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THE GROUP OF AUTOMORPHISMS OF THE MODULI SPACE
OF PRINCIPAL BUNDLES WITH STRUCTURE GROUP

F4 AND E6

ÁLVARO ANTÓN SANCHO

Abstract. Let X be a smooth complex projective irreducible curve of genus
g ≥ 3. Let G be the simple complex exceptional Lie group F4 or E6 and let
M(G) be the moduli space of principal G-bundles. In this work we describe
the group of automorphisms of M(G). In particular, we prove that the only
automorphisms of M(F4) are those induced by the automorphisms of the base
curve X by pull-back and that the automorphisms of M(E6) are combinations
of the action of the automorphisms of X by pull-back, the action of the only
nontrivial outer involution of E6 on M(E6) by taking the dual and the action
of the third torsion of the Picard group of X by tensor product. We also prove
a Torelli type theorem for the moduli spaces of principal F4 and E6-bundles,
which we use as an auxiliary result in the proof of the main theorems, but
which is interesting in itself. We finally draw some conclusions about the way
we can see the natural map M(F4) → M(E6) induced by the inclusion of
groups F4 ↪→ E6.

1. Introduction

Let X be a smooth complex projective irreducible curve of genus g ≥ 3 and let
G be a complex reductive Lie group. Principal G-bundles over X are geometric
objects which come with an action of the group of transformations or structure
group, G. The set of isomorphism classes of principal G-bundles is parametrized by
the cohomology set H1(X,G). Using Mumford’s GIT [16], Ramanathan [18, 19, 20]
gave a notion of stability for principal G-bundles in order to construct the moduli
space of polystable principal G-bundles, M(G), as a coarse moduli scheme whose
points correspond bijectively to isomorphism classes of polystable G-bundles. This
construction works when g ≥ 2, but we will consider g ≥ 3 for technical reasons in
the proof of the main theorem of Section 5.

These spaces have a very rich topology and geometry and have been inten-
sively studied in mathematics and theoretical physics. A way to study the mod-
uli space M(G) is to describe the subvarieties and automorphisms of M(G), in
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the spirit of Serman [22] and Kouvidakis and Pantev [15]. Serman [22], for ex-
ample, proves that the forgetful morphisms M(O(n,C)) → M(GL(n,C)) and
M(Sp(2n,C)) → M(SL(2n,C)) are closed immersions, so they define subvarieties
which are isomorphic to M(O(n,C)) and M(Sp(2n,C)) respectively. It is also
interesting to study the group of automorphisms of this kind of moduli spaces.
This problem connects with the work of Kouvidakis and Pantev [15]. They de-
termined the group of automorphisms of the moduli space in the particular case
of vector bundles with a given rank and degree. They proved that any automor-
phism of M(SL(n,C)) is a combination of the automorphisms of the moduli space
which comes from the outer involution of the Dynkin diagram, E 7→ E∗, with the
automorphisms which consists in tensoring by a line bundle of order n and the
automorphisms which come from automorphisms of the base curve, X. In [14]
the same result is proved with other techniques that involve Hecke curves, which
are minimal rational curves coming from Hecke transformations. Other authors
have recently worked along this path dealing with other particular groups (for ex-
ample, Biswas, Gómez and Muñoz [5, 6]). Using the perspective of [14], Biswas,
Gómez and Muñoz [6] give a complete description of the group of automorphisms
of M(Sp(2n,C)). They prove that these automorphisms combine automorphisms
of the base curve with those induced by line bundles of order two. Observe that
in this case there are no automorphisms of the moduli space coming from outer
automorphisms of the group because the Dynkin diagram has no symmetries.

In this work, we study the case in which the structure group G is F4 or E6, both
simple complex Lie groups of exceptional type. We focus on these groups because
our arguments use strongly the form of the homogeneous invariant polynomials of
the groups. These arguments are not generalizable to other groups (for example,
to orthogonal groups). For the rest of the groups of type E, it would also be
needed a specific description of the parabolic subgroups of the group, which we have
not found in the literature, in order to give a concrete notion of stability for the
corresponding principal bundles. In particular, we prove that the automorphisms
of M(F4) are exactly those induced by the automorphisms of the curve X and that
every automorphism of M(E6) is a combination of an automorphism of X, the
action on M(E6) of an outer automorphism of E6 and the tensor product by an
element of the third torsion of the Picard group of X (the last automorphisms are
induced by the action of H1(X,Z(E6)) on M(E6), where Z(E6) ∼= Z3 is the center
of E6). Observe that these two results are analogous, since F4 is centerless and it
admits no nontrivial outer automorphisms. The conjecture is that for any complex
reductive Lie group G, every automorphism of the moduli space of principal G-
bundles, M(G), is a combination of the action on M(G) of an outer automorphism
of G, the action of an element of H1(X,Z(G)), where Z(G) denotes the center of G,
and the action of an automorphism of the base curve by pull-back. This conjecture
has only been proved, as far as we know, for the special linear and general linear
groups in [15] and for symplectic groups in [5].

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)



AUTOMORPHISM GROUP OF M(E6) AND M(F4) 35

In Theorem 3 we prove that the group of automorphisms of M(F4) is exactly
Aut(X), which acts on M(F4) by taking the pull-back of the bundles. In Theo-
rems 4 and 5 we reason similarly to how we did with the case of F4 and we prove
that the group of automorphisms of M(E6) is isomorphic to Pic(X)[3]o(Out(E6)×
Aut(X)), where Pic(X)[3] denotes the third torsion of the Picard group of X and
it acts on M(E6) by tensor product, Out(E6) ∼= Z2 is the group of outer automor-
phisms of E6 and the only notrivial outer involution in Out(E6) acts on M(E6)
by taking the dual bundle. The group Aut(X) also acts on M(E6) by taking the
pull-back. Finally, this description of the groups of automorphisms will help us
to obtain some consequences about how we can see M(F4) included in M(E6)
(Propositions 8 and 9). To do all this we first prove a Torelli theorem for M(F4)
and M(E6) (Theorems 1 and 2), which says that the moduli space determines the
base curve, in the sense that if X and X ′ are complex algebraic curves of genus g
and g′, respectively, with g, g′ ≥ 3, G is F4 or E6, M(G) is the moduli space of
principal G-bundles over X and M ′(G) is the moduli space of principal G-bundles
over X ′, then if M(G) ∼= M ′(G), the corresponding base curves are also isomor-
phic, X ∼= X ′. This result, which is interesting in itself, is also relevant to prove
Theorems 3 and 4.

The paper is organized as follows. Section 2 gives a description of the groups
F4 and E6, emphasizing some facts like the algebra of invariant homogeneous poly-
nomials and a concrete description of the filtrations induced on the bundles by
maximal parabolic subgroups of the groups. These facts are relevant in order to
present, in Section 3, an appropriate notion of stability of principal F4 and E6-
bundles. Section 4 is devoted to describe the Hitchin integrable system associated
to M(F4) and M(E6). We also define an action of C∗ on that system and prove
some auxiliary results which will be useful in the proofs of the main results of the
paper. In Section 5 we prove the Torelli theorem for M(F4) and M(E6) (Theo-
rems 1 and 2) and in Sections 6 and 7, we give the precise description of the group
of automorphisms of M(F4) (Theorem 3) and M(E6) (Theorem 5), respectively.
Finally, Section 8 is devoted to study some consequences of our description of the
groups of automorphisms on the geometry of M(E6).

2. The groups F4 and E6

We are interested in the group E6, the only exceptional simple complex Lie
group which admits nontrivial outer automorphisms, and in F4, another exceptional
complex Lie group which can be seen in a natural way as a subgroup of E6. In
[1] and [24], a good review about exceptional groups can be read. Ferrar [11, 12]
also provides a good framework about the group E6. Also in [3] some of the topics
treated here for the group E6 are described.

We consider any complex algebra, A. We will suppose thatA is non-commutative.
A classical example is the algebra of k×k matrices over the complex numbers, with
k ≥ 2, equipped with the natural product of matrices, which is an associative and
non-commutative complex algebra. In the algebra A, the Jordan product ◦ is
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defined to be the anti-commutator of the product of the algebra A, that is,

A ◦B = 1
2(AB +BA)

for A,B ∈ A. This Jordan product induces in A the structure of a (probably
non-associative) algebra which satisfies the Jordan identity, that is,

(A ◦B) ◦ (A ◦A) = A ◦ (B ◦ (A ◦A))

for any elements A and B of the algebra A. This algebra is called Jordan algebra.
Jordan algebras have been intensively studied and completely classified. In

particular, a Jordan algebra which is constructed by introducing the ◦ product to
an associative algebra A is called special Jordan algebra; if the original algebra
A is non-associative, it is called exceptional Jordan algebra. It can be proved
that there is only one simple exceptional Jordan algebra and that this exceptional
algebra is finite-dimensional. It is called Albert algebra ([23, Sec. 5.8]) and may
be constructed by introducing the Jordan product in the algebra h3(O) of 3 × 3
Hermitian matrices over the algebra of the octonions. The Albert algebra thus
defined has dimension 27.

Consider, from now on, the Albert algebra. The Jordan product gives rise to
three maps on this algebra: a linear map a defined by the trace, a bilinear map
b defined by b(A,B) = Tr(A ◦ B), and a trilinear map c defined by c(A,B,C) =
Tr((A ◦ B) ◦ C), where Tr denotes the trace map. The map b is symmetric, since
the Jordan product is commutative. It then induces a quadratic form q. From the
Jordan identity it can be seen that c(A,B,C) = c(B,C,A). Then the trilinear map
t is also symmetric. It then gives rise to the so called norm n.

Here, and throughout the text, we will not use the word form to denote anti-
symmetric maps, since all the multilinear maps that will appear will be symmetric.
The word form will then be used to denote symmetric multilinear maps. With
this notation, the trilinear form t will be denoted, for convenience to our interests,
by Ω.

We may define E6 to be the group of linear automorphisms of the complexifica-
tion of the Albert algebra which preserves the norm n. That is,

E6 = {α ∈ GL(h3(O)C) : n(α(A)) = n(A) ∀A ∈ h3(O)}.

The norm n gives the determinant of a general element of h3(O)C. Therefore, the
group E6 is exactly the group of determinant preserving linear transformations of
h3(O)C. Its Lie algebra e6 is then the Lie algebra given by linear endomorphisms
preserving the 3-form Ω. There are two fundamental well-known characteristics of
E6 which will be relevant to us:

(1) The center of E6, Z(E6), is isomorphic to the cyclic group of order three,
Z3.

(2) The group E6 is simply connected.
The group E6 thus defined is the simply connected complex Lie group with Lie

algebra e6.

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)



AUTOMORPHISM GROUP OF M(E6) AND M(F4) 37

We can also define the Lie group F4 as the group of automorphisms of the Albert
algebra. These automorphisms are precisely those linear maps which preserve the
three forms, a, q and n. These forms are exactly those which define the minimal
polynomial of a general element of h3(O)C, so F4 contains all linear automorphisms
of h3(O)C which preserve the minimal polynomial. It is then clear that F4 is a sub-
group of E6. The complex Lie group F4 is then a centerless and simply connected
complex Lie group whose Lie algebra, f4, is then the algebra of derivations of the
Albert algebra.

The group E6 admits six fundamental representations, whose dimensions are
27, 351, 2925, 351, 27 and 78. The Albert algebra gives rise to a 27-dimensional
complex representation of E6, E6 → SL(h3(O)C). This representation, which is a
fundamental representation, is irreducible and faithful and it is inequivalent to its
dual, which of course is also 27-dimensional irreducible and faithful. In fact, these
are the smallest irreducible representations of E6. The fundamental 27-dimensional
representation of E6 restricts to a 26-dimensional representation of F4, which is
irreducible and in fact the fundamental representation of F4. The natural inclusion
of groups SL(26,C) ↪→ SL(27,C) is compatible with the inclusion F4 ↪→ E6.

Since E6 is simply connected, there exists only one nontrivial outer automor-
phism of E6, σ, which corresponds to the unique nontrivial symmetry of the Dynkin
diagram of e6, of order 2, so σ is an involution. Since the Dynkin diagram of the
group F4 admits no symmetries, the group of outer automorphisms of F4 is trivial.

A description of parabolic subgroups of E6 and the induced filtrations can be
read in [21], following [17]. We briefly recall it here in order to make sense of
the notion of stability of principal E6-bundles. The group E6 is the group of
automorphisms of a 27-dimensional complex vector space V equipped with a linear
3-form, Ω. Any filtration of V induced by a maximal parabolic subgroup of E6 is
of the form

0 ⊆ V0 ⊆ · · · ⊆ Vr ⊆ V, (1)

where V0, V1, . . . , Vr are isotropic subspaces of V for the 3-form Ω. Recall that an
isotropic subspace of V is a subspace W such that Ω(W,W,W ) = 0. It is said to
be maximal isotropic if it is not properly contained in other isotropic subspace.

The group F4 is the subgroup of E6 which consists of automorphisms of (V,Ω)
equipped also with a certain symmetric 2-form, ω. The group F4 is, then, the group
of automorphisms of (V,Ω, ω). There exists a complex 26-dimensional vector space
W such that V projects over W and the 2-form ω is nondegenerate on W (this W
is given by the fundamental representation of F4 and it also inherits the 3-form Ω).
The group F4 is then a subgroup of SO(26,C). It is then clear that any filtration
of W induced by a proper parabolic subgroup of F4 is of the form

0 (W0 ( · · · (Wr ⊆W⊥r ( · · · (W⊥0 (W,

where each Wi is an isotropic subspace of W for the bilinear form ω and the
orthogonality ⊥ is also given by ω. Since this filtration should also be a filtration
induced by a parabolic subgroup of E6, a maximal parabolic subgroup of F4 induces
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a filtration of the form

0 (W0 (W1 ( · · · (Wr ⊆W⊥r ( · · · (W⊥1 (W⊥0 (W, (2)

where W0,W1, . . . ,Wr are isotropic for ω and Ω.
Finally, we will study the invariant polynomials of the groups F4 and E6 for

the adjoint action of the group on their Lie algebra. Recall the for any complex
semisimple Lie group G with Lie algebra g, an invariant homogeneous polynomial
of degree d for the adjoint representation of G in g, Ad : G→ GL(g), is an element
p ∈ Symd g∗ such that

p(v1, . . . , vd) = p (Ad(g)(v1), . . . ,Ad(g)(vd))

for all v1, . . . , vd ∈ g and all g ∈ G. Chevalley [7] proved that the algebra of
invariant homogeneous polynomials of G is generated by r = rkG elements.

Let G = E6. A family of generators of the algebra of invariant homogeneous
polynomials of E6 is given by six polynomials {p2, p5, p6, p8, p9, p12}, where the
degree of pi is i. These polynomials are defined by the following expression: if
A ∈ e6,

pi(A) = Tr(∧iA),
where Tr denotes the trace map and A is seen as an element of SL(27,C) via the
fundamental 27-dimensional representation of E6. For any element A ∈ e6, the
characteristic polynomial of A is

det(yI −A) = y27 +
∑

r=2,5,6,8,9,12
pr(A)y27−r.

The four polynomials of even degree restrict to invariant homogeneous polynomials
of F4 and the polynomials p5 and p9 vanish when restricted to F4, so, keeping the
same notation, {p2, p4, p6, p12} is a basis of the algebra of invariant homogeneous
polynomials of F4. We also have that, if A ∈ f4, the characteristic polynomial of
A is

det(yI −A) = y26 +
∑

r=2,6,8,12
pr(A)y26−r.

3. The moduli space of principal bundles with structure group F4
and E4

Let X be a smooth complex projective irreducible curve of genus g ≥ 3. A
principal E6-bundle over X is a complex vector bundle of rank 27 and trivial
determinant equipped with a global holomorphic symmetric non-degenerate 3-form,
Ω. Given a principal E6-bundle E, a subbundle F of E is said to be isotropic if
Ω(F, F, F ) = 0. The isotropic subbundle F is said to be maximal isotropic if it is
not properly contained in other isotropic subbundle.

Let E be a principal E6-bundle. A reduction of structure group of E to a
maximal parabolic subgroup of E6 can be seen as a filtration of the form

0 ( E0 ( E1 ( · · · ( Er ( E,
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where E0, . . . , Er are isotropic subbundles of E for Ω, according to (1). A re-
duction of E to a Levi subgroup of a maximal parabolic subgroup gives rise to a
decomposition of E into a direct sum of vector subbundles of the form

E = E0 ⊕ E1/E0 ⊕ · · · ⊕ E/Er,

where E0, . . . , Er are isotropic subbundles of E for Ω.
From this, an appropriate notion of stability and polystability for principal E6-

bundles can be given.

Definition 1. Let E be a principal E6-bundle with associated symmetric holo-
morphic 3-form Ω. Then E is semistable if for every proper isotropic subbundle E′
of E we have that degE′ ≤ 0. It is stable if for every proper isotropic subbundle
E′ of E we have that degE′ < 0. It is polystable if it can be written as a direct
sum of vector subbundles

E = E0 ⊕ E1/E0 ⊕ · · · ⊕ E/Er,

where E0, . . . , Er are degree 0 isotropic subbundles of E for the form Ω.

The moduli space of polystable principal E6-bundles is an algebraic variety of
dimension 78(g−1) which parametrizes isomorphism classes of polystable principal
E6-bundles.

Similarly, a principal F4-bundle can be seen as a holomorphic vector bundle E
of rank 26 equipped with a non-degenerate symmetric holomorphic 3-form and a
non-degenerate symmetric holomorphic bilinear form ω. From (2) it follows that a
reduction of structure group of E to a maximal parabolic subgroup of F4 gives a
filtration of the form

0 ( E0 ( · · · ( Er ⊆ E⊥r ( · · · ( E⊥0 ( E,

where E0, . . . , Er are proper subbundles of E which are isotropic for Ω and ω for
all k = 0, . . . , r. We then have the following notions of stability and polystability
for principal F4-bundles.

Definition 2. Let E be a principal F4-bundle with associated symmetric holo-
morphic 3-form Ω and symmetric holomorphic 2-form ω. Then E is semistable if
for every proper subbundle E′ of E which is isotropic for Ω and ω, we have that
degE′ ≤ 0. It is stable if for every such subbundle E′ of E we have that degE′ < 0.
It is polystable if it can be written as an orthogonal direct sum of vector subbundles

E = W ⊕ (E′ ⊕ E′∗) ,

where E′ is proper isotropic for Ω and ω, degE′ = degW = 0.

The moduli space of polystable principal F4-bundles is then an algebraic vari-
ety of dimension 52(g − 1) which parametrizes isomorphism classes of polystable
principal F4-bundles.

We have a natural map between algebraic varieties M(F4)→M(E6) given by

E 7→ E ⊕O, (3)
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where O is the trivial line bundle over X. Observe form Definitions 1 and 2 that
any strictly polystable principal F4-bundle is also strictly polystable when seen as
E6-bundle via the map (3).

4. The Hitchin integrable system of M(F4) and M(E6)

Let X be a smooth complex projective irreducible curve of genus g ≥ 3. Let
M(G) be the moduli space of polystable principal G-bundles over X, where G is
a semisimple complex Lie group, and let M∗(G) be the moduli space of stable and
simple principal G-bundles, which is a dense open subset of M(G). The tangent
space to M∗(G) at a stable and simple principal G-bundle E is isomorphic to
H1(X,E(g)) (g is the Lie algebra of G), which, by Serre duality, coincides with
H0(X,E(g) ⊗K)∗, where K is the cotangent bundle over the curve X and E(g)
denotes the adjoint bundle of E. Then the cotangent space of M∗(G) at the point
corresponding to the bundle E is naturally identified with

T ∗EM∗(G) ∼= H0(X,E(g)⊗K).

The elements of H0(X,E(g)⊗K) are called Higgs fields of the bundle E.
The adjoint vector bundle E(g) is a bundle of Lie algebras which are isomorphic

to the Lie algebra g. Let p be an invariant homogeneous polynomial of degree d.
Then, it is clear (see [13]) that p defines a map, which we will call also p, by acting
on the fibers of E(g):

p : H0(X,E(g)⊗K)→ H0(X,Kd).

Let pd1 , . . . , pdk
be a family of generators of the ring of invariant homogeneous

polynomials of g (k = rk g). Then we obtain a map

H = (pd1 , . . . , pdk
) : H0(X,E(g)⊗K)→

k⊕
i=1

H0(X,Kdi), (4)

where di = deg pdi
for i = 1, . . . , k. In [13] it is proved that this map is proper and

it is well defined uniquely.
We have the following result ([13, Prop. 4.1]).

Proposition 1. Let E be a stable principal G-bundle over X. Then

dimH0(X,E(g)⊗K) = dim
k⊕
i=1

H0(X,Kdi).

This says that

dimT ∗EM∗(G) = dim
k⊕
i=1

H0(X,Kdi),

where M∗(G) is the smooth locus of M(G). That is,

dimM(G) = dim
k⊕
i=1

H0(X,Kdi).
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The map H is called the Hitchin map and the vector space

B(G) =
r⊕
i=1

H0(X,Kdi)

is called the base of the Hitchin map. In [13] it is proved that dimM(G) =
dimB(G). Therefore, the Hitchin map induces n = dimM(G) complex valued
functions f1, . . . , fn on T ∗EM∗(G). Since the invariant homogeneous polynomials
act on the Higgs fields of the bundles, it is clear that the functions fi are defined
on T ∗M∗(G). In [13, Prop. 4.5], Hitchin proved the following result.

Proposition 2. The n functions fi defined on T ∗M∗(G) Poisson-commute (with
the canonical symplectic structure of the cotangent bundle).

This gives a completely integrable system on M(G) (see [2]).
To summarize, the moduli space of principal G-bundles, M(G), gives the struc-

ture of a Hitchin system, that is, there is a moduli space of G-Higgs bundles,M(G),
equipped with a Hitchin map, H, which is proper and induces an integrable sys-
tem, and a Zariski dense open set of M(G), T ∗M∗(G), whose complement has
codimension ≥ 2. This Hitchin map is well defined uniquely.

We now recall some facts about spectral curves and Prym varieties associated
to the moduli space of G-Higgs bundles. Let ρ be an irreducible representation
of G of dimension n. This representation allows us to see each G-Higgs bundle
as a pair (E,ϕ) where E is a certain holomorphic vector bundle of rank n and
ϕ ∈ H0(X,E(g)⊗K).

Given an element a ∈ B of the base of the Hitchin map, it defines a cover
πa : Xa → X whose general fiber is given by the roots of a certain equation
determined by a. More precisely, given any a ∈ B, this element induces a curve Xa

which is a cover of X, is contained in |K| and whose fibers can be identified with
the roots of a given equation. This curve is called spectral curve. The construction
of this spectral curve is done in detail by Donagi in [8] for any complex reductive
Lie group G. Also for any reductive complex Lie group G, the Prym variety of the
curve Xa, Prym(Xa), is defined to be an abelian subvariety of the Jacobian of Xa

such that the fiber of the Hitchin map, which is a proper map, over a is isomorphic
to that variety: if a ∈ B, we have that

H−1(a) ∼= Prym(Xa).
In [2], Adler and Moerbeke raised the question of the dependence of the spectral

curve on the representation ρ. They proved that two different representations of
G may lead to different spectral curves but their Jacobian varieties must contain a
common abelian subvariety in which the Prym variety is contained. So the Prym
variety is intrinsically defined for every complex reductive Lie group G and also the
spectral curves are intrinsically defined when the representation ρ is fixed, which
will be our case.

When G = F4 we have that the base of the Hitchin map H : T ∗M∗(F4)→ B(F4)
is

B(F4) = H0(K2)⊕H0(K6)⊕H0(K8)⊕H0(K12). (5)
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Similarly, when G = E6, the base of the Hitchin map is

B(E6) = H0(K2)⊕H0(K5)⊕H0(K6)⊕H0(K8)⊕H0(K9)⊕H0(K12). (6)

If G = F4 and a = (a2, a6, a8, a12) is a general element of the base B of the Hitchin
map, where ar ∈ H0(Kr), the spectral curve Xa associated to a is the curve in the
total space |K| of K defined by the equation

y12 +
∑

r=2,6,8,12
ar(x)y12−r = 0,

where x denotes the coordinate for the curve X and y denotes the tautological
coordinate dx along the fibers of the projection |K| → X. Observe that, if (E,ϕ)
is an F4-Higgs bundle with H(E,ϕ) = a, then the previous equation is a factor
of the characteristic polynomial of ϕ. Similarly, if G = E6, the element a is of
the form a = (a2, a5, a6, a8, a9, a12) and the spectral curve Xa is the curve in |K|
defined by the equation

y12 +
∑

r=2,5,6,8,9,12
ar(x)y12−r = 0.

From now on, we fix G = F4 or E6. The fiber of the cotangent bundle T ∗M∗(G)
at a simple principal G-bundle E can be identified with the group of Higgs fields

T ∗EM∗(G) ∼= H0(X,E(g)⊗K).

It is well known that T ∗M∗(G) admits an intrinsic C∗-action which is defined by
multiplication on the Higgs field, since the cotangent spaces are C-vector spaces:
if (E,ϕ) ∈ T ∗M∗(G) and λ ∈ C∗, then

λ · (E,ϕ) = (E, λϕ).

We also have a natural action of C∗ on the base of the Hitchin map. In the case
of F4, this action can be formulated in this way: if (a2, a6, a8, a12) ∈ B(F4) and
λ ∈ C∗, then

λ · (a2, a6, a8, a12) = (λ2a2, λ
6a6, λ

8a8, λ
12a12). (7)

Similarly, if (a2, a5, a6, a8, a9, a12) ∈ B(E6) and λ ∈ C∗, then

λ · (a2, a5, a6, a8, a9, a12) = (λ2a2, λ
5a5, λ

6a6, λ
8a8, λ

9a9, λ
12a12). (8)

Lemma 1. Let G be the complex simple Lie group F4 or E6 and let B be the vector
space B(F4) or B(E6), respectively, defined in (5) and (6). Let H : T ∗M∗(G)→ B
be the Hitchin map. Then, the action of C∗ on B defined in (7) or (8), respectively,
is the unique C∗-action on B which makes the Hitchin map C∗-equivariant, with
the intrinsic C∗-action defined in T ∗M∗(G) by multiplication by complex numbers.

Proof. The cotangent space T ∗M∗(G) is naturally embedded in the moduli space
M(G) of polystable G-Higgs bundles and the codimension of the embedding is at
least two in the smooth fibers ([10]). Since the Hitchin map H extends to a map
H̄ :M(G)→ B, the result holds for T ∗M∗(G). �
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Lemma 2. Let G be the complex simple Lie group F4 or E6 and let B be the vector
space B(F4) or B(E6), respectively, defined in (5) and (6). Let H : T ∗M∗(G)→ B
be the Hitchin map. Let Br be the summand H0(Kr) of B, for r = 2, 5, 6, 8, 9, 12 or
r = 2, 6, 8, 12. Then, Br is uniquely determined by the map H. In particular, B12
is intrinsically defined. The linear structure of B can also be recovered from H.
Proof. The action of C∗ on B defined in (7) or (8) determines the origin 0 ∈ B,
since it is the only fixed point of the action. The vector space B is thus endowed
with an affine structure and, moreover, one can recover the tangent subspace T0Br
as the subspace of T0B where the weight of the C∗-action is λr. We consider the
pull-back of this space T0Br to T ∗EM∗(G), where E is a fixed polystable principal
G-bundle. The space Br can be recovered as the projection over B of the induced
linear space. This also allows us to recover the linear structure of B.

Finally, the space B12 is then intrinsically defined since the weight spaces of B
are well-defined, the action of C∗ on T ∗M∗(G) is intrinsically defined and, by
Lemma 1, the induced action of C∗ on B is uniquely determined. �

5. Torelli theorem for principal F4 and E6-bundles

Let X be a smooth complex projective irreducible curve of genus g ≥ 3. Let
G be the complex simple Lie group F4 or E6 and let M(G) be the moduli space
of principal G-bundles. Let H be the Hitchin map defined in (4) and let B be its
base. From (5) and (6) we know that

B = H0(K2)⊕H0(K6)⊕H0(K8)⊕H0(K12)
when G = F4 and

B = H0(K2)⊕H0(K5)⊕H0(K6)⊕H0(K8)⊕H0(K9)⊕H0(K12)
when G = E6. Let B12 be the component H0(K12) of B in the expressions above,
which is well defined by Lemma 2.

In this section we will prove the Torelli theorem for M(G), that is, we will see
that the moduli space determines the curve up to isomorphisms.

Let R ⊆ B be the divisor given by invariant polynomials corresponding to
singular spectral curves. The divisor R consists of two components, R = R1 ∪R2,
where R1 consists of those elements whose component in B12 has a double root and
R2 consists of elements which correspond to polynomials which have a node. Let
R0
i be the locus of Ri, for i = 1, 2, consisting of points in B whose corresponding

spectral curves contain no extra singularities.
We have to prove that R is intrinsically defined. To do that we will see that

the singular spectral curves in the Hitchin total space correspond with points in
the Hitchin base, a ∈ B, such that the fiber of a by the Hitchin map, which is
isomorphic to Prym(Xa), is a rational variety and that the nonsingular curves
correspond to points in B whose associated Prym variety is an abelian variety.
Since the condition of being a rational variety is preserved by isomorphisms of the
Hitchin total space, R will be intrinsically defined.

This follows from the discussion before Proposition 3.1 in [5], which we par-
ticularize here to our groups. We briefly sketch the construction explained there
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for the symplectic group. Let a ∈ B be a point in the base of the Hitchin map
such that the corresponding spectral curve, Xa, admits only one singularity at a
point r, which is a simple node. Let πa : X̃a → Xa be its normalization and let
r1, r2 be the preimages of r in X̃a. We consider the compactified Jacobian of Xa,
J(Xa), which parametrizes torsionfree sheaves of rank 1 and degree 0 on Xa. It is
birational to a P1-fibration over J(X̃a), which we will call P . A point in P can be
seen as a line bundle L over X̃a together with a quotient q : Lr1 ⊕ Lr2 � C, up
to scalar multiple. Since Xa comes with an automorphism of order three, τ , this
induces an automorphism of order three of X̃a, τ̃ . This automorphism acts on any
pair (L, q) as before in the following way: τ̃(L, q) = ((τ2)∗L∗⊗ τ∗L∗, qτ ), where qτ
is represented by [c : a : b] if q is represented by [a : b : c] (with the notation of [5]).
Now, the automorphism τ̃ induces an automorphism of order three on J(Xa) whose
restriction to the open subset J(Xa) of J(Xa) is given by L 7→ (τ2)∗L⊗τ∗L∗. Then
the fixed point variety of this automorphism is

{L ∈ J(Xa) : (τ2)∗L⊗ τ∗L⊗ L ∼= O}. (9)

We will call this variety Prym(Xa, τ). This is a uniruled variety, since it admits
a surjective morphism from a subvariety of P , which is a P1-fibration, defined by
pull-back of P → J(X̃a).

Now, if Xa is a spectral curve which admits three simple nodes and, as before,
X̃a denotes its normalization, then J(Xa) is birational to a P1 × P1 × P1-bundle
P on J(X̃a), the spectral curve Xa admits an automorphism of order three, τ ,
which permutes the three nodes and this automorphism induces an automorphism
of order three of P such that the fixed points admit the same form as before, so this
defines a P1-fibration on Prym(X̃a). The image on J(Xa) is exactly Prym(Xa, τ),
which is a uniruled variety.

From this construction, we may prove Propositions 3, 4 and 5. These are anal-
ogous to Propositions 3.1 and 3.2 and Theorem 3.3 of [5], with the only special
features of the construction sketched before, and the same proofs work for our
purpose. We write them here for the paper to be self-contained.

Proposition 3. Let H : T ∗M(G) → B be the Hitchin map defined in (4) and let
a ∈ B. Then if a 6∈ R, the fiber H−1(a) is an open subset of an abelian variety.
Also, if a ∈ R0

1∪R0
2, then the fiber H−1(a) is an open subset of the uniruled variety

Prym(Xa, τ) defined in (9). In both cases, the complement of the open subsets is
of codimension at least 2.

Proof. Let M(G) be the moduli space of G-Higgs bundles, where G is the group
under consideration. Let H : M(G) → B be the Hitchin map defined on M(G).
Since the Hitchin map H is proper, if a ∈ B \ R, the corresponding fiber by the
Hitchin map, H−1(a), is an abelian variety. From [10, Theorem II.6], it follows that
the complementM(G)\T ∗M(G) is of codimension ≥ 3, under the assumption that
g ≥ 3. Therefore, the intersection of this complement with Ri is of codimension at
least 2 in Ri for i = 1, 2, so this is also true for the codimension of the corresponding
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intersections with the fiber of a by the Hitchin map, defined onM(G) and T ∗M(G),
H−1(a) \ H−1(a) ⊆ H−1(a), when a ∈ R0

1 ∪R0
2. �

Proposition 4. Let H : T ∗M(G) → B be the Hitchin map defined in (4). The
hypersurfaces H−1(Ri), for i = 1, 2, are irreducible.
Proof. Let H : M(G) → B be the Hitchin map defined on M(G). From [10,
Theorem II.5], the fibers of the Hitchin map H are Lagrangian, hence of half
dimension. This implies that the codimension of H−1(R \ R0

1 ∪ R0
2) is that of

R \R0
1 ∪R0

2 in B, which is at least two, since the fibers of H are equidimensional.
This proves the result. �

Proposition 5. Let H : T ∗M(G) → B be the Hitchin map defined in (4). The
subvariety H−1(R) is the closure of the union of the complete rational curves in
T ∗M(G).
Proof. The image by H of any P1 contained in H−1(R) must be a point of B, since
it is a complete curve, so this P1 is contained in a fiber of the Hitchin map over
an element a ∈ B. This a must be in R, by Proposition 3, so this P1 is contained
in H−1(R). Moreover, from Proposition 3, there exists a family of P1 covering the
fibers over the elements of R0

1 ∪R0
2. The closure of this family is H−1(R) because

this variety is irreducible, by Proposition 4. This proves the result. �

We may now define the following divisor
C = B12 ∩ (R1 ∪R2). (10)

The divisor C is intrinsically defined, since R is intrinsically defined and B12 is
uniquelly determined by H, by Lemma 2.
Lemma 3. The divisor C defined in (10) is irreducible.
Proof. If a12 ∈ B12, the corresponding element in B is (0, . . . , 0, a12) and the
induced polynomial is y12+a12(x) = 0. The corresponding spectral curve has (x, 0)
as a singular point if and only if a12(x) = a′12(x) = 0. Therefore, C = R1 ∩ B12.
This proves the result. �

Proposition 6. Let C be the divisor defined in (10). Then, PC ⊆ PB12 is the dual
variety of X ⊆ PB∗12 for the embedding given by the linear system |K12|.
Proof. Any element a12 ∈ B12 comes from an element (0, . . . , 0, a12) ∈ B and, then,
from a curve of the form y12 + a12(x) = 0. We have that a12 ∈ C if and only if
there exists x ∈ X such that a12(x) = a′12(x) = 0. This implies that

a12 ∈ H0(K12(−2x)) ⊆ H0(K12).
From this, it is clear that

PC = ∪x∈XPH0(K12(−2x)) ⊆ PH0(K12) = PB12.

Observe now that |K12| is very ample, since
degK12 = 12(2g − 2) > 2g + 1,

so the result finally holds. �
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Theorem 1. Let X and X ′ be smooth projective curves of genus g and g′, respec-
tively, with g, g′ ≥ 3. Let G be the simple complex Lie group F4 or E6 and let
M∗(G) and M ′∗(G) be the moduli spaces of stable and simple principal G-bundles
over X and X ′, respectively. Suppose that M∗(G) ∼= M ′∗(G). Then, X ∼= X ′.

Proof. Suppose that M∗(G) ∼= M ′∗(G) and let F : M∗(G) → M ′∗(G) be an iso-
morphism. Then, dF ∗ is an isomorphism at the level of cotangent bundles, dF ∗ :
T ∗M∗(G) → T ∗M ′∗(G). Let B and B′ be the bases of the Hitchin map of M∗(G)
and M ′∗(G), respectively. Let B12 and B′12 be the subspaces of B and B′ univocally
determined in Lemma 2. In both subspaces we have an action of C∗ which is the
restriction to that subspace of the action defined in (7) and (8): if λ ∈ C∗, λ acts
on B12 and B′12 by multiplication by λ12.

It is also clear that the isomorphism dF induces an isomorphism f : B → B′

such that the following diagram is commutative:

T ∗M∗(G) dF−−−−→ T ∗M ′∗(G)

H
y yH′
B

f−−−−→ B′,

where H : T ∗M∗(G) → B and H′ : T ∗M ′∗(G) → B′ are the Hitchin maps. It is
clear from the definition of the actions and from Lemma 1 that f is C∗-equivariant.
This shows that f restricts to a linear isomorphism f12 : B12 → B′12, which gives
rise to an isomorphism

f̄12 : PB12 → PB′12.

Then, an isomorphism of the dual varieties is induced. From Proposition 6, we get
X ∼= X ′. �

This theorem gives a Torelli type theorem when we consider the open subvariety
of stable and simple principal G-bundles. Since this open subset is dense in M(G),
we conclude the desired Torelli theorem.

Theorem 2. Let X and X ′ be smooth projective curves of genus g and g′, re-
spectively, with g, g′ ≥ 3. Let G be the complex simple Lie group F4 or E6 and
let M(G) and M ′(G) be the moduli spaces of principal G-bundles over X and X ′,
respectively. Suppose that M(G) ∼= M ′(G). Then, X ∼= X ′.

Proof. Suppose that M∗(G) ∼= M ′∗(G) and let F : M(G) → M ′(G) be an isomor-
phism. This isomorphism restricts to an isomorphism of the smooth locus of M(G)
to the smooth locus of M ′(G). By Theorem 1, the result holds. �

6. Automorphisms of M(F4)

Let X be a smooth complex projective irreducible curve of genus g ≥ 3 and let
M(F4) be the moduli space of polystable principal F4-bundles over X. Observe
that any automorphism of the base curve X, α : X → X, induces an automorphism
of the moduli space M(F4) by taking the pull-back

α∗ : M(F4)→M(F4), E 7→ α∗E. (11)

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)



AUTOMORPHISM GROUP OF M(E6) AND M(F4) 47

The aim of this section is to prove that M(F4) admits no other automorphisms that
those coming from automorphisms of the curve X as defined in (11). The strategy
will be the following. Any automorphism Φ of M(F4) induces an automorphism of
the curve X, α, which is given by the Torelli theorem (Theorem 2). We will prove
that Φ = α∗, with the notation of (11). We may suppose that α is the identity and
it suffices to show that Φ itself is the identity. To prove this we will see that, in
this situation, for any stable and simple principal F4-bundle E, the adjoint vector
bundles E(f4) and Φ(E)(f4) are isomorphic with their structures of Lie algebra
bundles and that, in this case, it must be E ∼= Φ(E) as principal F4-bundles. The
final result (Theorem 3) follows from the fact that the open subset of stable and
simple principal F4-bundles is dense in M(F4).

Lemma 4. Let E be a simple F4-bundle and let x ∈ X be any point. Then
H0(E(f4)(x)) = 0.

Proof. Any section s ∈ H0(E(f4)(x)) can be seen as a vector bundle endomorphism
of E which is compatible with the forms that define the F4-structure in E and
satisfying s(x) = 0. Since E is simple by hypothesis, it should be s = 0. �

Lemma 5. Let B be the base of the Hitchin map of M(F4) defined in (5) and let
B12 be the subspace of B given by Lemma 2. Let E be a simple principal F4-bundle
over X. Let H12 : H0(E(f4)⊗K)→ B12 be the composition of the Hitchin map H
with the projection of B over B12 (this projection exists since the summands and
the linear structure of the base B are uniquely determined by Lemma 2). For each
x ∈ X, let

B12,x = H0(K12(−x)) ⊆ B12.

Then
H0(E(f4)⊗K(−x)) = {s ∈ H0(E(f4)⊗K) : H12(s+ t) ∈ B12,x ∀t ∈ H−1(B12,x)}.

Proof. Observe first that the subset B12,x is intrinsically defined since the Hitchin
map H and B12 are uniquely determined: B12,x is nothing but the image by the
Hitchin map of those bundles (E,ϕ) such that p12(ϕ(x)) = 0. The exact sequence
of sheaves

0→ E(f4)⊗K(−x)→ E(f4)⊗K → E(f4)⊗K|x → 0
induces an exact sequence of cohomology sets of the form

H0(E(f4)⊗K)→ E(f4)⊗K|x → H1(E(f4)⊗K(−x)).
From Lemma 4 and Serre duality we obtain that

H1(E(f4)⊗K(−x)) = H0(E(f4)(x))∗ = 0,
so the map H0(E(f4) ⊗ K) → E(f4)⊗K|x, which consists in evaluating in x, is
surjective.

Take now s ∈ H0(E(f4) ⊗ K). It is clear that H12(s) ∈ B12 if and only if
p12(s(x)) = 0, where p12 is the fundamental homogeneous invariant polynomial
with degree 12. The result then follows from the following easy linear algebra fact:
the only possibility for such an element s which satisfies p12(s(x) + t(x)) = 0 for
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all t with p12(t(x)) = 0 is s(x) = 0 (observe that if a matrix A ∈ f4 satisfies that
p12(A + B) = 0 for any B ∈ f4 with p12(B) = 0, then, for any such B, the whole
line through A and nB, n ∈ N is contained in the zero set of the polynomial p12;
this necessarily implies A = 0). �

From Lemma 5, we may define a bundle F over the curve X, associated to each
simple principal F4-bundle E, whose fiber over any point x ∈ X is

Fx = H0(E(f4)⊗K(−x)).

This bundle F is nothing but the kernel of the homomorphism of vector bundles

H0(E(f4)⊗K)⊗O → E(f4)⊗K,

where O → X denotes the trivial line bundle.

Theorem 3. Let M(F4) be the moduli space of polystable principal F4-bundles over
the complex algebraic curve X. Let Φ : M(F4) → M(F4) be an automorphism of
M(F4). Then there exists an automorphism of X, α, such that Φ = α∗, where α∗
is defined in (11).

Proof. Observe first that we may suppose that the automorphism of X induced by
Φ, given by Theorem 2, is the identity.

Let E be a stable and simple principal F4-bundle, H : H0(E(f4) ⊗ K) → B
be the Hitchin map, and B be the base of the Hitchin map. For r = 2, 6, 8, 12,
let Br be the summand Br = H0(Kr) in the decomposition of B, which is well
defined by Lemma 2. For each r = 2, 6, 8, 12, let Hr be the composition of the
Hitchin map H with the projection map of B over Br. Let f : B → B be the
automorphism of B induced by Φ. Let x ∈ X. The arguments of Lemma 2 show
that Hr(H0(E(f4)⊗K(−x))) is preserved by f , so dΦ∗ preserves⋂

r=2,6,8,12
H−1
r (Hr(H0(E(f4)⊗K(−x)))).

The image of this set under the surjective map H0(E(f4) ⊗ K) → E(f4)⊗K|x
coincides with the nilpotent cone

N(E)x = {A ∈ E(f4)⊗K|x : A is nilpotent}.

Observe that the union of all the nilpotent cones when x goes through X gives
the nilpotent bundle over X associated to E, which we call N(E). The previous
discussion shows that we have an isomorphism of the nilpotent bundles N(E) →
N(Φ(E)) as bundles over X (since the automorphism of the curve X induced by
Φ is the identity, as we have supposed).

The main result in [9] shows that this automorphism between the nilpotent cone
bundles induces an automorphism of the corresponding Borel flag varieties (which
parametrizes the flags induced in the F4-bundle by the reductions of structure
group to the Borel subgroup of F4), which we will call Flag(E) and Flag(Φ(E)).

The automorphism Flag(E) → Flag(Φ(E)) induces a Lie algebra bundle iso-
morphism E(f4) ∼= Φ(E)(f4). Observe that giving a Lie algebra bundle structure is
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equivalent to giving a principal Aut(f4)-bundle together with a reduction of struc-
ture group to F4, corresponding to E. Since F4 is centerless and it admits no
outer automorphisms, the Lie algebra automorphism E(f4) ∼= Φ(E)(f4) gives an
automorphism of principal F4-bundles E ∼= Φ(E).

This holds for any E of a dense open subset of M(F4), so the result is finally
proved. �

7. Automorphisms of M(E6)

Let M(E6) be the moduli space of polystable principal E6-bundles over the
complex algebraic curve of genus g ≥ 3, X. At first glance, we recognize three
types of automorphisms of M(E6): one coming from the action of Out(E6) on
M(E6), those induced by the elements of the group H1(X,Z(E6)), and those given
as the pull-back by an automorphism of the base curve.

(A) There is an automorphism of M(E6) coming from the action of Out(E6) ∼=
Z2.

In [3], we decribe the action of Out(G), for a semisimple complex Lie group
G, on the moduli space, M(G), of polystable principal G-bundles, which we recall
here: if E ∈M(G) and ρ ∈ Out(G), the G-bundle ρ(E) is defined to have the same
total space as E and equipped with the action of G given by

e ? g = eρ(g)−1,

for g ∈ G. In our case, let σ be the outer involution of E6. The induced automor-
phism of M(E6), which we also denote by σ, is

σ : M(E6)→M(E6), σ(E) = E∗.

This is of course a non trivial involution of M(E6), since every fixed point of σ is
strictly polystable (see [3, Proposition 7.2]).

(B) The group of automorphisms of the base curve, Aut(X), acts on M(E6).
The action of Aut(X) on M(E6) is defined by taking the pull-back of the bundle:

if E ∈M(E6) and α ∈ Aut(X), we define

α∗ : M(E6)→M(E6), α∗(E) = α∗E.

By taking the pull-back, the bundle α∗E comes with a nondegenerate symmetric
trilinear form inherited from E. Therefore, α∗E admits an E6-structure. Observe
also that the reductions of α∗E to a parabolic subgroup P of E6 correspond uni-
vocally, via α, to the reductions of structure group of E to P . From this, it is clear
that α∗E is polystable (resp. stable) if and only if E is polystable (resp. stable).

(C) The group H1(X,Z(E6)) ∼= H1(X,Z3) acts on M(E6).
If Z(E6) denotes the center of E6, Z(E6) ∼= Z3, the group of isomorphism

classes of principal Z(E6)-bundles, H1(X,Z(E6)), also acts on M(E6). Let E be
a principal E6-bundle with projection map πE : E → X and L ∈ H1(X,Z(E6)) a
principal Z(E6)-bundle with projection πL : L→ X. The variety

E ×X L = {(e, l) ∈ E × L : πE(e) = πL(l)}
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has a natural structure of principal E6×Z(E6)-bundle and a projection map E×XL
→ X induced by πE and πL. In E ×X L we define the following relation ∼: if
(e1, l1), (e2, l2) ∈ E ×X L, we say that (e1, l1) ∼ (e2, l2) if there exists an element
λ ∈ Z(E6) such that (e2, l2) = (e1λ, l1λ

−1). It is easily checked that this is an
equivalence relation and that any two elements of E ×X L which are in the same
equivalence class lie on the same point of X by the projection map E ×X L→ X.
We define E ⊗ L to be the quotient of E ×X L by this equivalence relation,

E ⊗ L = E ×X L/∼ .

It is easily seen that there is an induced action of E6 on E ⊗L: if (e, l) ∈ E ×X L,
[e, l] denotes the class of (e, l) in E ⊗ L and g ∈ E6, then [e, l]g = [eg, l]. We also
have that the projection E ×X L→ X factors through E ⊗ L and that the action
of E6 on E⊗L is compatible with the induced projection. This implies that E⊗L
inherits an structure of principal E6-bundle over X.

It is easy to see that, if {ϕij} are the transition functions of E associated to
certain open covering of X, and {ψij} are the transition functions of L associated to
the same covering, then {ψijϕij} are transition functions of E⊗L. This observation
shows that this is a good definition and the map (L,E) 7→ E ⊗ L is an action: if
L1, L2 ∈ H1(X,Z(E6)) have transition functions ψij and θij , then E ⊗ (L1 ⊗ L2)
has transition functions ϕijψijθij , the same as (E⊗L1)⊗L2. Similarly, L−1 (with
transition functions ψ−1

ij ) is the inverse element of L for this action.
We then define the following action of H1(X,Z(E6)) on the set of isomorphism

classes of principal E6-bundles: if E is an E6-bundle and L ∈ H1(X,Z(E6)), then
we define

L · E = E ⊗ L. (12)
It is clear that the isotropic subbundles of such a bundle E ⊗ L coincide with
the isotropic subbundles of E tensored by L and the tensorization preserves the
degrees. Then, E ⊗ L is polystable (resp. stable) if and only if E is polystable
(resp. stable). Therefore, this defines an action on M(E6).

We shall prove that this action is effective.

Lemma 6. The action of H1(X,Z(E6)) on M(E6) defined in (12) is effective.

Proof. Let L ∈ H1(X,Z(E6)). Let E be a strictly polystable principal E6 bundle
such that E ⊗ L. It suffices to show that L ∼= O, the trivial bundle over X.

Since E is strictly polystable, from Definition 1, we may suppose that there exist
vector bundles E1 and E2 of degree zero such that E1 is isotropic and E ∼= E1⊕E2.
It is clear that, in this situation, E1 ∼= E1 ⊗ L. Let r be the rank of E1. Then,

O ∼= detE ∼= detE ⊗ L ∼= Lr.

One can always choose E such that r is not multiple of 3. Take, for example, any
stable principal F4-bundle, F , over X. The image of F in M(E6) via the natural
map M(F4)→M(E6) may be decomposed as a direct sum of the form O ⊕ F , so
in this case we have r = 1. In a situation like this, the only possibility is L ∼= O,
as we wanted to see. �

Rev. Un. Mat. Argentina, Vol. 59, No. 1 (2018)



AUTOMORPHISM GROUP OF M(E6) AND M(F4) 51

The aim of this section is to prove that M(E6) admits no other automorphisms
than those which can be expressed as combinations of the automorphisms described
above. The strategy is the same followed with F4 in the previous section. The
following auxiliary results (Lemmas 7 and 8) are analogous to Lemmas 4 and 5,
respectively, and the same proofs work.

Lemma 7. Let E be a simple E6-bundle and let x ∈ X be any point. Then
H0(E(e6)(x)) = 0.

Lemma 8. Let B be the base of the Hitchin map of M(E6) defined in (6) and let
B12 be the subspace of B given by Lemma 2. Let E be a simple principal E6-bundle
over X. Let H12 : H0(E(e6)⊗K)→ B12 be the composition of the Hitchin map H
with the projection of B over B12 (this projection exists since the summands and
the linear structure of the base B are uniquely determined by Lemma 2). For each
x ∈ X, let

B12,x = H0(K12(−x)) ⊆ B12.

Then
H0(E(e6)⊗K(−x)) = {s ∈ H0(E(e6)⊗K) : H12(s+ t) ∈ B12,x ∀t ∈ H−1(B12,x)}.

Proposition 7. Let E and E′ be simple principal E6-bundles over X such that
E(e6) and E′(e6) are isomorphic as Lie algebra bundles via an automorphism α :
E(e6) → E′(e6). Then there exists L ∈ H1(X,Z3) such that E′ ∼= E ⊗ L or
E′ ∼= σ(E)⊗ L, where σ ∈ Out(E6) is the outer involution of E6.

Proof. Giving a Lie algebra bundle structure E(e6) is the same as giving a principal
Aut(e6)-structure which admits a reduction of structure group to a principal E6-
bundle, which defines E. This Aut(e6)-structure is well defined by an Inn(e6)-
structure, except for the action of the outer involution σ.

Since Inn(e6) ∼= E6/Z(E6) and Z(E6) ∼= Z3, we have an exact sequence of groups
1→ Z3 → E6 → Inn(e6)→ 1,

from which we obtain that there exists L ∈ H0(X,Z3) such that E′ ∼= E ⊗ L or
E′ ∼= σ(E)⊗ L, as we wanted to see. �

The following is the main result of the section. We prove it here in detail because,
although the proof is similar to the proof of Theorem 3, it introduces an important
new step which makes use of Proposition 7.

Theorem 4. Let M(E6) be the moduli space of polystable principal E6-bundles
over the complex algebraic curve X. Let Φ : M(E6)→M(E6) be an automorphism
of M(E6). Then Φ is induced by an automorphism of the base curve X, an outer
automorphism of E6 and an element of H1(X,Z3).

Proof. We assume that the automorphism of X induced by Φ, given by Theorem 2,
is the identity.

Let E be a stable and simple principal E6-bundle, H : H0(E(e6) ⊗ K) → B
be the Hitchin map with base B. For r = 2, 5, 6, 8, 9, 12, let Br be the summand
Br = H0(Kr) in the decomposition of B (it is well defined by Lemma 2), and let
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Hr be the composition of the Hitchin map H with the projection map of B over
Br. Let f : B → B be the automorphism of B induced by Φ. Let x ∈ X. The
arguments which allow to prove Lemma 2 show that Hr(H0(E(e6) ⊗ K(−x))) is
preserved by f , so dΦ preserves

⋂
r=2,5,6,8,9,12H−1

r (Hr(H0(E(e6)⊗K(−x)))). From
the form of the invariant polynomials, it is clear that the image of this set under
the surjective map H0(E(e6) ⊗ K) → E(e6)⊗K|x coincides with the nilpotent
cone

N(E)x = {A ∈ E(e6)⊗K|x : A is nilpotent}.
This is the fiber over x of the nilpotent cone, N(E), of E. We have constructed an
isomorphism of the nilpotent bundles N(E)→ N(Φ(E)) as bundles over X (since
the automorphism of the curveX induced by Φ is the identity, by hypothesis). In [9]
it is proved that this automorphism induces an automorphism of the corresponding
Borel flag varieties Flag(E) and Flag(Φ(E)). This automorphism induces a Lie
algebra bundle isomorphism E(e6) ∼= Φ(E)(e6). Now, from Proposition 7, there
exists L ∈ H1(X,Z3) such that Φ(E) ∼= E ⊗ L or Φ(E) ∼= σ(E) ⊗ L, where σ is
the outer involution of E6. Since we have done all the construction assuming that
the automorphism of X induced by Φ is the identity, the result is proved when
restricted to the open subset M∗(E6) of stable and simple principal E6 bundles.
Since this open subset is dense, the result holds. �

Observe that the group H1(X,Z(E6)) ∼= H1(X,Z3) is isomorphic to the third
torsion of the Picard group of X, Pic(X)[3]. We now formulate the main result of
the section using this observation.

Theorem 5. Let X be a complex algebraic curve of genus g ≥ 3 and let M(E6)
be the moduli space of polystable principal E6-bundles over X. Then the group of
automorphisms of M(E6) is isomorphic to

Pic(X)[3] o (Z2 ×Aut(X)) .

The nontrivial element of Z2 acts on Pic(X)[3] by taking the dual of the bundle
and Aut(X) acts on Pic(X)[3] by taking the pull-back.

Proof. In the proof of Theorem 4 we have established a surjective homomorphism
of groups

Aut(M(E6))→ Out(E6)×Aut(X)→ 1
which assigns to each isomorphism Φ of M(E6) the induced isomorphism of the
curve X given by Theorem 2 and the outer automorphism which arises from The-
orem 4. Also from the proof of Theorem 4 it follows that the kernel of this ho-
momorphism of groups is H1(X,Z(E6)) ∼= H1(X,Z3). By Lemma 6, the action of
H1(X,Z3) on M(E6) is effective, so we have an exact sequence of groups

1→ H1(X,Z3)→ Aut(M(E6))→ Out(E6)×Aut(X)→ 1.

The groups Out(E6) ∼= Z2 and Aut(X) clearly act on H1(X,Z3) as established
in the statement of the theorem. Finally, observe that Pic(X)[3] is (after fixing a
third root of unity) isomorphic to H1(X,Z3), so the result is proved. �
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8. Some consequences

Let X be a complex projective irreducible curve of genus g ≥ 3. Let M(E6) and
M(F4) be the moduli spaces of polystable principal E6-bundles and F4-bundles
over X, respectively. In a forthcoming paper [4] it is proved that the natural map
between moduli spaces

M(F4)→M(E6) (13)
induced by the inclusion of groups F4 ↪→ E6 is injective. Therefore, there is at
least one copy of M(F4) included in M(E6). Let M0 be this copy. The following
result is easily seen from Theorems 3 and 4.

Proposition 8. Let M(E6) be the moduli space of principal E6-bundles over X
and let M0 be the subvariety of M(E6) defined in (13). Then any automorphism
of M0 is the restriction to M0 of an automorphism of M(E6).

Proof. Let φ : M0 → M0 be an automorphism of M0. Since M0 ∼= M(F4), from
Theorem 3 there exists an automorphism α : X → X such that φ = α∗. This
automorphism α∗ also induces an automorphism of M(E6), which we also call α∗,
such that the diagram

M(E6) α∗−−−−→ M(E6)x x
M0

α∗−−−−→ M0

commutes. This proves the result. �

Remark. The subset M0 ∼= M(F4) is described in [3, Proposition 7.2] as the
subvariety of fixed points of the action in M(E6) of the unique outer involution σ
of E6. We then have that the map (13) gives a commutative diagram,

M(E6) σ−−−−→ M(E6)x x
M0 M0.

This shows that the induced automorphism of M(E6) given by Proposition 8 is not
unique. Moreover, since every principal E6-bundle fixed by σ is strictly polystable
([3, Proposition 7.2]), M0 lies in the strictly polystable locus of M(E6).

Proposition 8 and the discussion below show that any automorphism of M0 is
induced by an automorphism of M(E6), which is not unique, by restriction. We
are now interested in studying the effect on M0 of any automorphism of M(E6).

Proposition 9. Let M(E6) and M(F4) be the moduli spaces of principal E6-
bundles and F4-bundles over X, respectively. Let M0 be the subvariety of M(E6)
defined in (13), which is isomorphic to M(F4). Let L be a nontrivial element of
Pic(X)[3]. Let fL : M(E6) → M(E6) be the automorphism of M(E6) induced
by L defined in (12). Then there exist two other subvarieties of M(E6), M1 and
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M2, with M0 ∼= M1 ∼= M2 ∼= M(F4), such that the isomorphism fL restricts to
isomorphisms of the form

M(E6) fL−−−−→ M(E6)x x
Mimod 3

∼−−−−→ Mi+1 mod 3

for i = 0, 1, 2. Moreover, M0, M1 and M2 fall in the strictly polystable locus of
M(E6) and they are pairwise disjoint.

Proof. The subvarieties defined by M1 = fL(M0) and M2 = f2
L(M0) = fL2(M0)

satisfy the first part of the statement.
Now, if E ∈M0, then E admits a copy of the trivial line bundle O as a subbundle

and the exact sequence
0→ O → E → E/O → 0

splits. Then, the exact sequence

0→ L→ E ⊗ L→ E/L→ 0

also splits, so E ⊗ L = fL(E) is strictly polystable. Since any element of M1 is of
this form, M1 lies in the strictly polystable locus of M(E6). The same for M2.

Finally, we will see that M0 and M1 are disjoint. Suppose, on the contrary,
that they are not disjoint. Then there exists E ∈ M0 such that fL(E) ∈ M0.
There exists E′ ∈ M(F4) such that E ∼= E′ ⊕ O. Since fL(E) ∈ M0, there exists
P1 ∈M(F4) such that

(E′ ⊗ L)⊕ L ∼= P1 ⊕O. (14)
It follows, since L 6∼= O and P1 and E′ are principal F4-bundles, that E′ and P1
decompose as direct sum of vector bundles of the form

E′ ⊗ L ∼= O ⊕O ⊕ E′′

and
P1 ∼= L⊕ L−1 ⊕ P2.

Of course, for these decompositions, we consider the underlying vector bundles of
E′ and P1. We then have, from (14), that

E′′ ⊕O ⊕O ⊕ L ∼= P2 ⊕ L⊕ L−1 ⊕O,

that is,
E′′ ⊕O ∼= P2 ⊕ L−1.

If we iterate enough the process, we obtain that there exist r, s with 2r + 2s = 26
(so r + s = 13) such that

E′ ∼=
(
⊕r(L2 ⊕ (L2)−1)

)
⊕ (⊕s(O ⊕O))

and there exist r′, s′ with r′ + s′ = 13 such that

P1 ∼=
(
⊕r
′
(L⊕ L−1)

)
⊕
(
⊕s
′
(O ⊕O)

)
.
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It is easy to see, from (14), that

r′ = s+ 1,
r′ = s.

This is a contradiction, so the last part of the result is proved. �
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