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HIGHER ORDER ELLIPTIC EQUATIONS IN HALF SPACE

MARIA AMELIA MUSCHIETTI AND FEDERICO TOURNIER

ABSTRACT. We consider 2m'™ order elliptic equations with Holder coefficients
in half space. We solve the Dirichlet problem with m conditions on the bound-
ary of the upper half space. We first analyze the constant coefficient case, find-
ing the Green function and a representation formula, and then prove Schauder
estimates.

1. INTRODUCTION

In this paper we solve the Dirichlet problem for elliptic operators of order 2m
in the upper half space, with complex valued Holder coefficients. Our method is
based on finding explicit formulas for the Green function for the constant coefficient
equation and proving a priori estimates in the Holder spaces for solutions having
homogeneous boundary data. This work differs in this sense from the well known
paper of Agmon, Douglis and Nirenberg in which they solve first the homogeneous
problem with non homogeneous boundary data for an elliptic operator with only
principal part. A Radon type transformation due to F. John is key to their work
[1,[4]. Our approach is based on Fourier transforming on the first variables the non
homogeneous equation with homogeneous data. We find a representation formula
which is key to the a priori estimates. We first treat the constant coefficient case
and then, using the freezing coeflicient method, we treat the variable coefficient
equation. We remark that throughout the paper we will use the letter C' to denote
a constant (not always the same) that depends only on structure. In the case that
a constant depends on any aditional quantity we will mention this explicitly. See
[5] for a treatment of the problem in full space and [§] for the case of smooth
coefficients.

2. PRELIMINARIES

In this short section we introduce the Holder spaces that will be relevant later
on.
Set Q@ = R/, Define

lulo = sup{|u(z)| : x € O},
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260 M. A. MUSCHIETTI AND F. TOURNIER

[uls = sup{% cx,y € Q},

|D¥ulo = max{|D%ulo : |a| = k},
[DFu]s = max{[D%u)s : |a| = k},

s = Y _ | D*ulo + [D™uls.
k=0

The space C™9(Q) = {u : |u|;mys < oo} is a Banach space.
We will need to use the following interpolation result which we state without
proof (see [3)]).

Lemma 2.1. For every € > 0 and 0 < k < m there exists Cc, such that [Dku](;
Ceklulo + €|tfms-

For every e > 0 and 0 < k < m — 1 there exists C.j such that |Dku|0
Ce k|ulo + €| D™ulo.

For every € > 0 and 0 < k < m — 1 there exists Ccy such that [DFu]s
Ce k|ulo + €| D™ulo.

In all three cases, the inequalities hold for all u € C™9(Q).

IN

IN

IN

3. CONSTANT COEFFICIENTS

We consider operators of the form Lu(z,t) =3, 11<om Ao, D Dlu(z,t), where
aq, are complex numbers, x € R™ and ¢ > 0.

Let L*u(z,t) = ZMHSQm(—1)|a‘+laa,ngD,lfu(x,t). We will assume that the
characteristic polynomial p(i§,it) = >, i1<om 0,1 (1€)(it)! satisfies the strong
ellipticity condition

[p(€, )] = M1+ [¢* + )™ (1)
for all (&,t) € R"*L. Notice that p(if, z) as a polynomial in the z variable has no
pure imaginary roots. It follows that we can write

p(’if, Z) = p+(i£7 z)p_ (Zga Z)7

where p~(i€,2) = [[[L,(z = A; (€)), pT(i&,2) = [[[Li(= = A7 (), {N; : 7 =
1,...,m} are the roots of p(i&, z) with negative real part and {)\;r cj=1,...,m}
are the roots of p(i€, z) with positive real part. This is true for all £ € R™.

We will be able to impose m initial conditions on a solution w at ¢t = 0.

Lemma 3.1. If p(i&,z) = 0 then |Re(2)| > 3(1 4 [¢]) and |z| < C(1 + |¢]), for
some C depending on max{|aqs,| : o,1}.

Proof. The proof is a straightforward application of . O
We believe that the next property is also a consequence of the ellipticity condi-

tion and some general theorem on the roots of a complex polynomial, but at
this point we do not have a proof so we need to assume it.
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HIGHER ORDER ELLIPTIC EQUATIONS IN HALF SPACE 261

This is an essential assumption about the roots A\(&) of p(i€, z): We assume that
there exists a constant C' depending only on n, o, A and max{|as | : o, 1} such that
if A(€) is a root of p(i&, z), then for any multiindex o we have

[DEMI < C(L+[gh (2)

for all £ € R™.

We will now construct the Green function. Let us denote by v~ (£) any simple
closed curve such that Re(y~(€)) < 0 and v~ (§) encloses the m roots of p~ (i€, z).
Similarly, Re(y*(€)) > 0 and y* (&) encloses the m roots of p* (i€, 2). In the sequel,
we will use different curves v~ (£) and T (&).

Define / /

—e5% )
s) = // —_dze€d¢  for s <0,
++(¢) P(i&, 2)

and define, for any positive integer [ such that 2] + m > n + 2, the function

1
Z(y f+3§71+1)
v = e o) ) (i) o e
Lemma 3.2. h = h*.

dze’y5d§ for s > 0

and

Proof. Formally, it follows by enlarging the contour of integration: Say, s > 0, then
f e57 ds — eroo ets€nt1
v~ (§) p(i€,z) T J—oo p(i&,ikn+1)

too PUCRS ISR p -
n = yS).
|| ey st = 1)

We proceed with a rigorous proof. Let 8 € C§°(B2(0)) with 8 = 1 on By(0),
and ¢ € C§°([—2,2]) with ¢ = 1in [-1,1]. Fix (y,s) with y € R" and s > 0 and let
€ > 0. We show that |h(y, s)—h*(y, s)| < e. Write h(y,s)—h*(y,s) = A+ B+C+D,
where

wetnn [a& [ (Z;j)dzewgdg,
o= [0 [ R [ e e 0

155n+1
C = ————dy 1 €V d
/6 /oo p(lé-?ZgnJrl) £+16 é.

+oo i(y-&t+s€nt1)
gn—&-l €
d€ d€pqa,
e Sy e

= o S £n+1 ei(y'f+s§,,L+1) -
D_/_Oo /nﬂ(R)(ﬁ( R )p(i§7i§n+1) dé dé, 1 — h*(y, s).

We will choose R and R large enough to make each term small.

d¢,+1 and an integration by parts shows that
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262 M. A. MUSCHIETTI AND F. TOURNIER

To estimate A we can take the contour v~ () so that Re(y~(£)) < —C(1 + [¢])
and |p(i&, z)| > C for all z € v~ (£). We have

_ £ e’ » Y€
/(1 ﬂ(R))/ (e) P(i€, 2 )d &«

1
< |/ fdzmgg/ e—CS<1+‘5‘>/ —— dzd¢
/|5|>R =) (i, 2) €I>R - (¢) Ip(i&; 2))|

<C length(y~(¢))e” @0 g¢ < © (1 +]&])e=Cs0HED ge.
[EI>R [EI>R

|| <

This last expression goes to 0 as R goes to co.
To estimate B, take v~ (¢) = TUCyr = {i€py1 : —M < &g < MY U {Me? -
0 € [5,35]}, where M = M(\§|) K(1+ [¢])" and r and K are chosen large. So,

‘/5 C  drevt df‘

C]yj 7’57 Z)

i8€nt1 "
(E) /EWQM P i) e R
Notice that we can write p(i€,z) = >_7" a;(£)2? with |a;(§)| < C|¢[™7. Hence
for z € Cp we have [p(i€, z)| > C|z|™ and hence
length(Chr)
gl<2r  M™

= |Bi| + |Ba|.

|B1| < C d¢

1
<c < o [ ¢
E|<2R Mm—1 Km-1 1+ |£| T(m 1)

which can be made arbitrarily small by choosing » and K large. And we have

d&n+1 1
mi<c| s<c| La
le<2r Jienai>m L IE™ + [Ensa|™ lel<2r M

which again can be made arbitrarily small by choosing r and K large.
The term C' can be estimated as

§ dgn-‘rl R"
c = de < C—
| |S/6(R)/|§n+1|21%1+|f|m+fn+1|m < < R’

which we make small by making R large depending on R.
To estimate D, first notice that

+oo é Enin ety Etsény)
/_oo / SRR iy S
+o0 )¢(§'}§1) i(yE+sEnin)
Iy\2+s2 / / < (i€, 15"“))6 B

+oo 1 )
i(y-§+s8nt1) ged +E
|y\2+s2 / /n ( zf,z§n+1)) € §d&ny1 + E,
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HIGHER ORDER ELLIPTIC EQUATIONS IN HALF SPACE 263

where we have the estimate |E| < W R, which holds for R > R > 1. There-

fore,
+oo 5 1
Pl= Iyl2 + 2 " R p(i€, i€n11)
W) g g,y + 7(7 |
(lyl? +*)' R
/ / ey . C 1
|y|2 + 8 ieniizr Jiezr L+ €+ [Enra )20 (Jyl> +s2)! R
(|y|2 + %) R
Choose R large enough to make [A[ and |D| smaller than € and then, for fixed
R, choose R > R to make |C| <. O

We state in a lemma some well known properties of the function h; see [5].

Lemma 3.3.
e he C’OO(R"“‘1 \ {0}).

DeDFh(y,s)| <
" IPTDRG S D

k, |al.
o [DyDER(y, s)] < |2i2)l for any 1, |a| >0, k>0 and |y[* + s* > 1.
Y2+

e Lh(y,s) =0 for (y,s) # (0,0).

Let us also define

&€n+1 Y i(y-E+5Ent1)
90( R )e *
h = dédén1q.
R(yjs) /]Rn+1 p(if,i§n+1) s i

Note, as in the estimation of term D in Lemma that hg(y,s) — h(y,s) as R —
oo for any (y,s) # (0,0) and uniformly away from (0,0). Here ¢ € C5°(B2(0,0))
and ¢ =1 on B1(0,0).

We next define a function k to account for the boundary values. For y € R™ and
t >0, 7 >0, define

e—TZ etw .
k yataT :// 7/ B dwdzezy'g df
D= [ | o & )y o p & 0w —2)

e~ T? etw
P = _— ———— dwdz.
€57 /7+(5) pt (i€, z) /y(f) p (i w)(w—2)

To analize the function £ we take into account that according to Lemma [3.1] we
have that the m roots of p~(i&, z) satisfy Re(A7(§)) < —A(1 + [¢]) and |A~(§)] <
A(1+ [€]), so we take v~ (€) a piecewise smooth contour parametrized by an angle
6 which is the arc of the circle centered at 0 of radius 2A(1 + |£]) joining the points
with real part equal to _7)‘ (1+|€]) in counterclockwise sense, followed by the vertical
segment joining these two points. Denote by w(6,£) the points on this contour.

ntl—2m+|alt+k for all [y|* +s* < 1 and for any

Let
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264 M. A. MUSCHIETTI AND F. TOURNIER

Similarly, since the m roots of pT (i, z) satisfy Re(AT(£)) > A(1 + |¢]) and
IAT(E)] < A1+ [¢]), we take yT(£) a piecewise smooth contour parametrized by
an angle ¢ which is the arc of the circle centered at 0 of radius 2A(1 + |£]) joining
the points with real part equal to %(1 + |€]) in counterclockwise sense, followed by
the vertical segment joining these two points. Denote by z(¢, &) the points on this
contour.

The following properties follow directly:

For any multiindex « and for all §, we have |Dgw(0,§)| < C(1 + €))Ll
|Dg2(9,€)] < CA+IEN' 1, |Dg Dyw(9,§)] < C(1+[¢])' 711, and [ Dg Dy2(9, €)| <
C(1+ g1l And for all &, we have 3(1+ [¢]) < [w(9,8) — A~ (€)] < 2A(1+[¢]),
3L+ 1)) < 12(6,6) = AT (O] < 2A(A + [¢]), and (1 +1¢]) < |w(8,) — 2(4,€)] <
AA(L+ [¢]).

Using the above properties together with (2)) we can prove the following estimate:

JENCESGEIR
anl
‘DﬁDT(I)(gﬁt?T)' S C(1+ ‘€|)2m,1+|a‘,l (3>

for any «, I, £ € R™, 7 > 0, and ¢t > 0.
To prove the estimate, we note that we can write ®(£,¢,7) as a sum of four
terms of the form

TS D) (e $up(E,6)
do db
/ / (6,26 9) p (& w(E.0) w(e, 0) — =(c,0) °7

for the appropriate limits of integration in  and ¢ which do not depend on &.
We write the integrand as 222, where g, = e THED) w(E0) gy = 2, (&, P)wa (&, )

and g3 = p* (i€, 2(&, ¢))p™ (i, w(&, 0))(w(&, 0) — 2(§,¢)). The following estimates
follow by direct computation:

M

(1 + e
|D{ga| < C(1+ [¢))> D1,

[D{gi| <C

Also note that we can write g3 = HQmH(d)J (&) — (&), where |¢;(§) — ¥;(§)| =
14 [¢] and [DZ((€) — 6;())] < C(1+ |¢))71el. Tt follows that [DYgs| < C(1 +
[€[)?m+1 =1 and hence | D] (g3) '] <
proves the claim.

Now, using the estimate , we can prove the following estimates for the function

W Putting the estimates together

k.

Lemma 3.4. The function k(y,t,7) is C* in all its variables. The following es-
timates hold:

C
(|y| +t+ T)n+172m+\o¢|+l ’

(1) |D§‘Dik(y7t,7)| < for all o and 1.
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HIGHER ORDER ELLIPTIC EQUATIONS IN HALF SPACE 265

(2) / / |D§‘ka(y,t,7‘)\|$k,yk|:R dy'dr — 0 as R — oo, for any o and
0 Rnr—1
any k and t > 0.
(3) / |D;D’ﬁk(y,t,R)| dy — 0 as R — oo, for any o and any k and t > 0.
RTL

(4) / / |k(y,t,7)| dydr < C for any t > 0. C is independent of t.
0 "
Proof. We have k(y,t,7) = [eV4®({,t,7)d¢ and DD k(y,t,7) = [ eV E(ig)> -
DL®(¢,t,7)d¢, and the first assertion follows immediately.
Let n € C§°(B2(0)), such that n = 1 in B;(0). To prove the first estimate, write
! _ i€ (7 !
Dy Dhk(y.t.7) = [ <) Dlale, 1) de
1 )
= o [ AN ()" DLb(e. 7)) de
1 iy o
= o [ AN ()" DLB(E. £ r)mlyle) de

1 / GV E(—Ag)F((i€)DLB(E, 1, 7)) (1 — n(|yl€)) dé

|y|2k
— A+ B.
We have
1 e
A= i [(=80 (€4 (ie)) DL (e, 1. )nlule) ds.
and hence
Al <C eDle e <c [ c T g
> « T 7t77— = m—1—lc|— .
€1< 12 g1<zy (14 [g))mmt-lel
Note that

e—(t+7lel 1 o
/ 2m—1 ldfﬁ/ T ;€ < — l
g1< 2 (L4 [g])2m—tlel= 1<z (1 |€[)2m—1lel- [y[n1-2meHlal+

[yl

and also

o= (tHT)E]
/ 2m—1—|a|—1 dg
le|< -2 (1 4+ |§[)2m—1=le

Tyl

C e_‘f‘ d
<
= (t + T)ntl-2mlal+ /|£|<z<t+l7) (t + 7 + |€])2m—1=lal-l §
- Y

- C e~ l€l e < C
- (t+T)n+172m+|a|+l R ‘£|2m717|a\7l &= (t+7—)n+172m+|a\+l'

Therefore,

1 1 C
‘y|n+172m+\a|+l’ (t+7—)n+172m+\o¢|+l} S (|y| +t+7—)n+172m+\o¢|+l'

|A] < min{
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266 M. A. MUSCHIETTI AND F. TOURNIER

To estimate the term B, we note that

B <-C / (t+7)l¢]
= PF )
TP Jiggs 1 (L [g])motladm iRk

and

C / (t+7)[¢] C / 1
_— < - -
|y‘2k l€]> L (1+ |£|)2m717|a\71+2k - |y|2k £‘>7 |£|2m 1—|a|—1+2k

Tyl
C
- |y|n+1—2m+\a|+l ’

But also, for |y| < t+ 7, we have

C / (t+7)l€]
P g, (L €T

< C t+7' Qk/ e Ifl dg
< (t+7_)n+1—2m+|a|+l |y IE|> (t+ 7+ [€])2m—1- la|—14-2k

TyT

c t+7 2,C/ C, C
—d£ <
S T ) e 6 S G

by choosing r = 2k 4+ n.
Therefore,

. 1 1 C
|B| S i { |y‘n+1—2m+|a\+l ? (t + 7—)n-ﬁ-1—2m-i-|a\—i-l } S (|y| +t+ T)n+l—2m+\oc|+l ’

which finishes the proof of the first estimate.
To prove the other estimates, we note that for any k we have

1 .
DyDL(w = .t.7) = / CHUE (LA ((i€)° DLB(E, 1, 7)) d,

and hence,

. 1 e~ () (1+1€])
|DyD.,_k(x—y,t,7')| < |$_y|2k / (1+|§|)2m—1—l—\a|+2k dg.

Therefore,
/ / |D;D£’k($7y7t77—)|||lk—yk|:R dey/
R»=1.J0

e— (T (1+IED
S/Rn (e =y |2+R2 2k/ / 1+|§‘ 2m—1—1—|al+2k d&dr
dy'

—0 as R— oo.

<
<o v | wrgee
To prove that [, |D5D’T€k‘(y, t, R)|dy — 0, use the first estimate

C

anl
|DyDrk(yat»R)‘ < Iyl +t+R)n+172m+|a\+l
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HIGHER ORDER ELLIPTIC EQUATIONS IN HALF SPACE 267

for |y| <1, and use
e~ (HHR)(1+€])

1
|y‘2k / (1+|£|)2m717l7\a|+2k dg
for |y| > 1. Similarly for the last estimate. O

1Dy Dk(y, t, R)| <

We next state a lemma from complex analysis which follows by shifting the
contour of integration.

Lemma 3.5. Let v(§) be a simple closed contour enclosing all roots of p(i€, z),
and v (&), v~ (€) as before. Then

1 2 _JO for0<k<2m-—2
2mi Sy ey P, 2) 1 for k=2m —1;

1 2J w? _ . .
$L+(§)p (if,z)(w—z)dz:p+(i§, ] forallwe~r=(§) and 0 < j<m-—1;
L/ w dw = 7 forall z€~*(€) and0 < j <m — 1.

We define the Green function for the upper half space RT‘l to be
glx —y,t,7) =h(x —y,t — 1) — k(x — y,t,7).
We state in a theorem the properties of g.
Theorem 3.6. L, .(g(x—y,t,7)) =0 for (x,t) # (y,7) and Ly . (9(x—y,t,7)) =0

for (y,7) # (x,t). In addition, g satisfies the following m boundary conditions at
t=0, for any T > 0:

m—1
g(xfy7077—):03 %(I*y,o,’/—):o,...,%(I*Z/,O,T):O,
and the following m boundary conditions at T =0, for any t > 0:
ag m—lg
g(x_y7ta0)_07 E(‘r—yatao)_077 aTmfl(x_y’t’O)_O'

Proof. The proof is a straightforward computation using Lemma To prove
L, (g(x—y,t,7)) =0, we prove L, y(h(z—y,t—7)) = 0and L, ((k(z—y,t,7)) = 0.
We have, say for t > T,

D2Dlh(x —y,t — / / =2 gz @Y€ ge,
(g /Lfa

which implies that
Lyi(h(z—y,t—71)) = // =17 dz i@V € ge = 0,
—(©

Also,
—Tz l(;e\a wt
Dngk Jf—y,t,T :// € / (Zg) dwdzez(m_y)gdg
H ) V() PH(E,2) o) p (i€ w)(w — 2)
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268 M. A. MUSCHIETTI AND F. TOURNIER

Hence,

67 )ewt i(z—y)-
L, (k(x—uy,t, 7 :// / e dud
+kl@ =9, 7)) v+<s)p+ @67 V() P (Zf’ (“’ 2 €
v

pT .
/ / (€, w)e™ s i) e d¢ =0,
o P& o e
since [ ) % dw = 0, because for each z € y*(£), the function f(w) =

W is analytic inside v~ ().

Next, we show that L} (g(z — y,t,7)) = 0. Since DIDL(h(z —y,t — 7)) =
(=) DD (h(x — y,t — 7)), it follows that L} _(h(z —y,t — 7)) = 0. Also,

anl
Dy D (k(z —y,t,7)

pylal+ )T i Eg
//7 (&) b~ 157 [ﬁ &) P&, 2)(w — 2) e &

Hence

etw p~ (i€, z)e”T* (o).
Ly T(k(x - y,t,T)) = // — / ! dzdw et @) 5d§ =0,
" v P& w) Jyre  (w—2)

since [ ) % dz = 0.

We now check the boundary conditions.

gz —y,0,7) = // dze”s V)€ qg
() P 257

dw )
——_dze'TVE e =0,
//w(&) pr(i€, 2) /(f) p(i&, w)(w — 2)

For ¢t < 7, we have

since fv*( ) = (i€, w)(w ) (z{,z)

ag Ze(th)z L
*(ﬂffy,tﬁ):*// - dz e @Y€ d¢
ot v (€) p(’ﬁ,z)

w e dw <
dze'@=v)E gg,
//7+(§ pT (i€, 2) /7 (& b~ p= (i€, w)(w — z)
and hence

g // ze(=7)% (
—y,0,7 dz e’ @€ g¢
a0 g R

w dw ;
. dz e'@=v)€ ge = 0,
//fr p+ 7’57 [y(g) D (7’57 ’LU)(U} - Z) f

: w dw
since [ — ) g @=n = ~lea
Continue up to the derivative of order m — 1.
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HIGHER ORDER ELLIPTIC EQUATIONS IN HALF SPACE 269

We now proceed to prove the m boundary conditions at 7 = 0.

—y,t,0) // dzel(x )€ q¢
&) 267

etw dZ .
- dw =Y Eq¢ = 0,
// © P&, >/7+(g g ) w =) e <
d

For 7 < t we have

since

) TS =) = pFGE)

dg // selt—7)z o).
—(x—y,t,7) = — . dze'\” y)gdﬁ
57'( ) ~= (&) P( 5 )

ze TFdz
dw e'®=¥)Eqe.
// (€ P lf, [ﬁ P (Zf» z)(w — 2)
Hence

(H)z .
@( —y,t,0) =€ dz eH(@—y)-€ d¢
0
T (g P

tw zdz :
+ // , / , dw '@ e = 0,
y=(&) P~ (157 w) (3] pT (i€, z)(w — 2)

: zdz _ w
SICE oyt (e) pTig2)(w=2) ~ pligw)"
Continue up to the derivative of order m — 1. O

We use the function g to prove a representation formula, which is the basis for
the a priori estimates.

Theorem 3.7. Let u € 02m+6(Ri+1) satisfy the m boundary conditions at t = 0:

m—1
Zt(a: 0)=0, ... u(gc,o)zo.

T ot
uet) = [ [ Luty. gl — gt dyar
0
for all x € R™, t > 0.

u(z,0) =
Then

Proof. Fix (z,t) € R and € > 0. Write the m conditions on u in (y, 7) variables,

ou om 1y
U(y,O)—O, E(yvo)_oa R W(%O)—O,
and let v(y,7) = g(x — y,t,7). Recall L*v(y,7) = 0 and v(y,0) = 0, gﬁ (y,0) =

0,..., g:Lm11 v(y,0) = 0. First we need to prove the next three claims.

Claim 1. For |a| +1=2m and [ > 1 we have

/ D2 Dhu(y, )o(y, 7) dydr = / uly, 7) DS DLo(y, 7) dydr
RPN\ B (2,t) RN\ B, (x,t)

- / u(y, 7Y DS D o(y, ) (g, 7) dS (. 7) + Oe).
OB (z,t)
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t—7
b

where 7, (y,7) =
Claim 2. For |a| = 2m we have

/ Deu(y, 7)oy, 7) dydr = / u(y, ) Doy, 7) dydr
RPN\ B (,t) RPN\ B (x,t)

- / u(y, VD2 0y, T (9 7) dS(y,7) + O(6),
OB (z,t)

where o = o' 4 €4, 1o (y, 7) = #% and i is any integer 1 <i < n.

Claim 3. For |a| + 1 < 2m we have
anl
[ DyDhuy oty dydr
RKJF \Be(,t)
= (=1)lel+ / u(y, T)D;‘Div(y, 7) dydT + O(e).
RY TN\ B (x,t)

The proof of the claims follows by succesive integration by parts.

Use the boundary conditions on u and v at 7 = 0 that complement each other
so that no boundary terms appear at 7 = 0, and the decay of v and its derivatives
at oo.

The terms O(e) come from the derivatives of v of orders less than 2m — 1 inte-
grated over 0B.(z,t).

We illustrate with two cases to see how it goes.

/ D2 u(y, 7)v(y, 7) dydr
RPN\ B (1)
= / D™ u(y, 7)Drv(y, 7) dydr
RYTN\ B (x,t)
# [ D)oty ) 0 ds
OB (z,t)

+ [ Jim (D2 (g, R oy, B) - D2 u(y,0) (3. 0 dy.
R

n R—00

The second term is O(¢) and the last term is 0.
After m steps, using the m conditions on v at 7 = 0, we get

/ D2™u(y, T)v(y, 7) dydr
RY TN\ B (x,t)

= (=™ / D u(y, 7)Dv(y, T) dydt + O(e).
RPN\ B (,t)
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Continue integrating by parts, now using the m conditions on u at 7 = 0, to get,
after m steps,

/ D2y, yuly. ) dydr = | u(y. ) D2 o(y, 7) dydr
RN\ B (2,t) RGN\ B (2,1)
[ )R ) g, dS + O(0)
OB (z,t)
Again as an illustration, we have

/ Dfmleyju(y, T(y, T) dydr
RTTIN\ B, (z,t)

=~y / DD, uly, 7)D™o(y, ) dydr + O(e),
RTTIN\ B, (z,t)

where we have used the m conditions on v at 7 = 0. Next, we continue integrating
by parts, now using DijlTu =0andu=0at7=0forl=0,...,m—2 to get

/ Dfmleyju(y, T)(y, T) dydr
R\ B, (z,t)
:/ ) u(y, 7)D2™ ' Dy v(y, ) dydr
R" T\ B, (z,t)

— / u(y, T)D,,Q_m_lv(y,T) Ny, dS + O(e).
OB (z,t)

From the three claims we get

/ Lu(y, T)v(y, 7)dydT
RPN\ B (2,t)
= / u(y, 7)L*v(y, 7) dydr
RPN\ B (w,t)

Y / uly,7)D§ D o(y. )y, dS
OB (z,t)

|| +1=m,l>1
-3 / ) D () dS + 010
la|= (z,t
Since L*v(y,7) = 0 for all (y,7) # (z,t) the theorem will follow once we show that

i { S anr | uwr)DGDE el )0, dS

e—0

|a|+l=m,1>1 OB (z,t)
+ E Gq,0 / u(% T) I );/v(y, 7-) Ne dS} — cu(x, t),
|a]=m OB (x,t)

for some ¢ depending on n.
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Since v(y,7) = h(z —y,t — 7) — k(x — y,t,7) and k is regular for all (y,7), we
have to prove the limit above with h replacing v.

We now proceed to prove this limit. Notice that there is no longer the need to
emphasize the last variable, so we just write h = h(y) and v = u(y), and y € R™.

Let |o| = 2m — 1 and write

[ e - ) asgy)
OB, () €

(z

= / (u(y) — u(z))Dh(x — y)LyJ) dS(y)
9B, (z) ¢

€

+ u(x) / Dh(x — y)w dS(y).
0B ()

The first term goes to 0 as € — 0, since |u(y) —u(z)| < Clx—y| and |[D*h(x—y)| <

#. So, it is enough to show that

: e (x5 —v5)
lim aa/ D % h(x — y)~—L—22dS(y) = c,.
e—0 Z 9B, (x) ( € ( )

Recall that hrp — h uniformly on compacts of IR”\{O} and Dah R — D‘”‘h uniformly
on compacts of R"™ \ {0} as R — oo, where hg(y f(p e g
Now,

a—e; Tj—Yj n— a—e;
[ - B asg) < [ Dy, dsty)
0B, (z) € 0B1(0)

Let 8 = a — e;, where |a| = 2m, so || = 2m — 1. We have

£\

n=1pBp :/ = :
€ R(Gy) gO(GR Gmp(%)

and

"olpf ; = £ ﬂ e,
[ o e D e asw = [ooi | Blmfy -

€

= i 4( 5) PU/RS ST iy
/@(ER)egm (?E)g /Bl( dydf B, O)/ ER 62m ) dfdy

Therefore, for fixed e,

0 / Doz — y)L_‘) ds(y)
9B, (z)

p27n ) .
= 1 et-€
[ eGE EI

|a|=2m
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where po,, is the principal part of p. We show that this last limit is independent
of . Note that ”2;"27,(,35) = pgm(%) and write

5 p2m ) Wf
/BI(O/ eR i ) dédy
E € d d
~ o) 7 <—f> TopE

* / /w(i)ewfdwy = A+B.
Bl(O) ER

The first term goes to 0 and the second has a limit independent of €. To see this,
let pom (%) — p(lg) Pl &), p has degree < 2m — 1. Write A = f\y\<i coody F
—€eR

€

fLR<|y\<1 ...dy = Ay + As. Note that
(1RE)
Al / / Z f 13/'5 dgdy —0 as R— oo,
lyl<1 p(iR¢)

(iRE) 4.
A / / PURE) iy geg
2 1<|y|<eR p(iRE) Sy

PUiRE) | 4.
- /<|y<eR ly[*! /( Ag)l(w(f)p(in))e vEdédy — 0 as R — oo,

where in the last limit we note that setting ¢(§) = g Eig we have, for any «,
lol
1D%q(€)] < yypefarer» and hence |D*(q(RE))| < C ey -

The same argument shows that the limit of B is

/|y|<1 / PO dedy + /1<y| ﬁ /(_A)l(w(f))eiyf dédy,

where [ is any integer such that 2] > n 4 1. This finishes the proof of the theorem.
O

In the next theorem we solve the Dirichlet problem for the upper half space Ri“
with m conditions at the boundary ¢ = 0. The theorem is also used in combination
with Theorem m 3.7| to prove a priori estimates in the space C>™+9.

Theorem 3.8. Let f € CO(R}™) and define u(z,t) = [~ [ f(y, 7)g(z—y,t, 7) dydr.
Then,
ue C* (R and  Lu(w,t) = f(x,1),
ou omtu
ot

—(2,0) =0, (z,0) =0.

u(z,0) =0, ) Hpm=T

Moreover,

|“|2m+6;R1+1 < C|f|5;Ri+1.

Proof. The boundary conditions u(z,0) = 0, 2%(z,0) = 0, ..., 2"~ Lu £(z,0) = 0

) Bt ) ggm—T
follow immediately from the analogous properties of g.
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To prove Lu = f,erteu = v—w, where v(x, t) fo ff y, T)h(x—y, t—7) dydr
and w(z,t) = [° [ fly.7 —y,t,7)dydr. Clearly, Lw(z, t) = 0. We show
that Lo(z, t) = f(x,t). le (xo,to) and € > 0 such that Bs(zg,t9) C R} and
ne Cgo(Bge(acO,to)) with n = 1 on Bac (o, to).

Write v(w,t) = [;° [0y, 7)f(y, ")z —y, t—7) dydr+ [~ [(1=n(y, 7)) f(y,7)-
h(z —y,t — 7') dydT =v1(y, ) + vg(y, 7). Clearly, Lvy = 0 on B.(zo,t)-

Note that f = nf € C°(R™*!) and it follows (see the argument below) that for
1< |al+1 < 2m,

D2 Dlv (1) = / (Fly.m) — Fla, ) D2 Dh(z — gt — 1) dydr.
Therefore,

Lvy(z,t) = agov1(z, t)

+ / Fm) = F@t) S auiDIDih(z — y.t 1) dydr

1<]ee|+1

= /]RnJrl(f(y’ T) — f(x,t))Lw)t(h(x —y,t— 7—)) dydr

+ ao)of(x,t)/ h(z —y,t —7)dydr = f(z,t).

Rn+1
We proceed to show that \u|2m+5;R1+1 < C|f‘6;RT1' First we prove a claim.
For |a| + 1 = 2m such that |a] > 1 we have

D2Djutant) = [ (F0.7)~ f@) DD g(o — yit,7) dydr.
Rn
Write o = 8 + e;. Since |5 +1 = 2m — 1, it follows that
D2Djult) = [ Fur)DEDg(e ~ y.t.7)) dydr.
Rn+1
Let we(z,t) = [gu1 f(y, T)ne(x — y,t — 7)DEDL(g(x — y,t,7)) dydr, where now
N(x —y,t —7) =0 for |z —y|>+ (t —7)% < € and (v —y,t —7) = 1 for
| — y|2 + (t —7)% > 4€%. Then
we — DP Dy uniformly in R as e — 0,

and

Owe(z,t) _ / 0
8xj - —_— f(y» 7') (9$j (775(£E y,t T)Dth(g(x y, t, 7—))) dydr

= [ 7 = e 0) 5 (e — it = 7)DEDlgle — .1, 7)) dyde
R /Rm a(z, (e =y, t = 7)D7Dy(g(x —y.t,7))) dydr

- (f(yaT)7f($7t))DgDi(g(x7yvtaT) dydT

Rn+1
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uniformly in RT‘l as € — 0, which proves the claim.

Now, let || +1 = 2m and |a| > 1 and write a = B+e¢;. Let (v,t), (z,f) € R}
Let (2,f) = L(v+7,t+1). Let r = 2((z—2)?+(t—¢)?)/? and BT = B, (3, 1)NR} .
We have
D2 Dlu(z,t) — DEDlu(z, )

al+1
— [ @)~ f@ )DL gl — yotor) dyds
B
- / (F(y;7) = F@ )DL g(@ = y,E.7) dydr
B+

w [ G~ f@ D) DL o~ yitr) - DEF gl -yt dydr
R\ B+

+(f@D) — ) / DIMg(z — g t,7) dydr

R\ B+
=A—-B+C+(f(z,t) — f(z,t))D
We estimate these integrals as follows:
a2 _\2)6/2
<ol [ At
|B| < C[flsr

dydr < C[f]sr

) =12 4 (F_ \2Y6/2
C < Clfls((j& — 2 + (- )*)'/?) /R"+1\B+ (ljﬂf y|:2y|_i_—(~_g(f 7.)72-))(3+2)/2 dydr

< Clf]sr°
To estimate D, we use that |a| > 1 to write

0

D= . DﬁJrl Ut dud
R\ B+ axj( et 9(x —y,t,7)) dydr
9 6+l
- D h(z — atf'r dydT
/112{"*'1\]3”r 8.%]( ( Yy ) dy
0
+/ 7(D§jf_lk(x - yataT))dydT = Dl —|—D2
R\ g+ OT; ’
+

For the first term we have:

Dy = / 9 (D — gt — 7)) dydr
R

g+ 0Yj

<C.

/ DF* (e — y,t — 7)) dS(y,7)
(0BH)\{r=0}

Similarly, |Ds| < C. This proves that [DgDﬁu]é_MH < C[f]é,Ri+l for |o| +1 =
2m and |a| > 1.
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To estimate D?™u, note that

D y(z,t) = f(z,t) — Z Ao D2 Diu(z, t)
|a|+1=2m;|a|>1

- Z Ao D2 Dhu(z,t),
la|+I<2m—1
which implies that [thmu]é;Riﬂ < C[f]s + |ulam—1+s. Because g € LY(RH), we
also have |U|O%RT1 < O|f|o;Rfﬁ1~ By interpolation, it follows that ‘“|2m+5;Rfﬁ1 <
C|f] SR This finishes the proof of the theorem. Note that we have used in an
essential way the estimates of lemmas [3.9] and O

In order to consider operators with variable coefficients and apply the freezing
coefficient method we need the following observation, which we state as a theorem.

Theorem 3.9. Let u € C?™H(RYH) with

ou oy
U(CL’,O) = O, E(x,()) = 07 ey W(l’,o) =0.

Let (zo,t9) € (RTY) be any point, R > 0, and n € C§°(Bagr(xo,to)), withn =1 in
Bgr(zo,tg). Then

|u|2m+5;Bg(m0,to) < C|L(u”7)|5§B;—R($OatO).

Proof. The proof follows from Theorems [3.7] and 3-8 Since un satisfies the same
hypothesis as u, we have

|u|2m+5;3}§($07t0) < |u”7|2m+5;Ri+l < C‘L(un)‘&RT'l = C|L(“77)|6;B§’R(zo,to)’

thus finishing the proof. O

4. VARIABLE COEFFICIENTS

In this section, we apply the constant coefficient estimates to prove Schauder
estimates for variable Holder coefficients. There will be a restriction on the size
of the Holder constant of the coefficient to get full estimates. We make a slight
change in notation: Take z € R" , write z = (2/,2,,) and consider u € C*™ 3 (R%),

—0. w0 _ o tu(a’,0) _
such that U($I7O) = O, oz, 0, ,W =0.

We consider an operator Lu(z) = =, <, @a(2)D%u(z), where we assume that
aq(x) are complex valued functions which are Holder continuous. Let Ky =
Z|a\§2m |aa|0;R1 and Ks = Za|§2m[aa]5;R1' Let p(z,i§) = Z|a|§m aa () (i§)”
and assume the ellipticity condition |p(z,i§)| > A(1 + |£[*™), for all z € R” and
£ e R™

Asbefore, let {A] (x,&),..., A, (x, &)} denote roots of the equation p(x, i&’, z) =
0 with negative real part and {\] (z,£’),..., A\ (x, &)} denote roots of the equation
p(z,4¢’, z) = 0 with positive real part.
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In order to apply the estimates for the constant coefficient case, we assume that

if A(zg,¢’) denotes any root of p(z,i£’, z) = 0, then
|Dg (Mo, &) < C(1+ g~

with a constant that depends only on n,a, A and Kj.

Finally, for zg € R, let Lo(z) = 32|, <o % (20) D u(2).
Theorem 4.1. There exists a constant v depending on Ky such that if Ks < =,
then |U|2m+6;R1 < C|Lu|5;R1, where C is a universal constant.
Proof. Let z9 and T be points in R} and R > 1 to be chosen. Fix |a| = 2m. Let
n = 11in Br(zo) and n € C5°(Bar(xo)).

If z ¢ Bgr(xo), then

|DYu(Z) — D*u(xo| _ 2

< = R™ .
Fomp S R

Ifz e BR(J?Q), then
|D¥u(Z) — D*u(xo|

|1Z — 20

< [un]2m+5;3;($0) < C|LO(U77)‘5;B;R(10)’

by Theorem applied to the constant coefficient operator Ly.
We have

Lo(un)(@) = n@)Lou(@) + S S aypleo)DPu(@)D7n(a).

lal<2m |B]+]v|=lals]v[>1

We have the estimates

CKO
Lo(umlost sy < o(lopt ooy + —pelul2mizy

and
CKO

[Lo(un)ls, 5t (2g) < L0(W]s;55, (w0) + 15 [Ul2mskry -

These estimates follow easily from the following four facts.

o [uv]s <fulo[v]s + [v]o[u]s;

[ ] ‘DFYT]|0 RC\{{I and [D’YT}L; < RMC;JF(;,

e interpolation to absorbe [D%u)s < Clu|am, for |3 < 2m — 1;
e R>1.

To continue, write Lou(xz) = Lu(z)+(Lo—L)u(x), so [Lou]é;B;R(
[(Lo — L)u}(;;B;rR(zo) and

(Lo = Dl pt, oy < D [8a() = aa(@0)) D™l . 1)

) < [Lu]zs;Ri +

Zo

lo|<2m
< Z [aa(.)—aa(xo))](;;B;rR(zo)|Dau|0;B2+R(mO)
|| <2m
+ Z |aa(~)—aa($0))|o;B;R(xo)[Dau]a;B;R(xO)
laf<2m

< C(Kslulammry + K536|U|2m+5;11§1)-
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Similarly,
|L0u‘0;B;R(wo) < |Lulory + (Lo — L)“|0;B;R(wo)
and
(Lo— Dl oy € O Jaa() = aa(@o)loss ooy D uloky < CK5R lulamgzy.

| <2m
Combining estimates, we obtain

Ky
R $) 2z, + CK5 R Julzmsomy -

Now, take sup over z, rg € R} and maximum over |a| = 2m, to obtain

[ Lo(un)ls, By, (zg) < [Lulsiry + C(Ks +

[ ]2m+6 R < C|LU|6 ;RT + C( + K5(1 + R ))|u|2m+6;R1 (4)

with a constant C' that depends only on n, /\, ¢ and K.
Also, for o € R and R > 1, we have

C
|u‘o;B;(x0) < |W7|0;R1 < C‘Lo(un”o;B;R(wo) < C|L0(u)|o;B;R($O) + R|U|ZM;R1
1

< C|Lufowry + C(KsR® + R)|U|2m+6;Ri~

Taking sup over zg € R, with 2 > 1 fixed, we get
1
|u|o;]R1 < C|Lulorr + C(KsR’ + §)|u|2m+5;R1- (5)

By and () and interpolation we have the estimate

|ul2m+smr < C|Lulsrr + C( + K5 (1+ R%))[ulam s (6)

with a constant C' that depends only on n, A\, é and K.
We now choose R > 1 large enough so that C % < i and then -~ small enough
so that Cy(1 + R%) < i. Then, if K5 <+, from @ we get

ul2m+sirn < ClLulsry . -
Notice that in the theorem above we can take v of the form
1
- - 7
1T 401 1 40) Q

for some constant C' that depends only on n, A, § and K.

In order to apply the continuity method to solve the Dirichlet problem we need
estimates with no restriction on the coefficients. We can overcome this difficulty
by scaling each term as follows.

For s > 0 let
Lgu(x) = Z o (z)s?m 1 Doy (2)
lal<2m
and )
ps(x,if) = Z g (2)s2m 1 (i6) = $2Mp(x, %),
ol <2m
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hence [ps(z,i€)| = A(s*™ + [€>™).
It follows that ps(z,i’, z) = 0 has m roots with negative real part for all z € R},
for all ¢ € R"~! and for all s > 0.

Theorem 4.2. There exists sg depending on K5 and Ky so that if s > sg, then
|u|2m+55R1 < C\Lsu|5;m. The constant C' depends on s.

Proof. Let v(z) = u(%) and aq(z) = aq(%). Note that

~ a —2m T n
Lo(z) = Z o (z)D%(x) = 572 Lsu(g) = fo(x).
|| <2m

It follows that Ky = Ky and Ks = s K. Therefore, the constant C in Theo-
rem [l is the same. R

In order to apply Theorem to v, we need, according to @, that K5 <

1

m m and so we take sg = (4CK;5(1+4C))3,
where we emphasize that C depends only on n, A, §, and K. .

An application of Theorem to v gives, for s > so, [V]omisry < C|Lv|sry
with C' universal. Therefore, |u|2m+5;R1 < C|Lsu|5;Ri, O

which amounts to £ <

A consequence of the a priori estimate of Theorem [1.2 following a standard
application of the continuity method is this theorem on solvability of the Dirichlet
problem:

Theorem 4.3. Let so be defined as in Theorem [[.9 and s > so. Then, given
f € CO(RY), there exists a (unique) solution u € C?™+O(R%) of Lyu = f in R

such that u(z’,0) = 0, M:Q ”.7w:0'

Ozn gzt
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