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THREE-DIMENSIONAL ALMOST CO-KÄHLER MANIFOLDS
WITH HARMONIC REEB VECTOR FIELDS

WENJIE WANG AND XIMIN LIU

Abstract. Let M3 be a three-dimensional almost co-Kähler manifold whose
Reeb vector field is harmonic. We obtain some local classification results of
M3 under some additional conditions related to the Ricci tensor.

1. Introduction

Let (M, g) be an m-dimensional Riemannian manifold and (T 1M, gS) its unit
tangent sphere bundle furnished with the standard Sasakian metric gS . A unit
vector field V is a map V from (M, g) into (T 1M, gS). V is said to be harmonic
if it is a critical point of the energy function defined on the set X1(M) of all unit
vector fields. The map V : (M, g) → (T 1M, gS) defines a harmonic map if and
only if V is harmonic and trace{Y → R(∇Y V, V )X} vanishes for any vector field
X on M , where R denotes the curvature tensor. V is said to be minimal if it is a
critical point of the volume functional defined on X1(M).

In this paper, we aim to investigate curvature properties of a three-dimensional
almost co-Kähler manifold with harmonic Reeb vector field. Almost co-Kähler
manifolds were first introduced by Blair [1] and studied by Goldberg and Yano
[7] and Olszak et al. [6, 10]. Such manifolds are actually the almost cosymplectic
manifolds studied in the above literature. We adopt this new terminology since
the co-Kähler manifolds are really odd dimensional analogues of Kähler manifolds
(see [3, 8]). Recently, Perrone in [11] obtained a complete classification of three-
dimensional homogeneous almost co-Kähler manifolds, and in particular gave also
a local characterization of such manifolds under a condition of local symmetry.
Applying this result, Y. Wang in [15, 16] and the first author of the present paper
in [14] obtained some local classifications of three-dimensional almost co-Kähler
manifolds. Note that Perrone in [12] characterized the minimality of the Reeb
vector field of three-dimensional almost co-Kähler manifolds.

In this paper, after giving some fundamental formulas of almost co-Kähler man-
ifolds in Section 2, we present some necessary lemmas in Section 3. In Section 4, we
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investigate three-dimensional non-co-Kähler almost co-Kähler manifolds M3 with
harmonic Reeb vector fields. Generalizing Perrone’s results shown in [11, 12], we
obtain some local classification theorems of M3 under some additional conditions
like cyclic-parallel Ricci tensor, η-Einstein condition, and strong η-parallel Ricci
tensor.

2. Almost co-Kähler manifolds

If there exist a (1, 1)-type tensor field φ, a global vector field ξ, and a 1-form η
on a (2n+ 1)-dimensional smooth manifold M2n+1 such that

φ2 = − id +η ⊗ ξ, η(ξ) = 1, (2.1)

where id denotes the identity endomorphism, then the triplet (φ, ξ, η) is said to be
an almost contact structure and M2n+1 is said to be an almost contact manifold,
denoted by (M2n+1, φ, ξ, η). Moreover, ξ is called the characteristic or the Reeb
vector field. From (2.1) one obtains φ(ξ) = 0, η ◦ φ = 0, and rank(φ) = 2n. We
define an almost complex structure J on the product manifold M2n+1 × R by

J

(
X, f

d

dt

)
=
(
φX − fξ, η(X) d

dt

)
, (2.2)

where X denotes the vector field tangent to M2n+1, t is the coordinate of R and
f is a smooth function defined on the product. An almost contact structure is
said to be normal if the above almost complex structure J is integrable, i.e., J is
a complex structure. According to Blair [2], the normality of an almost contact
structure is expressed by [φ, φ] = −2dη ⊗ ξ, where [φ, φ] denotes the Nijenhuis
tensor of φ defined by

[φ, φ](X,Y ) = φ2[X,Y ] + [φX, φY ]− φ[φX, Y ]− φ[X,φY ]

for any vector fields X,Y on M2n+1.
If on an almost contact manifold there exists a Riemannian metric g satisfying

g(φX, φY ) = g(X,Y )− η(X)η(Y ) (2.3)

for any vector fields X,Y , then g is said to be compatible with respect to the al-
most contact structure. An almost contact manifold equipped with a compatible
Riemannian metric is said to be an almost contact metric manifold, denoted by
(M2n+1, φ, ξ, η, g). The fundamental 2-form Φ on an almost contact metric mani-
fold M2n+1 is defined by Φ(X,Y ) = g(X,φY ) for any vector fields X,Y .

In this paper, by an almost co-Kähler manifold we mean an almost contact
metric manifold such that both the 1-form η and 2-form Φ are closed (see [3]).
An almost co-Kähler manifold is said to be a co-Kähler manifold (see [8]) if the
associated almost contact structure is normal, which is also equivalent to ∇φ = 0,
or equivalently, ∇Φ = 0. Note that the (almost) co-Kähler manifolds in fact are
the (almost) cosymplectic manifolds studied in [1, 2, 6, 7, 10].

On an almost co-Kähler manifold (M2n+1, φ, ξ, η, g), we set h = 1
2Lξφ and

h′ = h ◦ φ (note that both h and h′ are symmetric operators with respect to the
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metric g). The following formulas can be found in Olszak [10] and Perrone [11]:
hξ = 0, hφ+ φh = 0, tr(h) = tr(h′) = 0, (2.4)

∇ξφ = 0, ∇ξ = h′, div ξ = 0, (2.5)
∇ξh = −h2φ− φl, (2.6)
φlφ− l = 2h2, (2.7)

where l := R(· , ξ)ξ is the Jacobi operator along the Reeb vector field, and tr
and div denote the trace and divergence operators with respect to the metric g,
respectively. The well-known Ricci tensor S is defined by

S(X,Y ) = g(QX,Y ) = tr{Z → R(Z,X)Y },
where Q denotes the associated Ricci operator with respect to the metric g.

3. Three-dimensional almost co-Kähler manifolds with harmonic
Reeb vector fields

In this paper, let (M3, φ, ξ, η, g) be a three-dimensional almost co-Kähler mani-
fold. According to the second term of relation (2.5) we obtain

(Lξg)(X,Y ) = 2g(h′X,Y ).
Here we remark that a three-dimensional almost co-Kähler manifold is co-Kähler

if and only if the Reeb vector field ξ is a Killing vector field, or equivalently, h = 0
(see also [7, Proposition 3]).

Note that the minimality and harmonicity of the Reeb vector field of a three-
dimensional almost co-Kähler manifold were characterized by Perrone [11, 12, 13].

Lemma 3.1 ([12, Theorems 3.1, 4.2]). On a three-dimensional almost co-Kähler
manifold, the Reeb vector field is minimal if and only if it is harmonic, and this is
also equivalent to requiring that it is an eigenvector field of the Ricci operator.

Lemma 3.2 ([11, Theorem 4.2]). On a three-dimensional almost co-Kähler mani-
fold the Reeb vector field defines a harmonic map if and only if it is harmonic and
ξ(trh2) = 0 on every dense and open subset of the manifold.

Applying the above results, Perrone in [11, p. 53] points out some examples
of three-dimensional almost co-Kähler manifolds for which ξ defines a harmonic
map. For examples of three-dimensional almost co-Kähler manifolds for which ξ is
minimal we refer the reader to [12].

A Lie group G is said to be unimodular if its left invariant Haar measure is also
right invariant. It is known that a Lie group G is unimodular if and only if the
endomorphism adX : g → g given by adX(Y ) = [X,Y ] has trace equal to zero for
any X ∈ g, where g denotes the Lie algebra associated to G. In what follows, let G
be a three-dimensional unimodular Lie group with a left invariant metric g. From
Milnor [9], we know that there exists a left invariant local orthonormal frame field
{u1, u2, u3} satisfying

[u1, u2] = c3u3, [u2, u3] = c1u1, [u3, u1] = c2u2, (3.1)
where ci, i ∈ {1, 2, 3}, are all constants.
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We set ξ := u1 and define a 1-form η by η = g(ξ, ·). We also define a (1, 1)-
type tensor field φ by φu2 = u3, φu3 = −u2, and φξ = 0. One can check that
(φ, ξ, η, g) defines a left invariant almost contact metric structure on G. Perrone
[11, Proposition 2.1] proved that an almost contact metric three-manifold is an
almost co-Kähler manifold if and only if ∇ξ is symmetric and div ξ = 0. By (3.1)
we know that ∇ξ is symmetric if and only if c1 = 0. Moreover, div ξ = 0 holds
already (see also Cho [4]). Thus, we state that there exists a left invariant almost
co-Kähler structure on any three-dimensional Lie group G whose Lie algebra is
given by

[u1, u2] = c3u3, [u2, u3] = 0, [u3, u1] = c2u2, ∀ c2, c3 ∈ R. (3.2)
Using the Koszul formula from (3.2) we obtain (see Perrone [11, p. 54])

(∇ui
uj) =


0 c2+c3

2 u3 − c2+c3
2 u2

c2−c3
2 u3 0 c3−c2

2 u1
c2−c3

2 u2
c3−c2

2 u1 0

 (3.3)

for any i, j ∈ {1, 2, 3}. It follows from (3.2)–(3.3) that

Qξ = − (c2 − c3)2

2 ξ, Qu2 = c22 − c23
2 u2, Qu3 = c23 − c22

2 u3. (3.4)

On a three-dimensional unimodular Lie group there exists a left invariant non-
co-Kähler almost co-Kähler structure whose Reeb vector field is harmonic.

Let M3 be a three-dimensional almost co-Kähler manifold. Following Per-
rone [12], let U1 be the open subset of M3 on which h 6= 0 and U2 the open
subset defined by U2 = {p ∈ M3 : h = 0 in a neighborhood of p}. Therefore,
U1 ∪ U2 is an open and dense subset of M3. For any point p ∈ U1 ∪ U2, we find
a local orthonormal basis {ξ, e1, e2 = φe1} of three distinct unit eigenvector fields
of h in a certain neighborhood of p. On U1 we assume that he1 = λe1 and hence
he2 = −λe2, where λ is assumed to be a positive function. Note that λ is continuous
on M3 and smooth on U1 ∪ U2.

Lemma 3.3 ([12, Lemma 2.1]). On U1 we have
∇ξe1 = fe2, ∇ξe2 = −fe1, ∇e1ξ = −λe2, ∇e2ξ = −λe1,

∇e1e1 = 1
2λ

(
e2(λ) + σ(e1)

)
e2, ∇e2e2 = 1

2λ

(
e1(λ) + σ(e2)

)
e1,

∇e2e1 = λξ − 1
2λ

(
e1(λ) + σ(e2)

)
e2, ∇e1e2 = λξ − 1

2λ

(
e2(λ) + σ(e1)

)
e1,

∇ξh =
(

1
λ
ξ(λ) id +2fφ

)
h,

where f is a smooth function and σ is the 1-form defined by σ(·) = S(· , ξ).

Applying Lemma 3.3, we obtain the Ricci operator Q given by (see [12, Propo-
sition 4.1])

Q = α id +βη ⊗ ξ + φ∇ξh− σ(φ2)⊗ ξ + σ(e1)η ⊗ e1 + σ(e2)η ⊗ e2, (3.5)
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where α = 1
2 (r+ tr(h2)), β = − 1

2 (r+ 3 tr(h2)), and r denotes the scalar curvature.
Moreover, using Lemma 3.3 we have the following Poisson brackets:

[ξ, e1] = (f + λ)e2, [e2, ξ] = (f − λ)e1,

[e1, e2] = 1
2λ

(
e1(λ) + σ(e2)

)
e2 −

1
2λ

(
e2(λ) + σ(e1)

)
e1.

(3.6)

4. Some local classification results

If the Reeb vector field of a three-dimensional almost co-Kähler manifold M3 is
harmonic (⇔ minimal), then we write Qξ = S(ξ, ξ)ξ and hence σ(e1) = σ(e2) = 0.
It follows from (3.5) and Lemma 3.3 that

Qξ = −2λ2ξ,

Qe1 = ( 1
2r + λ2 − 2λf)e1 + ξ(λ)e2,

Qe2 = ( 1
2r + λ2 + 2λf)e2 + ξ(λ)e1

(4.1)

holds on U1, where r denotes the scalar curvature. Moreover, on U1, by applying
Lemma 3.3 again we obtain from (4.1) the following nine relations:

(∇ξQ)ξ = −4λξ(λ)ξ. (4.2)

(∇ξQ)e1 =
[
ξ
(r

2 + λ2 − 2λf
)
− 2fξ(λ)

]
e1 + [ξ(ξ(λ))− 4λf2]e2. (4.3)

(∇ξQ)e2 =
[
ξ
(r

2 + λ2 + 2λf
)

+ 2fξ(λ)
]
e2 + [ξ(ξ(λ))− 4λf2]e1. (4.4)

(∇e1Q)ξ = −4λe1(λ)ξ + λξ(λ)e1 + λ
(r

2 + 3λ2 + 2λf
)
e2. (4.5)

(∇e1Q)e1 = λξ(λ)ξ + [e1(ξ(λ))− 2fe2(λ)]e2

+
[
e1

(r
2 + λ2 − 2λf

)
− ξ(λ)

λ
e2(λ)

]
e1.

(4.6)

(∇e1Q)e2 = λ
(r

2 + 3λ2 + 2λf
)
ξ + [e1(ξ(λ))− 2fe2(λ)]e1

+
[
e1

(r
2 + λ2 + 2λf

)
+ ξ(λ)

λ
e2(λ)

]
e2.

(4.7)

(∇e2Q)ξ = −4λe2(λ)ξ + λξ(λ)e2 + λ
(r

2 + 3λ2 − 2λf
)
e1. (4.8)

(∇e2Q)e1 = λ
(r

2 + 3λ2 − 2λf
)
ξ + [e2(ξ(λ)) + 2fe1(λ)]e2

+
[
e2

(r
2 + λ2 − 2λf

)
+ ξ(λ)

λ
e1(λ)

]
e1.

(4.9)

(∇e2Q)e2 = λξ(λ)ξ + [e2(ξ(λ)) + 2fe1(λ)]e1

+
[
e2

(r
2 + λ2 + 2λf

)
− ξ(λ)

λ
e1(λ)

]
e2.

(4.10)
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Applying (4.2), (4.6) and (4.10) in the well-known formula divQ = 1
2 grad r we

see that the following relation holds on U1:
1
2 grad(r) = −2λξ(λ)ξ

+
[
e1

(r
2 + λ2 − 2λf

)
+ e2(ξ(λ)) + 2fe1(λ)− ξ(λ)

λ
e2(λ)

]
e1

+
[
e2

(r
2 + λ2 + 2λf

)
+ e1(ξ(λ))− 2fe2(λ)− ξ(λ)

λ
e1(λ)

]
e2.

(4.11)

Lemma 4.1. On a three-dimensional non-co-Kähler almost co-Kähler manifold
whose Reeb vector field is harmonic, the scalar curvature is invariant along the
Reeb vector field if and only if ξ(λ) = 0. If ξ(λ) = 0, we have

e1(λ− f) = e2(λ+ f) = 0. (4.12)

Proof. On any three-dimensional non-co-Kähler almost co-Kähler manifold, U1 is
non-empty and λ is assumed to be non-zero. Taking the inner product of (4.11)
with ξ we obtain that ξ(r) = 0 if and only ξ(λ) = 0. If ξ(λ) = 0, using this in
(4.11) we obtain

1
2 grad(r) =

[
e1

(r
2 + λ2 − 2λf

)
+ 2fe1(λ)

]
e1

+
[
e2

(r
2 + λ2 + 2λf

)
− 2fe2(λ)

]
e2.

In view of λ 6= 0, taking the inner product of the above relation with e1 and e2,
respectively, we complete the proof. �

Before giving our main results we need the following lemma (see also [5]).

Lemma 4.2 ([14, Corollary 4.1]). A three-dimensional co-Kähler manifold with
constant scalar curvature is locally isometric to either the flat Euclidean space R3

or the Riemannian product R × N2(c), where N2(c) denotes a Kähler surface of
constant curvature c 6= 0.

Definition 4.1. An almost contact metric manifold is said to be η-Einstein if the
Ricci operator satisfies

Q = α id +βη ⊗ ξ (4.13)
for some functions α, β.

Obviously, an η-Einstein metric becomes an Einstein one if β vanishes. Recall
that on any three-dimensional Riemannian manifold the curvature tensor can be
written as

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X

− S(X,Z)Y − r

2{g(Y, Z)X − g(X,Z)Y }
(4.14)

for any vector fields X,Y, Z. Applying h = 0 in the second term of relation (2.5)
we have Qξ = 0. Using this and putting Y = Z = ξ in (4.14) we obtain the Ricci
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operator
Q = r

2 id−r2η ⊗ ξ. (4.15)

Thus, a three-dimensional co-Kähler manifold is always η-Einstein. Also, it follows
directly from (4.15) that

(∇XQ)Y = 1
2X(r)Y − 1

2X(r)η(Y )ξ (4.16)

for any vector fields X,Y .

Theorem 4.1. Let M3 be a three-dimensional non-co-Kähler almost co-Kähler
manifold whose Reeb vector field is harmonic. Then M3 is η-Einstein if and only
if it is locally isometric to a unimodular Lie group E(1, 1) of rigid motions of the
Minkowski 2-space equipped with a left invariant almost co-Kähler structure.

Proof. LetM3 be an η-Einstein non-co-Kähler almost co-Kähler manifold of dimen-
sion three. Since U1 is non-empty, replacing X by e1 and e2 in QX = αX+βη(X)ξ
respectively and comparing these with the last two terms of relation (4.1) we have

ξ(λ) = f = 0,

where we have used λ 6= 0. In view of ξ(λ) = 0, applying Lemma 4.1 we have that
λ is a positive constant. In this case, (3.6) becomes

[ξ, e1] = λe2, [e2, ξ] = −λe1, [e1, e2] = 0.

According to Milnor [9] or Perrone [11, 12], we state that M3 is locally isometric
to the unimodular Lie group E(1, 1) of rigid motions of the Minkowski 2-space
equipped with a left invariant almost co-Kähler structure.

Conversely, from relations (3.4) and (4.13) we observe that the non-co-Kähler
almost co-Kähler structure defined on the Lie group E(1, 1) is η-Einstein provided
c3 = −c2 6= 0. This completes the proof. �

Definition 4.2. The Ricci tensor of a Riemannian manifold is said to be cyclic-
parallel if it satisfies

g((∇XQ)Y, Z) + g((∇YQ)Z,X) + g((∇ZQ)X,Y ) = 0 (4.17)

for any vector fields X,Y, Z.

A Riemannian metric satisfying (4.17) can be called an Einstein-like metric since
an Einstein metric satisfies (4.17), but the converse is not necessarily true.

Theorem 4.2. Let M3 be a three-dimensional non-co-Kähler almost co-Kähler
manifold whose Reeb vector field is harmonic. Then, the Ricci tensor of M3 is
cyclic-parallel if and only if it is locally isometric to either the universal covering
Ẽ(2) of the group of rigid motions of the Euclidean 2-space or the Heisenberg group
H3 or the group E(1, 1) of rigid motions of the Minkowski 2-space equipped with a
left invariant almost co-Kähler structure.
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Proof. We assume that M3 is non-co-Kähler with cyclic-parallel Ricci tensor. From
(4.2) and g((∇ξQ)ξ, ξ) = 0 we have ξ(λ) = 0. Moreover, in view of λ 6= 0, from
g((∇ei

Q)ξ, ξ) + 2g((∇ξQ)ξ, ei) = 0 for i = 1, 2, (4.5) and (4.8) we observe that λ is
a non-zero constant. Thus, from g((∇ξQ)e1, e1) + 2g((∇e1Q)e1, ξ) = 0, (4.3) and
(4.6) we see that ξ(f) = 0. Taking into account Lemma 4.1, we know that f is also
a constant. In this case, (3.6) becomes

[ξ, e1] = (f + λ)e2, [e2, ξ] = (f − λ)e1, [e1, e2] = 0.

According to Milnor [9] or Perrone [11, 12], we state that M3 is locally isometric
to the universal covering Ẽ(2) of the group of rigid motions of the Euclidean 2-
space if f > λ, f > 0 or f < −λ, f < 0; the Heisenberg group H3 if f = λ or
f = −λ; the group E(1, 1) of rigid motions of the Minkowski 2-space if 0 ≤ f < λ
or −λ < f ≤ 0.

Conversely, on non-co-Kähler almost co-Kähler structures defined on the above
three Lie groups, from Perrone [11, p. 55] we have (3.3) and (3.4). By using these
relations, one can check easily that (4.17) is true. This completes the proof. �

Definition 4.3. The Ricci tensor of an almost contact metric manifold is said to
be strong η-parallel if it satisfies

g((∇XQ)Y, Z) = 0 (4.18)

for any vector field X and any vector fields Y,Z orthogonal to the Reeb vector
field ξ.

Obviously, the strong η-parallelism of the Ricci tensor on an almost contact
metric manifold is weaker than usual parallelism (∇Q = 0) but stronger than
usual η-parallelism (that is, (4.18) holds for any X,Y, Z orthogonal to ξ).

Lemma 4.3. Let M3 be a three-dimensional non-co-Kähler almost co-Kähler man-
ifold whose Reeb vector field is harmonic. If the Ricci tensor of M3 is strong η-
parallel, then the scalar curvature r is invariant along the distribution {ξ}⊥ and
we have

ξ(ξ(λ)) = 4λf2. (4.19)

Proof. We assume thatM3 is non-co-Kähler. Thus, U1 is non-empty and Lemma 3.3
is applicable. The Ricci tensor of M3 is strong η-parallel if and only if

g((∇ξQ)ei, ek) = 0, g((∇ei
Q)ej , ek) = 0, i, j, k = 1, 2.

Using relations (4.3)–(4.10) in the above relation and (4.11), we obtain

grad(r) = −4λξ(λ)ξ. (4.20)

It follows from (4.20) that e1(r) = e2(r) = 0. Moreover, from g((∇ξQ)e1, e2) = 0
and (4.3) we obtain (4.19). This completes the proof. �

Theorem 4.3. Let M3 be a three-dimensional almost co-Kähler manifold whose
Reeb vector field defines a harmonic map. Then the Ricci tensor of M3 is strong
η-parallel if and only if one of the following statements occurs.
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(1) M3 is co-Kähler and in this case it is locally isometric to either the flat
Euclidean space R3 or the product R×N2(c), where N2(c) denotes a Kähler
surface of constant curvature c 6= 0.

(2) M3 is non-co-Kähler and in this case it is locally isometric to a unimodular
Lie group E(1, 1) of rigid motions of the Minkowski 2-space equipped with
a left invariant almost co-Kähler structure.

Proof. We first consider the co-Kähler case. On any three-dimensional co-Kähler
manifold, using h = 0 and Qξ = 0 (deduced from the second term of (2.5)) in
relation (4.14) we obtain (4.16). If the Ricci tensor of M3 is strong η-parallel,
it follows from (4.16) that the scalar curvature r is a constant. Then, the proof
follows from Lemma 4.2.

Next let M3 be a non-co-Kähler almost co-Kähler 3-manifold. As ξ defines a
harmonic map, we obtain from Lemma 3.2 that ξ(λ) = 0. Therefore, using this
in (4.19) we obtain f = 0, where we have used the fact λ 6= 0. In this context,
applying Lemma 4.1 we see that λ is a non-zero constant. Now, (3.6) becomes

[ξ, e1] = λe2, [e2, ξ] = −λe1, [e1, e2] = 0.

Therefore, M3 is locally isometric to the unimodular Lie group E(1, 1) of rigid
motions of the Minkowski 2-space equipped with a left invariant almost co-Kähler
structure. Conversely, the proof follows from (3.4) and (3.3). �

Remark 4.1. On any three-dimensional co-Kähler manifold the Ricci tensor is
parallel if and only if it is strong η-parallel. But there exists a strictly strong
η-parallel Ricci tensor on a non-co-Kähler almost co-Kähler 3-manifold.

5. Almost co-Kähler structures on non-unimodular Lie groups

From now on we show that the Ricci tensor of a left invariant almost co-Kähler
structure defined on a three-dimensional non-unimodular Lie group is cyclic-parallel
but non-η-parallel, non-η-Einstein. In what follows, let G be a three-dimensional
non-unimodular Lie group (see [9]) with a left invariant metric g whose Lie algebra
is given by

[e1, e2] = αe2, [e2, e3] = 0, [e1, e3] = βe2, (5.1)
where {e1, e2, e3} is an orthonomal basis with respect to g and α 6= 0, β ∈ R.

Now we set ξ := e3 and define a 1-form η by η = g(ξ, ·). We define a (1, 1)-type
tensor field φ by φξ = 0, φe1 = e2 and φe2 = −e1. One can check that (G,φ, ξ, η, g)
defines a three-dimensional left invariant non-co-Kähler almost co-Kähler manifold
when β 6= 0 or a three-dimensional co-Kähler manifold when β vanishes (for more
details see Perrone [11, Example 4.2]). Moreover, by using the Koszul formula and
(5.1) we have

(∇ei
ej) =


0 −β2 ξ

β
2 e2

−αe2 − β
2 ξ αe1

β
2 e1

−β2 e2
β
2 e1 0

 (5.2)
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for any i, j ∈ {1, 2, 3}. Using (5.2), the Ricci operator of G is given by

Qξ = −β
2

2 ξ − αβe2,

Qe1 = −
(
α2 + β2

2

)
e1, Qe2 =

(
−α2 + β2

2

)
e2 − αβξ.

(5.3)

Remark 5.1. From (5.3) we see that the non-co-Kähler almost co-Kähler structure
defined on the non-unimodular Lie group G can not be η-Einstein and the Reeb
vector field ξ is not harmonic.

Using (5.2) and (5.3) we obtain

(∇ξQ)e1 = 1
2β

3e2 −
1
2αβ

2ξ, (5.4)

(∇e1Q)ξ = β

2 (α2 − β2)e2 + αβ2ξ, (5.5)

(∇e1Q)e2 = β

2 (α2 − β2)ξ − αβ2e2. (5.6)

Remark 5.2. From relation (5.6), we observe that the Ricci tensor of the non-co-
Kähler almost co-Kähler structure defined on the non-unimodular Lie group G is
not η-parallel.

Using (5.2) and (5.3) we obtain

(∇ξQ)ξ = −1
2αβ

2e1, (∇ξQ)e2 = 1
2β

3e1, (∇e2Q)ξ = −1
2α

2βe1,

(∇e1Q)e1 = 0, (∇e2Q)e1 = −1
2α

2βeξ + 1
2αβ

2e2, (∇e2Q)e2 = 1
2αβ

2e1.

(5.7)

Remark 5.3. From relations (5.4)–(5.6) and (5.7), we observe that the Ricci tensor
of the non-co-Kähler almost co-Kähler structure defined on the non-unimodular Lie
group G is cyclic-parallel.
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