case (H5). If the eigenvalue of the shape operator is

2 /12 —
V14+c = o0p4, then ¢ = rtp p;4q+2q %, Since —1 < ¢ < 0, this is im-
possible. If the eigenvalue of the shape operator is —v/14+c = p — 0,4, then

2_ 2 —
c=((p—o0pq)?—1=1"2VP ;4q+2q %, Since —1 < ¢ < 0, we obtain qg<1+np.
Hence the Lorentzian hypersurface of H? ™! (—1) is

1
HY (¢) = {x EHT (1) CREP? tapyn = /-1 — = -1<c¢c< 0} ,

A=—v1+cl,

where c= (p—o0p4)? —1and ¢ < 1+p. O
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