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AN EXTENSION OF BEST L2 LOCAL APPROXIMATION

HÉCTOR H. CUENYA, DAVID E. FERREYRA, AND CLAUDIA V. RIDOLFI

Abstract. We introduce two classes of functions, one containing the class
of L2 differentiable functions, and another containing the class of L2 lateral
differentiable functions. For functions in these new classes we prove existence
of best local approximation at several points. Moreover, we get results about
the asymptotic behavior of the derivatives of the net of best approximations,
which are unknown even for L2 differentiable functions.

1. Introduction

Let x1, x2, . . . , xk be k points in R and let a > 0 be such that the intervals
Ia,i := [xi−a, xi+a], 1 ≤ i ≤ k, are pairwise disjoint. We denote by L the space of

equivalence classes of Lebesgue measurable real functions defined on Ia :=
k⋃
i=1

Ia,i.

For each Lebesgue measurable set A ⊂ Ia, with |A| > 0, we consider the semi-norms
on L,

‖f‖A :=
(
|A|−1

∫
A

|f(x)|2 dx
)1/2

,

where |A| denotes the measure of the set A.
If 0 < ε ≤ a, we use the notations I−ε,i = [xi − ε, xi], I+ε,i = [xi, xi + ε],

Iε,i = [xi − ε, xi + ε], and we write ‖f‖±ε,i = ‖f‖I±ε,i , ‖f‖ε,i = ‖f‖Iε,i . So,

‖f‖2ε := ‖f‖2Iε = k−1
k∑
i=1
‖f‖2ε,i.

In all this work, s is an arbitrary non negative integer. We denote by Πs the
linear space of polynomials of degree at most s.

Henceforward, we fix n ∈ N ∪ {0} and q ∈ N such that n+ 1 = kq.
If f ∈ L2(Iε), it is well known that there exists a unique best ‖·‖ε-approximation

of f from Πn, say Pε, i.e., Pε ∈ Πn satisfies

‖f − Pε‖ε ≤ ‖f − P‖ε, P ∈ Πn.
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Moreover, it is characterized by∫
Iε

(f − Pε)(x)P (x) dx = 0, P ∈ Πn. (1.1)

If lim
ε→0

Pε exists, say P0, it is called the best local approximation of f on {xi : 1 ≤
i ≤ k}, from Πn.

We recall that a function f ∈ L2(Ia,i) is L2 left (right) differentiable of order s
at xi if there exists Li(Ri) ∈ Πs such that

‖f − Li‖−ε,i = o(εs) (‖f −Ri‖+ε,i = o(εs)). (1.2)

The class of these functions is denoted by t2−s(xi) (t2+s(xi)). If Li = Ri, we say
that f is L2 differentiable of order s at xi and we write f ∈ t2s(xi). This concept
was introduced by Calderón and Zygmund in [1]. It is well known that there exists
at most one polynomial satisfying (1.2) (see [6]).

The problem of best local approximation was formally introduced and studied
in a paper by Chui, Shisha and Smith [2]. However, the initiation of this could
be dated back to results of J. L. Walsh [7], who proved that the Taylor polynomial
of an analytic function f over a domain is the limit of the net of best polynomial
approximations of a given degree, by shrinking the domain to a single point. In [6]
this problem was considered when f is L2 differentiable of order q−1 at xi, 1 ≤ i ≤
k. In [4] the authors proved the existence of the best local approximation under
weaker conditions, more precisely they assumed existence of L2 lateral derivatives
of order q − 1 and L2 differentiability of order q − 2 at each point.

On the other hand, for k = 1, the authors in [3] considered a function f dif-
ferentiable at 0 in the ordinary sense of order s, for some s ≤ n, and they proved
that lim

ε→0
(f − Pε)(j)(0) = 0, 0 ≤ j ≤ s. In particular, if P is a cluster point of the

net {Pε}, as ε→ 0, then P interpolates the derivatives of f up to order s at 0. In
[5] the authors obtained this property of interpolation for functions that satisify a
more general condition than L2 differentiability, called C2 condition.

The main purpose of this paper is to extend the results established in [3] and
[4], assuming the C2 condition and C2 lateral condition when we consider approx-
imation on k points in R from Πn, for the case n+ 1 multiple of k.

Definition 1.1. A function f ∈ L2(Ia,i) satisfies the C2 condition of order s at
xi, if there exists Qi ∈ Πs such that∫

Iε,i

(f −Qi)(x)(x− xi)j dx = o(εs+j+1), 0 ≤ j ≤ s, as ε→ 0. (1.3)

Analogously, f satisfies the left (right) C2 condition of order s at xi, if there exists
Li(Ri) ∈ Πs satisfying (1.3) with I−ε,i (I+ε,i) instead of Iε,i.

We say that f ∈ c2s(xi) if it satisfies (1.3). We denote with c2−s(xi) (c2+s(xi)) the
class of functions which satisfy the left (right) C2 condition of order s at xi. We also
denote c2±s(xi) := c2+s(xi)∩c2−s(xi). It is easy to see that t2s(xi) ⊆ t2−s(xi)(t2+s(xi));
however c2s(xi) * c2−s(xi)(c2+s(xi)) as Example 2.8 shows.

Rev. Un. Mat. Argentina, Vol. 58, No. 2 (2017)



AN EXTENSION OF BEST L2 LOCAL APPROXIMATION 333

In [5] it was proved that if f ∈ c2s(xi), there exists a unique polynomial Qi ∈ Πs

satisfying (1.3). Moreover, t2s(xi) ( c2s(xi). The polynomial in Πs that satisfies
‖f−Qi‖ε,i = o(εs) also satisfies (1.3). Analogously t2−s(xi) ( c2−s(xi) and t2+s(xi) (
c2+s(xi).

In Section 2, given a function in c2s(xi) (or c2±s(xi)), 1 ≤ i ≤ k, under suitable
conditions, we study the asymptotic behavior of the derivatives of Pε, as ε → 0,
and we establish a relation between the derivatives of Pε up to order s with its
derivatives of greater order (see Theorem 2.3 and Theorem 2.9). This type of
result is unknown, even for L2 differentiable functions. We also prove that if P is a
cluster point of the net {Pε}, then P interpolates the derivatives of Qi (or Li+Ri

2 )
up to order s at xi. Finally, we get existence of the best local approximation on k
points, for two new classes of functions.

2. The main results

Henceforward we will use the following notation. For Q ∈ Πn, we denote by
Ti,s(Q) its Taylor polynomial at xi of degree s. We write Ti,−1(Q) = 0 and we
recall that q ∈ N satisfies n+ 1 = kq.

To establish the results we need two auxiliary lemmas.
Lemma 2.1. Let l ∈ Z. If one of the following cases holds

a) q = 1, l = −1, and f ∈ L2(Ia),
b) k = 1, q ≥ 2, 0 ≤ l ≤ q − 2, and f ∈ L2(Ia),
c) k > 1, q ≥ 2, 0 ≤ l ≤ q − 2, and f ∈ t2l (xi), 1 ≤ i ≤ k,

then ∫
Iε,i

(f − Pε)(x)(x− xi)u dx = o(ε2l+3), 0 ≤ u ≤ l + 1, 1 ≤ i ≤ k.

Proof. We begin proving c). For each 0 ≤ u ≤ l + 1 and 1 ≤ i ≤ k, we consider
the polynomial Ru,i ∈ Π(l+2)k−1 such that R(j)

u,i(xz) = δ(u,i),(j,z), 0 ≤ j ≤ l + 1,
1 ≤ z ≤ k, where δ is the Kronecker delta function. From (1.1) we have∫

Iε,i

(f − Pε)(x)Ru,i(x) dx = −
k∑

z=1,z 6=i

∫
Iε,z

(f − Pε)(x)Ru,i(x) dx

= −
k∑

z=1,z 6=i

∫
Iε,z

(f − Pε)(x)
(l+2)k−1∑
r=0

R
(r)
u,i

r! (xz)(x− xz)r dx

= −
k∑

z=1,z 6=i

∫
Iε,z

(f − Pε)(x)
(l+2)k−1∑
r=l+2

R
(r)
u,i

r! (xz)(x− xz)r dx

= −
k∑

z=1,z 6=i

(l+2)k−1∑
r=l+2

R
(r)
u,i

r! (xz)
∫
Iε,z

(f − Pε)(x)(x− xz)r dx.

(2.1)

Since f ∈ t2l (xi) there exists Qi ∈ Πl such that ‖f − Qi‖ε,i = o(εl), 1 ≤ i ≤ k.
Let S ∈ Π(l+2)k−1 defined by S(j)(xi) = Q

(j)
i (xi), 0 ≤ j ≤ l + 1, 1 ≤ i ≤ k. Now,
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‖f − S‖ε,i ≤ ‖f −Qi‖ε,i + ‖Qi − S‖ε,i = o(εl), so ‖f − S‖2ε = k−1
k∑
i=1
‖f − S‖2ε,i =

o(ε2l), i.e., ‖f − S‖ε = o(εl). Using Hölder’s inequality, we obtain∣∣∣∣∣
∫
Iε,z

(f − Pε)(x)(x− xz)r dx

∣∣∣∣∣
≤
∫
Iε

|(f − Pε)(x)(x− xz)r| dx ≤ εr+1‖f − Pε‖ε

≤ εr+1‖f − S‖ε = o(ε2l+3), l + 2 ≤ r ≤ (l + 2)k − 1, 1 ≤ z ≤ k.

(2.2)

From (2.1) and (2.2) we get∫
Iε,i

(f − Pε)(x)Ru,i(x) dx = o(ε2l+3). (2.3)

On the other hand,∫
Iε,i

(f − Pε)(x)Ru,i(x) dx

=
∫
Iε,i

(f − Pε)(x)
(l+2)k−1∑
r=0

R
(r)
u,i

r! (xi)(x− xi)r dx

=
∫
Iε,i

1
u! (f − Pε)(x)(x− xi)u dx

+
∫
Iε,i

(f − Pε)(x)
(l+2)k−1∑
r=l+2

R
(r)
u,i

r! (xi)(x− xi)r dx

=
∫
Iε,i

1
u! (f − Pε)(x)(x− xi)u dx+ o(ε2l+3),

(2.4)

where the last equality follows from (2.2). Finally, the lemma is a consequence of
(2.3) and (2.4).

a) If k = 1 it is a direct consequence of (1.1). Suppose k > 1 and consider S = 0.
Then εr+1‖f‖ε ≤ (aε ) 1

2 εr+1‖f‖a = o(ε), 1 ≤ r ≤ k − 1, so (2.2) is true. Now, the
proof follows analogously to that of c).

b) This is a direct consequence of (1.1). �

Lemma 2.2. Let rw ∈ N ∪ {0}, 1 ≤ w ≤ m, be such that r1 < r2 < · · · < rm.
Given 1 ≤ i ≤ k, let {Uε} be a net of polynomials in the linear space generated by
{(x− xi)rw : 1 ≤ w ≤ m}. If∫

Iε,i

Uε(x)(x− xi)rw dx = o(εrm+rw+1), 1 ≤ w ≤ m, (2.5)

then Uε → 0 as ε→ 0.
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Proof. We write Uε(x) =
m∑
s=1

arw(ε)(x − xi)rw . Multiplying both sides of (2.5) by

arw(ε), and summing over w from 1 to m, we get∫
Iε,i

Uε(x)2 dx = o(εrm+1)
m∑
w=1

arw(ε)εrw = o(εrm+1)
m∑
w=1
|arw(ε)|εrw . (2.6)

Let ∆ be the space of polynomials generated by {xr1 , . . . , xrm}. We consider the
norm ρ on ∆ defined by

ρ(S) =
m∑
w=1
|drw |, S(x) =

m∑
w=1

drwx
rw ,

and ‖ · ‖[−1,1] the usual norm in L2([−1, 1]). Let S[ε](x) := S(xi + εx). By the
equivalence of the above norms on ∆, there exists K > 0 such that

m∑
w=1
|arw(ε)|εrw = ρ(U [ε]

ε ) ≤ K‖U [ε]
ε ‖[−1,1]. (2.7)

Therefore by (2.6) we have that ‖U [ε]
ε ‖2[−1,1] = o(εrm)‖U [ε]

ε ‖[−1,1]. So, ‖U [ε]
ε ‖[−1,1] =

o(εrm). In consequence, from (2.7) we obtain arw(ε) = o(εrm−rw), 1 ≤ w ≤ m, i.e.,
Uε → 0 as ε→ 0. �

If q ≥ 2 and l ∈ N ∪ {0}, l ≤ q − 2, we consider

bε,i,l =
{

1 + max{|P (v)
ε (xi)| : l + 2 ≤ v ≤ n} if l < q − 2,

1 if l = q − 2.
(2.8)

For q = 1 and l = −1, we put bε,i,l = 1.
The next theorem is one of our main results.

Theorem 2.3. Let l ∈ Z. If one of the following cases holds:
a) q = 1, l = −1, and f ∈ c20(xi), 1 ≤ i ≤ k,
b) k = 1, q ≥ 2, 0 ≤ l ≤ q − 2, and f ∈ c2l+1(x1),
c) q ≥ 2, 0 ≤ l ≤ q − 2, k > 1, and f ∈ c2l+1(xi) ∩ t2l (xi), 1 ≤ i ≤ k,

then
Ti,l+1(Pε)−Qi = o(1)bε,i,l, 1 ≤ i ≤ k, (2.9)

uniformly on compact sets, where Qi ∈ Πl+1 was introduced in Definition 1.1. In
particular, if P is a cluster point of the net {Pε}, as ε → 0, then Ti,l+1(P ) = Qi,
1 ≤ i ≤ k.

Proof. Under the hypotheses a), b) or c), we have f ∈ c2l+1(xi), 1 ≤ i ≤ k. So∫
Iε,i

(f −Qi)(x)(x− xi)j dx = o(εl+j+2), 0 ≤ j ≤ l + 1. (2.10)

By Lemma 2.1, we get∫
Iε,i

(f − Pε)(x)(x− xi)j dx = o(ε2l+3), 0 ≤ j ≤ l + 1. (2.11)
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From (2.10) and (2.11) we obtain∫
Iε,i

(Pε −Qi)(x)(x− xi)j dx = o(εl+j+2), 0 ≤ j ≤ l + 1. (2.12)

It immediately follows from the definition of bε,i,l that the set

Al,i,δ := {b−1
ε,i,lP

(v)
ε (xi) : l + 2 ≤ v ≤ n, 0 < ε < δ},

is bounded for 0 ≤ l < q−2 and 1 ≤ i ≤ k. If k = 1, Aq−2,i,δ is empty and therefore
bounded by convention. We will see next that Aq−2,i,δ is also bounded for k > 1
and δ sufficiently small. Indeed, assume that the net {Pε} is not uniformly bounded
as ε→ 0 and let H ∈ Πn be the unique polynomial satisfying H(v)(xu) = Q

(v)
u (xu),

0 ≤ v ≤ q − 1, 1 ≤ u ≤ k. Then there exists a sequence εm → 0 such that
‖Pεm −H‖∞,Ia →∞. From (2.12) we get∫

Iε,i

(Pε −H)(x)(x− xi)j dx = o(εq+j), 0 ≤ j ≤ q − 1. (2.13)

Let Dεm := Pεm−H
‖Pεm−H‖∞,Ia

. Since {Dεm} is uniformly bounded, (2.13) implies∫
Iεm,i

Ti,q−1(Dεm)(x)(x− xi)j dx = o(εmj+q)−
n∑
v=q

D
(v)
εm (xi)
v!

∫
Iεm,i

(x− xi)j+v dx

= o(εmj+q) +O(εmj+q+1) = o(εmj+q), 0 ≤ j ≤ q − 1.
(2.14)

By Lemma 2.2 we have that Ti,q−1(Dεm) → 0, 1 ≤ i ≤ k, as εm → 0. Let ρ be
the norm on Πn defined by ρ(P ) := max

1≤i≤k
max

0≤v≤q−1
|P (v)(xi)|. Then ρ(Dεm)→ 0, a

contradiction since ‖Dεm‖∞,Ia = 1. So, the net {Pε} is uniformly bounded.
From (2.12) we obtain∫
Iε,i

Ti,l+1

(
Pε −Qi
bε,i,l

)
(x)(x−xi)j dx = o(εl+j+2)−

n∑
v=l+2

P
(v)
ε (xi)
v!bε,i,l

∫
Iε,i

(x−xi)j+v dx,

(2.15)
where the sum is omitted if k = 1 and l = q − 2. Since Al,i,δ is bounded for
0 ≤ l ≤ q − 2 and δ sufficiently small, from (2.15) we get∫

Iε,i

Ti,l+1

(
Pε −Qi
bε,i,l

)
(x)(x− xi)j dx = o(εl+j+2), 0 ≤ j ≤ l + 1. (2.16)

Now, Lemma 2.2 with rw = w − 1, 1 ≤ w ≤ l + 2, implies (2.9).
Finally, if P = lim

εm→0
Pεm then bεm,i,l are bounded. So, from (2.9) it follows that

Ti,l+1(P ) = Qi, 1 ≤ i ≤ k. �

Remark 2.4. We observe that the case k > 1 in Theorem 2.3 is not a formal
extension of the case k = 1. In fact, we need to apply Lemma 2.1, and to prove
that the set Aq−2,i,δ is bounded for δ sufficiently small.
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Remark 2.5. Let P+ε (P−ε) be the best approximation to f from Πn on
k⋃
i=1

I+ε,i

(
k⋃
i=1

I−ε,i), and let b+ε,i,l (b−ε,i,l) be defined as in (2.8) with P+ε (P−ε) instead of

Pε. We observe that Theorem 2.3 remains valid if we consider P+ε (P−ε), and the
condition over f is satisfied on the right (left) at each point.

The following corollary is an immediate consequence of Theorem 2.3 with l =
q − 2.

Corollary 2.6. If f ∈ c2q−1(xi) ∩ t2q−2(xi), 1 ≤ i ≤ k, then there exists the best
local approximation of f on {xi : 1 ≤ i ≤ k}, from Πn. It is the unique polynomial
H ∈ Πn satisfying H(j)(xi) = Q

(j)
i (xi), 0 ≤ j ≤ q− 1, 1 ≤ i ≤ k, where Qi ∈ Πq−1

satisfies Definition 1.1. In the case q = 1 or k = 1 we only assume f ∈ c2q−1(xi), 1 ≤
i ≤ k.

Remark 2.7. We observe that c2s(xi) is not, in general, a subset of c2±s(xi). In
fact, next we give an example of a function f ∈ c20(0) such that f /∈ c2±0(0).

Example 2.8. Let {hm} and {εm} be two sequences of nonnegative real numbers,
such that hm ↓ 0, εm ↓ 0, εm+1 < hm < εm,

εm
hm
→ ∞, and hm

εm+1
→ ∞. For

example, we can take εm = 2−22m and hm = 2−22m+1 . We define f : (−ε1, ε1)→ R
by

f(x) =
{

1 if x ∈ ∪∞m=1[hm, εm),
0 if x ∈ ∪∞m=1[εm+1, hm),

f(0) = 0 and f(x) = −f(−x), x ∈ (−ε1, 0). We have

‖f − P+εm‖2+εm ≤ ‖f − 1‖2+εm =
∫ hm

0
(f(x)− 1)2 dx

εm
≤ hm
εm
→ 0, (2.17)

‖f − P+hm‖2+hm ≤ ‖f‖
2
+hm = εm+1

hm

∫ εm+1

0
f(x)2 dx

εm+1
≤ εm+1

hm
→ 0. (2.18)

From (2.17) we get ‖P+εm − 1‖+εm ≤ ‖P+εm − f‖+εm + ‖f − 1‖+εm → 0. Now,
Pólya’s inequality implies that P+εm → 1. Analogously, from (2.18) we obtain that
P+hm → 0. On the other hand, we know that if f ∈ c2+0(0) then lim

ε→0
P+ε exists

(see Remark 2.5), so f /∈ c2+0(0). Analogously, f /∈ c2−0(0). As f is odd, clearly
f ∈ c20(0).

Let Pi(h) (Ii(h)) be the even (odd) part of the function h with respect to xi,
i.e.,

Pi(h)(x) := h(x) + h(2xi − x)
2

(
Ii(h)(x) := h(x)− h(2xi − x)

2

)
.

It is easy to see that, h = Pi(h) + Ii(h), Pi(h)(xi + x) = Pi(h)(xi − x), and
Ii(h)(xi + x) = −Ii(h)(xi − x).
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Theorem 2.9. If one of the following cases holds:
a) q = 1, l = −1, and f ∈ c2±0(xi), 1 ≤ i ≤ k,
b) k = 1, q ≥ 2, 0 ≤ l ≤ q − 2, f ∈ c2±(l+1)(x1) and T1,l(L1) = T1,l(R1),
c) q ≥ 2, 0 ≤ l ≤ q − 2, and f ∈ c2±(l+1)(xi) ∩ t2l (xi), 1 ≤ i ≤ k,

then
Ti,l+1(Pε)−

Li +Ri
2 = o(1)bε,i,l, 1 ≤ i ≤ k, (2.19)

uniformly on compact sets, where Li, Ri ∈ Πl+1 were introduced in Definition 1.1.
In particular, if P is a cluster point of the net {Pε}, as ε → 0, then Ti,l+1(P ) =
Li+Ri

2 , 1 ≤ i ≤ k.

Proof. Since f ∈ c2±(l+1)(xi), 1 ≤ i ≤ k, we have
i)
∫
I+ε,i

(f −Ri)(x)(x− xi)j dx = o(εl+j+2), 0 ≤ j ≤ l + 1,
ii)
∫
I−ε,i

(f − Li)(x)(x− xi)j dx = o(εl+j+2), 0 ≤ j ≤ l + 1.
By means of a change of variable from i) and ii) we get

iii)
∫
I−ε,i

(f −Ri)(2xi − x)(xi − x)j dx = o(εl+j+2), 0 ≤ j ≤ l + 1,
iv)

∫
I+ε,i

(f − Li)(2xi − x)(xi − x)j dx = o(εl+j+2), 0 ≤ j ≤ l + 1.
From i) it follows that∫
I+ε,i

(f − Ti,l(Ri))(x)(x− xi)j dx = o(εl+j+2) +
∫
I+ε,i

R
(l+1)
i (xi)
(l + 1)! (x− xi)j+l+1 dx

= o(εl+j+2) +O(εl+j+2) = o(εl+j+1), 0 ≤ j ≤ l.

Thus, f ∈ c2+l(xi). Analogously, from ii) it follows that f ∈ c2−l(xi). In addition,
as we have observed in the Introduction, t2l (xi) ⊂ t2−l(xi) ⊂ c2−l(xi) and t2l (xi) ⊂
t2+l(xi) ⊂ c2+s(xi). If c) holds, by uniqueness of the polynomial in Πl that satisfies
(1.3), we have that Ti,l(Ri) = Ti,l(Li), 1 ≤ i ≤ k. Under the hypothesis a) or b) we
also get T1,l(R1) = T1,l(L1). We write Si = Ti,l(Ri), Ri(x) = Si(x)+c1,i(x−xi)l+1

and Li(x) = Si(x) + c2,i(x− xi)l+1.
From i) and iv) we obtain∫
I+ε,i

[f(x) + f(2xi − x)− (Si(x) + c1,i(x− xi)l+1

+ Si(2xi − x) + c2,i(xi − x)l+1)](x− xi)j dx
= o(εl+j+2), 0 ≤ j ≤ l + 1. (2.20)

In a similar way, from ii) and iii) we get∫
I−ε,i

[f(x) + f(2xi − x)− (Si(x) + c2,i(x− xi)l+1

+ Si(2xi − x) + c1,i(xi − x)l+1)](x− xi)j dx
= o(εl+j+2), 0 ≤ j ≤ l + 1. (2.21)
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Now, we assume l odd. From (2.20) and (2.21) we get∫
Iε,i

[f(x)+f(2xi−x)−(Ri(x)+Li(2xi−x))](x−xi)j dx = o(εl+j+2), 0 ≤ j ≤ l+1.

(2.22)
By (2.22) we obtain∫

Iε,i

Pi
(
f − Ri + Li

2

)
(x)(x− xi)j dx = o(εl+j+2), 0 ≤ j ≤ l + 1. (2.23)

Since f ∈ t2l (xi), Lemma 2.1 implies∫
Iε,i

Pi (f − Pε) (x)(x− xi)j dx = o(εl+j+2), j = 0, 2, . . . , l + 1. (2.24)

As we have observed in the proof of Theorem 2.3, Al,i,δ is bounded for 0 ≤ l ≤ q−2
and δ sufficiently small. In consequence, from (2.24) we have∫

Iε,i

1
bε,i,l
Pi(f − Ti,l+1(Pε))(x)(x− xi)j dx

=
n∑

v=l+2

P
(v)
ε (xi)
v!bε,i,l

∫
Iε,i

Pi ((x− xi)v) (x− xi)j dx+ o(εl+j+2)

= o(εl+j+2), j = 0, 2, . . . , l + 1.

(2.25)

By (2.23) and (2.25), we get∫
Iε,i

1
bε,i,l
Pi
(
Ti,l+1(Pε)−

Ri + Li
2

)
(x)(x− xi)j dx

= o(εl+j+2), j = 0, 2, . . . , l + 1. (2.26)

Using Lemma 2.2 with rw = 2(w − 1), 1 ≤ w ≤ l+1
2 + 1, we get

Pi
(
Ti,l+1(Pε)−

Ri + Li
2

)
= o(1)bε,i,l, 1 ≤ i ≤ k. (2.27)

Now, we assume l even. Adding to both sides of (2.21) the expression

−2
∫
I−ε,i

(c1,i(x− xi)l+1 + c2,i(xi − x)l+1)(x− xi)j dx, 0 ≤ j ≤ l + 1,

we obtain∫
I−ε,i

[(f(x) + f(2xi − x))− (Si(x) + c1,i(x− xi)l+1 + Si(2xi − x)

+ c2,i(xi − x)l+1)](x− xi)j dx = O(εl+j+2), 0 ≤ j ≤ l + 1. (2.28)
As the integrand in (2.20) and (2.28) is the same, we have∫

Iε,i

[(f(x) + f(2xi − x))− (Ri(x) + Li(2xi − x))](x− xi)j dx

= o(εl+j+1), 0 ≤ j ≤ l + 1. (2.29)
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It is easy to see that
∫
Iε,i

(Ri(x) +Li(2xi−x))(x−xi)j dx =
∫
Iε,i

(Li(x) +Ri(2xi−
x))(x− xi)j dx, for j even. In consequence, from (2.29) we obtain∫

Iε,i

Pi
(
f − Ri + Li

2

)
(x)(x− xi)j dx

=
∫
Iε,i

(
Pi(f)− Ri(x) + Li(x) +Ri(2xi − x) + Li(2xi − x)

4

)
(x− xi)j dx

= o(εl+j+1), j = 0, 2, . . . , l.
(2.30)

Now, we proceed as in (2.25). As f ∈ t2l (xi) and Al,i,δ, 0 ≤ l ≤ q − 2, is bounded
for δ sufficiently small, Lemma 2.1 implies∫

Iε,i

1
bε,i,l
Pi (f − Ti,l+1(Pε)) (x)(x− xi)j dx = o(εl+j+2), j = 0, 2, . . . , l. (2.31)

By (2.30) and (2.31), we obtain∫
Iε,i

1
bε,i,l
Pi
(
Ti,l+1(Pε)−

Ri + Li
2

)
(x)(x− xi)j dx = o(εl+j+1), j = 0, 2, . . . , l.

(2.32)
Since l is even, we have that b−1

ε,i,lPi
(
Ti,l+1(Pε)− Ri+Li

2
)
∈ Πl. In consequence,

using Lemma 2.2 with rw = 2(w − 1), 1 ≤ w ≤ l
2 + 1, we get (2.27).

In a similar way to the previous proof, considering j odd, we can prove that

Ii
(
Ti,l+1(Pε)−

Ri + Li
2

)
= o(1)bε,i,l, 1 ≤ i ≤ k, (2.33)

for arbitrary l. From (2.27) and (2.33) we obtain (2.19).
Finally, let P be a cluster point of the net {Pε}, as ε → 0. Then there exists a

sequence εm → 0 such that P = lim
εm→0

Pεm . Thus, bεm,i,l is bounded. From (2.19)

it follows that Ti,l+1(P ) = Ri+Li
2 , 1 ≤ i ≤ k. �

The following corollary is an immediate consequence of Theorem 2.9 with l =
q − 2.

Corollary 2.10. If f ∈ c2±(q−1)(xi)∩ t2q−2(xi), 1 ≤ i ≤ k, then there exists the best
local approximation of f on {xi : 1 ≤ i ≤ k}, from Πn. It is the unique polynomial
H ∈ Πn satisfying H(j)(xi) = (Li+Ri2 )(j)(xi), 0 ≤ j ≤ q − 1, 1 ≤ i ≤ k, where
Li, Ri ∈ Πq−1 satisfy Definition 1.1. In the case q = 1 or k = 1 we only assume
f ∈ c2±(q−1)(xi), 1 ≤ i ≤ k.

This result was proved in [4, Theorem 2.9], for f ∈ t2−(q−1)(xi) ∩ t2+(q−1)(xi) ∩
t2q−2(xi), 1 ≤ i ≤ k. We give an example to show that Corollary 2.10 extends that
Theorem 2.9 from [4]. More precisely, if q = 2, k = 1, and x1 = 0, we define a
function f ∈ c2±1(0) ∩ t20(0) which is not L2 right differentiable of order 1 at 0.
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Example 2.11. Let εm = 1
m , m ∈ N, hm = εm − 1

m6 . It is easy to see that
εm+1 < hm < εm, m ≥ 2. We consider the function f : [−1

2 ,
1
2 ]→ R defined by

f(x) =
{
m if x ∈ [hm, εm]
0 if x /∈ ∪m≥2[hm, εm],

f(0) = 0 and f(x) = f(−x) if x ∈ [− 1
2 , 0). Let 0 < ε ≤ 1

2 . Suppose that there
exists m ∈ N such that ε ∈ [hm, εm]; then

0 ≤ ε−3
∫ ε

0
f(x) dx ≤ h−3

m

∫ εm

0
f(x) dx = h−3

m

∞∑
j=m

∫ εj

hj

f(x) dx

= h−3
m

∞∑
j=m

∫ εj

hj

j dx = h−3
m

∞∑
j=m

j(εj − hj) = h−3
m

∞∑
j=m

j−5 � 1
m
.

(2.34)

If ε /∈ ∪j≥2[hj , εj ], let m ∈ N be such that 0 < hm < εm < ε < hm−1. Then

0 ≤ ε−3
∫ ε

0
f(x) dx ≤ ε−3

m

∫ εm

0
f(x) dx ≤ h−3

m

∫ εm

0
f(x) dx � 1

m
. (2.35)

Since 0 ≤
∫ ε

0 f(x)x dx ≤
∫ ε

0 f(x) dx, and f is even, from (2.34) and (2.35) we have
that f ∈ c2±1(0). On the other hand, f is not L2 right differentiable of order 1
at 0. In fact, for S ∈ Π1 there exists a m0 ∈ N such that |S(x)| ≤ f(x)

4 , for all
x ∈ [hj , εj ], j ≥ m0. So, |f(x) − S(x)|2 ≥ f(x)(f(x) − 2|S(x)|) ≥ f(x)2

2 for all
x ∈ [hj , εj ], j ≥ m0. Therefore, for m ≥ m0 we have

ε−3
m

∫ εm

0
|(f − S)(x)|2 dx ≥ ε−3

m

∞∑
j=m

∫ εj

hj

|(f − S)(x)|2 dx

≥ 1
2ε
−3
m

∞∑
j=m

∫ εj

hj

|f(x)|2 dx = 1
2ε
−3
m

∞∑
j=m

j2(εj − hj) = 1
2ε
−3
m

∞∑
j=m

j−4 � 1
2 .

Finally, we will prove that f is L2 differentiable of order 0 at 0. If either ε ∈
[hm, εm] or ε ∈ [εm, hm−1], we obtain

0 ≤ 1
ε

∫ ε

0
f(x)2 dx ≤ h−1

m

∫ εm

0
f(x)2 dx = h−1

m

∞∑
j=m

∫ εj

hj

f(x)2 dx

= h−1
m

∞∑
j=m

j2(εj − hj) = h−1
m

∞∑
j=m

j−4 � 1
m2 .
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Instituto de Matemática Aplicada de San Luis, CONICET, Universidad Nacional de San Luis,
(5700) San Luis, Argentina
ridolfi@unsl.edu.ar

Received: July 29, 2016
Accepted: May 15, 2017

Rev. Un. Mat. Argentina, Vol. 58, No. 2 (2017)

http://www.ams.org/mathscinet-getitem?mr=3114610
http://www.ams.org/mathscinet-getitem?mr=3338788
http://www.ams.org/mathscinet-getitem?mr=1545445

	1. Introduction
	2. The main results
	References

