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METALLIC CONJUGATE CONNECTIONS

ADARA M. BLAGA AND CRISTINA-ELENA HREŢCANU

Dedicated to the memory of Professor Dr. Vera W. de Spinadel

Abstract. Properties of metallic conjugate connections are stated by point-
ing out their relation to product conjugate connections. We define the anal-
ogous in metallic geometry of the structural and the virtual tensors from the
almost product geometry and express the metallic conjugate connections in
terms of these tensors. From an applied point of view we consider invari-
ant distributions with respect to the metallic structure and for a natural pair
of complementary distributions, the above structural and virtual tensors are
expressed in terms of O’Neill–Gray tensor fields.

1. Introduction

Besides the very well known almost complex, almost tangent, and almost prod-
uct structures on a differentiable manifold M , some other polynomial structures
naturally arise as C∞-tensor fields J of type (1, 1) which are roots of the algebraic
equation

Q(J) := Jn + anJ
n−1 + · · ·+ a2J + a1IX(M) = 0,

where IX(M) is the identity map on the Lie algebra of vector fields on M . In
particular, if the structure polynomial is Q(J) := J2 − pJ − qIX(M), with p and
q positive integers, its solution J will be called metallic structure [11]. The name
is motivated by the fact that, for different values of p and q, the (p, q)-metallic
number introduced by Vera W. de Spinadel [14] is precisely the positive root of the

quadratic equation x2 − px− q = 0, namely σp,q = p+
√
p2 + 4q
2 . For example:

• for p = q = 1 we get the golden number σ = 1 +
√

5
2 which is the limit of

the ratio of two consecutive Fibonacci numbers [13];
• for p = 2 and q = 1 we get the silver number σ2,1 = 1 +

√
2 which is the

limit of the ratio of two consecutive Pell numbers [9];

• for p = 3 and q = 1 we get the bronze number σ3,1 = 3 +
√

13
2 which plays

an important role in the study of dynamical systems and quasicrystals;
• for p = 1 and q = 2 we get the copper number σ1,2 = 2;
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180 ADARA M. BLAGA AND CRISTINA-ELENA HREŢCANU

• for p = 1 and q = 3 we get the nickel number σ1,3 = 1 +
√

13
2 , and so on.

Notice that if J is a metallic structure on M with J2 = pJ + qIX(M), then J̃ :=

aJ + bIX(M) is also a metallic structure with J̃2 = p̃J̃ + q̃IX(M), for a = 2σp̃,q̃ − p̃
2σp,q − p

and b = p̃

2 −
p

2 ·
2σp̃,q̃ − p̃
2σp,q − p

.

In this setting, we shall study the properties of the conjugate connections (by a
metallic structure), express their virtual and structural tensor fields and study their
behavior on invariant distributions. Finally, taking into account the connection
between metallic and almost product structures stated in [12], we shall analyze
the impact of the duality between the metallic and almost product structures on
metallic and product conjugate connections.

Let M be a smooth, n-dimensional manifold and denote by C∞ (M) the algebra
of smooth real functions on M , by X (M) the Lie algebra of vector fields on M ,
and by T rs (M) the C∞ (M)-module of tensor fields of (r, s)-type on M . Usually
X, Y , Z, . . . will be vector fields on M and if T →M is a vector bundle over M ,
then Γ(T ) denotes the C∞-module of sections of T , e.g. Γ(TM) = X(M).

Consider C(M) the set of all linear connections on M . Since the difference of
two linear connections is a tensor field of (1, 2)-type, it results that C(M) is a
C∞(M)-affine module associated to the C∞(M)-linear module T 1

2 (M).
Recall the concept of metallic (Riemannian) geometry:

Definition 1.1 ([12]). J ∈ T 1
1 (M) is called metallic structure on M if it satisfies

the equation
J2 = pJ + qIX(M), (1.1)

for p, q ∈ N∗, where IX(M) is the identity operator on X(M). The pair (M,J) is
a metallic manifold. Moreover, if a Riemannian metric g on M is compatible with
J , that is g(JX, Y ) = g(X, JY ), for any X, Y ∈ X(M), we call the pair (g, J)
metallic Riemannian structure and (M, g, J) metallic Riemannian manifold.

It was shown in [12] that the powers of J satisfy
Jn = gnJ + qgn−1IX(M), (1.2)

where {gn}n∈N∗ is the generalized secondary Fibonacci sequence defined by gn+1 =
pgn + qgn−1, n ≥ 1, with g0 = 0, g1 = 1 and p, q ∈ N∗.

Remark 1.1. i) The idea of introducing a metallic structure [12] as a solution of the
equation J2−pJ−qIX(M) = 0 for p, q ∈ N∗ was based on the fact that the positive
root of the corresponding equation x2−px−q = 0 is precisely a metallic number for
p, q ∈ N∗. By letting p and q be any natural number, we also include some other
well-known structures; for instance, if (p, q) ∈ {(0, 0), (0, 1), (1, 0)}, the solution of
(1.1) would yield an almost tangent, an almost product, and a J(2, 1)-structure,
respectively.

ii) Concerning the inheritance of the metallic structure on submanifolds, Hreţcanu
and Crasmareanu proved in [12] that a metallic structure on a metallic Riemannian
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METALLIC CONJUGATE CONNECTIONS 181

manifold M induces a metallic structure on every invariant submanifold of M (i.e.,
on those submanifolds N of M for which J(TxN) ⊂ TxN , for any x ∈ N) and
illustrate this on a product of spheres in an Euclidean space.

Fix now J a metallic structure on M and define the associated linear connections
as follows.

Definition 1.2. ∇ ∈ C(M) is a J-connection if J is covariant constant with respect
to ∇, namely ∇J = 0. Let CJ(M) be the set of these connections.

The concept of integrability is defined in the classical manner:

Definition 1.3. A metallic structure J is called integrable if its Nijenhuis tensor
field NJ (X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2 [X,Y ] vanishes.

Necessary and sufficient conditions for the integrability of a polynomial structure
J whose characteristic polynomial has only simple roots were given by Vanzura in
[15], who proved that if there exists a symmetric linear J-connection ∇, then the
structure J is integrable.

In order to find a measure of how far away a linear connection is from being
in CJ(M) we introduce in the next section the notion of metallic conjugate con-
nection. The present paper deals with the study of these connections and then it
is the fifth in a series containing [4], [5], [3] and [6]. We remark that Bejan and
Crasmareanu [1] studied the conjugate connections with respect to a quadratic
endomorphism as a generalization of almost complex and almost product cases.
An important tool in our work is provided by the pair (structural tensor, virtual
tensor) defined for the almost product geometry in [5] and considered here in the
last part of Section 1. After treating in Section 2 the duality between the metallic
and the product conjugate connections, from an applied point of view we consider
in Section 3 the J-invariant distributions.

2. Metallic conjugate connection

Let ∇ be a linear connection on the metallic manifold (M,J) and define the
metallic conjugate connection of ∇ by:

∇(J) := ∇+ J ◦ ∇J. (2.1)
It results that if ∇ ∈ CJ(M) then ∇(J) ∈ CJ(M). A direct computation gives us

the expression of ∇(J):

∇(J)
X Y = ∇XY + J(∇XJY − J(∇XY )) = (1− q)∇XY − pJ(∇XY ) + J(∇XJY ).
Recall that given a linear connection∇, one defines its torsion as the (1, 2)-tensor

field
T∇(X,Y ) := ∇XY −∇YX − [X,Y ]

and its curvature as the (1, 3)-tensor field
R∇(X,Y, Z) := ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

for any X, Y , Z ∈ X(M). We call ∇ a symmetric (respectively, flat) connection if
T∇ = 0 (respectively, R∇ = 0).
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Some properties of the metallic conjugate connection are given in the next propo-
sition.

Proposition 2.1. Let J be a metallic structure on the smooth manifold M , ∇ a
linear connection on M and ∇(J) the metallic conjugate connection of ∇. Then:

(1) ∇(J)J = ((1− 2q)IX(M) − pJ) ◦ ∇J .
(2) T∇(J) = T∇+J(d∇J), where d∇ is the exterior covariant derivative induced

by ∇, namely (d∇J)(X,Y ) := (∇XJ)Y − (∇Y J)X.
(3) R∇(J)(X,Y, Z) = ((1− q)IX(M) − pJ)(R∇(X,Y, Z)) + J(R∇(X,Y, JZ)) +

(1− q)((F∇J)(X,Y ; JZ) + (J − pIX(M))(F∇J)(X,Y ;Z))), where
(F∇J)(X,Y ;Z) := (∇XJ)∇Y Z − (∇Y J)∇XZ.

(4) If (M, g, J) is a metallic Riemannian manifold, then:

(∇(J)
X g)(Y, Z) = (1− q)(∇Xg)(Y, Z)− p(∇Xg)(Y, JZ)

+ (∇Xg)(JY, JZ)− pg(Y, (∇XJ)Z).

It results that if ∇ is a g-metric connection belonging to CJ(M) then ∇(J)

is also a g-metric connection (belonging to CJ(M)).

Proof. (1) Observe that

J((∇XJ)JY ) = J(∇XJ2Y )− J2(∇XJY ) = −q(∇XJ)Y,

so

(∇(J)
X J)Y := ∇(J)

X JY − J(∇(J)
X Y )

:= (1− q)∇XJY − pJ(∇XJY ) + J(∇XJ2Y )
− (1− q)J(∇XY ) + pJ2(∇XY )− J2(∇XJY )

= (1− q)(∇XJY − J(∇XY ))− pJ(∇XJY − J(∇XY ))
+ J(∇XJ2Y − J(∇XJY ))

:= (1− q)(∇XJ)Y − pJ((∇XJ)Y ) + J((∇XJ)JY )
= (1− q)(∇XJ)Y − pJ((∇XJ)Y )− q(∇XJ)Y,

which yields the claimed formula.
(2)

T∇(J)(X,Y ) := ∇(J)
X Y −∇(J)

Y X − [X,Y ]
= (1− q)(∇XY −∇YX)− pJ(∇XY −∇YX) + J(∇XJY −∇Y JX)

+ T∇(X,Y )− (∇XY −∇YX)
= −J2(∇XY −∇YX) + J(∇XJY −∇Y JX) + T∇(X,Y )
= J((∇XJ)Y − (∇Y J)X) + T∇(X,Y )
= J((d∇J)(X,Y )) + T∇(X,Y ).
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(3) Notice that

∇(J)
X ∇

(J)
Y Z = (1− q)2∇X∇Y Z − (1− q)p∇XJ(∇Y Z) + (1− q)∇XJ(∇Y JZ)

− pJ(∇X∇Y Z) + (1− q)J(∇XJ(∇Y Z)) + qJ(∇X∇Y JZ)
and the expression of curvature becomes

R∇(J)(X,Y, Z) := ∇(J)
X ∇

(J)
Y Z −∇(J)

Y ∇
(J)
X Z −∇(J)

[X,Y ]Z

= (1− q)2(R∇(X,Y, Z) +∇[X,Y ]Z)− (1− q)∇[X,Y ]Z

− pJ(R∇(X,Y, Z) +∇[X,Y ]Z)
+ pJ(∇[X,Y ]Z) + qJ(R∇(X,Y, JZ) +∇[X,Y ]JZ)− J(∇[X,Y ]JZ)
− (1− q)p((∇XJ)∇Y Z − (∇Y J)∇XZ)
− (1− q)pJ(R∇(X,Y, Z) +∇[X,Y ]Z)
+ (1− q)((∇XJ)∇Y JZ − (∇Y J)∇XJZ)
+ (1− q)J(R∇(X,Y, JZ) +∇[X,Y ]JZ)
+ (1− q)J((∇XJ)∇Y Z − (∇Y J)∇XZ)
+ (1− q)J2(R∇(X,Y, Z) +∇[X,Y ]Z)

= ((1− q)IX(M) − pJ)R∇(X,Y, Z) + J(R∇(X,Y, JZ))
+ (1− q)((F∇J)(X,Y ; JZ) + (J − pIX(M))(F∇J)(X,Y ;Z)).

(4) Using that g(JX, Y ) = g(X, JY ) and g(JX, JY ) = pg(X, JY ) + qg(X,Y )
we obtain:
(∇(J)

X g)(Y, Z) := X(g(Y,Z))− g(∇(J)
X Y,Z)− g(Y,∇(J)

X Z)
= X(g(Y,Z))− (1− q)(X(g(Y,Z))− (∇Xg)(Y,Z))

+ (∇Xg)(JY, JZ)−X(g(JY, JZ))
+ p(X(g(Y, JZ))− (∇Xg)(Y, JZ)− g(Y,∇XJZ) + g(Y, J(∇XZ)))

= (1− q)(∇Xg)(Y, Z)− p(∇Xg)(Y, JZ) + (∇Xg)(JY, JZ)
+ qX(g(Y, Z)) + pX(g(Y, JZ))−X(g(JY, JZ))− pg(Y, (∇Xg)Z)

= (1− q)(∇Xg)(Y,Z)− p(∇Xg)(Y, JZ) + (∇Xg)(JY, JZ)− pg(Y, (∇Xg)Z).
�

Recall that a linear connection ∇ is called quarter-symmetric connection [10]
if its torsion is of the form T∇(X,Y ) = ω(X)T (Y ) − T (X)ω(Y ), for any X, Y ∈
X(M), where ω is a 1-form and T is a (1, 1)-tensor field.

A natural generalization of the case ∇ ∈ CJ(M) is given by:

Proposition 2.2. Let ∇ be a symmetric linear connection. Assume that ∇J =
η ⊗ Jn, for n ∈ N, where η is a 1-form. Then ∇(J) = ∇ + η ⊗ Jn+1 and it is a
quarter-symmetric connection.

Proof. From (2.1) we obtain ∇(J) = ∇+η⊗Jn+1 and T∇(J) = η⊗Jn+1−Jn+1⊗η,
which gives us the conclusion. �
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Definition 2.3. A symmetric linear connection ∇ is called special metallic con-
nection if d∇J = 0.

Denote by CM(M) the set of all special metallic connections on M . We remark
that:

i) CM(M) contains the symmetric J-connections;
ii) for ∇ ∈ CM(M), its conjugate connection ∇(J) is symmetric.

Proposition 2.4. If ∇ is a special metallic connection, then:
1. ∇(J) is special metallic, too.
2. The Nijenhuis tensor field of J vanishes, i.e., J is integrable.

Proof. 1. It is a consequence of Proposition 2.1.
2. A straightforward computation gives:

NJ (X,Y ) = (d∇J)(JX, Y )− (d∇J)(JY,X)− p(d∇J)(X,Y )
and the result follows from d∇J = 0. �

Definition 2.5. We say that (g, J,∇) is a special metallic structure if (g, J) is a
metallic Riemannian structure and ∇ is a special metallic connection.

We remark that for a given pair (∇, J), because of the duality between the
metallic and the almost product structures (see Section 2), there always exists a
Riemannian metric g such that (g, J,∇) is a special metallic structure.
Example 2.1. The following examples of special metallic structures on the 5-dimen-
sional Euclidean space can be generalized to special metallic structures defined on
Euclidean spaces of any odd dimension.

Let R5 = R2×R3 be the Euclidean space with the metric given by the Euclidean
scalar product g = 〈·, ·〉 and denote by (x1, x2, y1, y2, y3) the local coordinates in
R5.

For any fixed p, q ∈ N∗, define the (1, 1)-tensor field J0 : X(R5)→ X(R5) by

J0

(
∂

∂x1
,
∂

∂x2
,
∂

∂y1
,
∂

∂y2
,
∂

∂y3

)
:=
(
σ
∂

∂x1
, σ

∂

∂x2
, σ

∂

∂y1
, σ

∂

∂y2
, σ

∂

∂y3

)
,

where σ := σp,q = p+
√
p2 + 4q
2 is the (p, q)-metallic number and

σ = p−
√
p2 + 4q
2 = p− σ.

We can check that J0 is a metallic structure on R5:
J2

0 (X1, X2, Y 1, Y 2, Y 3) := (σ2X1, σ2X2, σ2Y 1, σ2Y 2, σ2Y 3)
= p(σX1, σX2, σY 1, σY 2, σY 3) + q(X1, X2, Y 1, Y 2, Y 3),

for any (X1, X2, Y 1, Y 2, Y 3) ∈ X(R5). Thus, J2
0 = pJ0 + qIX(R5).

Moreover, the metric is J0-compatible:
g(J0Z,Z

′) = σ(X1X ′1 +X2X ′2) + σ(Y 1Y ′1 + Y 2Y ′2 + Y 3Y ′3) = g(Z, J0Z
′),

for any Z := (X1, X2, Y 1, Y 2, Y 3), Z ′ = (X ′1, X ′2, Y ′1, Y ′2, Y ′3) ∈ X(R5). Thus,
(R5, g, J0) is a metallic Riemannian manifold.
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In a similar manner we can verify that the (1, 1)-tensor fields J1, J2, J3, J4 :
X(R5)→ X(R5) defined by

J1

(
∂

∂x1
,
∂

∂x2
,
∂

∂y1
,
∂

∂y2
,
∂

∂y3

)
:=
(
σ
∂

∂x1
, σ

∂

∂x2
, σ

∂

∂y1
, σ

∂

∂y2
, σ

∂

∂y3

)
,

J2

(
∂

∂x1
,
∂

∂x2
,
∂

∂y1
,
∂

∂y2
,
∂

∂y3

)
:=
(
σ
∂

∂x1
, σ

∂

∂x2
, σ

∂

∂y1
, σ

∂

∂y2
, σ

∂

∂y3

)
,

J3

(
∂

∂x1
,
∂

∂x2
,
∂

∂y1
,
∂

∂y2
,
∂

∂y3

)
:=
(
σ
∂

∂x1
, σ

∂

∂x2
, σ

∂

∂y1
, σ

∂

∂y2
, σ

∂

∂y3

)
,

J4

(
∂

∂x1
,
∂

∂x2
,
∂

∂y1
,
∂

∂y2
,
∂

∂y3

)
:=
(
σ
∂

∂x1
, σ

∂

∂x2
, σ

∂

∂y1
, σ

∂

∂y2
, σ

∂

∂y3

)
are metallic structures on R5 and (R5, g, Ji), i ∈ {1, . . . , 4}, are metallic Riemannian
manifolds.

Since the Levi-Civita ∇g is trivial, (g, Ji,∇g), i ∈ {0, . . . , 4}, are special metallic
structures on R5.
Example 2.2. In a similar way, one can construct special metallic structures on the
Euclidean spaces of even dimension.

Let R4 = R2×R2 be the Euclidean space with the metric given by the Euclidean
scalar product g = 〈·, ·〉 and denote by (x1, x2, y1, y2) the local coordinates in R4.
In a similar manner as in Example 2.1, we can check that for given p, q ∈ N∗, the
(1, 1)-tensor fields J ′0 : X(R4)→ X(R4) defined by

J ′0

(
∂

∂x1
,
∂

∂x2
,
∂

∂y1
,
∂

∂y2

)
:=
(
σ
∂

∂x1
, σ

∂

∂x2
, σ

∂

∂y1
, σ

∂

∂y2

)
,

J ′1

(
∂

∂x1
,
∂

∂x2
,
∂

∂y1
,
∂

∂y2

)
:=
(
σ
∂

∂x1
, σ

∂

∂x2
, σ

∂

∂y1
, σ

∂

∂y2

)
,

J ′2

(
∂

∂x1
,
∂

∂x2
,
∂

∂y1
,
∂

∂y2

)
:=
(
σ
∂

∂x1
, σ

∂

∂x2
, σ

∂

∂y1
, σ

∂

∂y2

)
,

J ′3

(
∂

∂x1
,
∂

∂x2
,
∂

∂y1
,
∂

∂y2

)
:=
(
σ
∂

∂x1
, σ

∂

∂x2
, σ

∂

∂y1
, σ

∂

∂y2

)
,

J ′4

(
∂

∂x1
,
∂

∂x2
,
∂

∂y1
,
∂

∂y2

)
:=
(
σ
∂

∂x1
, σ

∂

∂x2
, σ

∂

∂y1
, σ

∂

∂y2

)
are metallic structures on R4 and (R4, g, J ′i), i ∈ {0, . . . , 4}, are metallic Riemann-
ian manifolds. Thus (g, J ′i ,∇g), i ∈ {0, . . . , 4}, are special metallic structures
on R4.

The last subject of this section treats two tensor fields associated to a metallic
structure. The paper [5] introduces the structural and virtual tensor fields of an
almost product structure. Turning into our framework, let us consider for a pair
(∇, J) the following tensor fields of (1, 2)-type:

1) the structural tensor field

CJ∇(X,Y ) := 1
2 [(∇JXJ)Y + (∇XJ)JY ]; (2.2)
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2) the virtual tensor field

BJ∇(X,Y ) := 1
2 [(∇JXJ)Y − (∇XJ)JY ]. (2.3)

It results that

CJ∇(J)(X,Y ) := 1
2 [(∇(J)

JXJ)Y + (∇(J)
X J)JY ]

= 1
2 [(1− 2q)(∇JXJ)Y − pJ((∇JXJ)Y )

+ (1− 2q)(∇XJ)JY − pJ((∇XJ)JY )]
:= (1− 2q)CJ∇(X,Y )− pJ(CJ∇(X,Y ))

and

BJ∇(J)(X,Y ) := 1
2 [(∇(J)

JXJ)Y − (∇(J)
X J)JY ]

= 1
2 [(1− 2q)(∇JXJ)Y − pJ((∇JXJ)Y )

− (1− 2q)(∇XJ)JY + pJ((∇XJ)JY )]
:= (1− 2q)BJ∇(X,Y )− pJ(BJ∇(X,Y )),

hence
CJ∇(J) = ((1− 2q)IX(M) − pJ) ◦ CJ∇, BJ∇(J) = ((1− 2q)IX(M) − pJ) ◦BJ∇.

Also,
(∇J2XJ)JY = p2∇JXJY + pq∇JXY − pJ(∇JXJY ) + q(∇XJ)JY

and
(∇JXJ)J2Y = p2∇JXJY + pq∇JXY − pJ(∇JXJY ) + q(∇JXJ)Y,

which implies

CJ∇(JX, JY ) := 1
2 [(∇J2XJ)JY + (∇JXJ)J2Y ]

= p2∇JXJY + pq∇JXY − pJ(∇JXJY ) + qCJ∇(X,Y )
= p(∇JXJ2Y − J(∇JXJY )) + qCJ∇(X,Y )

:= p(∇JXJ)JY + qCJ∇(X,Y )
and

BJ∇(JX, JY ) := 1
2 [(∇J2XJ)JY − (∇JXJ)J2Y ] = 1

2q((∇XJ)JY − (∇JXJ)Y )

:= −qBJ∇(X,Y ),
hence
CJ∇(JX, JY ) = qCJ∇(X,Y ) + p(∇JXJ)JY, BJ∇(JX, JY ) = −qBJ∇(X,Y ).

The importance of these tensor fields for our study is underlined by the following
relation:

∇(J) = ∇+ p∇J − CJ∇ +BJ∇. (2.4)
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Example 2.3. If the linear connection ∇ satisfies ∇J = η ⊗ Jn, for n ∈ N, where η
is a 1-form, then the structural and the virtual tensor fields have the expressions

CJ∇ = 1
2[(η ◦ J)⊗ Jn + η ⊗ Jn+1], BJ∇ = 1

2[(η ◦ J)⊗ Jn − η ⊗ Jn+1],

CJ∇(J) = 1
2[(η ◦J)⊗ (((1−2q)IX(M)−pJ)◦Jn)+η⊗ (((1−2q)IX(M)−pJ)◦Jn+1)],

BJ∇(J) = 1
2[(η ◦J)⊗ (((1−2q)IX(M)−pJ)◦Jn)−η⊗ (((1−2q)IX(M)−pJ)◦Jn+1)].

Example 2.4. Concerning the behavior of ∇(.) for families of metallic structures,
remark that if J1 and J2 are two metallic structures with J2

1 = pJ1 + q1IX(M) and
J2

2 = pJ2+q2IX(M), then J := J1+J2 is a metallic structure with J2 = pJ+qIX(M)
if and only if J1J2 + J2J1 = (q − q1 − q2)IX(M); in this case:

∇(J1+J2)
X Y = ∇(J1)

X Y +∇(J2)
X Y −(1+q−q1−q2)∇XY +J1(∇XJ2Y )+J2(∇XJ1Y ),

CJ1+J2
∇ −BJ1+J2

∇ = (CJ1
∇ + CJ2

∇ )− (BJ1
∇ +BJ2

∇ )− J1 ◦ ∇J2 − J2 ◦ ∇J1.

3. The duality of metallic and product conjugate connections

In [12] Hreţcanu and Crasmareanu proved that any metallic structure J induces
two almost product structures:

E± = ±
(

2
2σp,q − p

J − p

2σp,q − p
IX(M)

)
, (3.1)

and for any given pair (p, q) ∈ N∗×N∗, any almost product structure E determines
two metallic structures:

J± = ±
(

2σp,q − p
2

)
E + p

2IX(M). (3.2)

Then ∇E± = ± 2
2σp,q − p

∇J and ∇J± = ±2σp,q − p
2 ∇E respectively. Hence, ∇ is

a J-connection if and only if ∇ is an E-connection.

We are interested in finding the relation between the conjugate connections
associated to them.

Proposition 3.1. i) If J is a metallic structure on M and E± are the almost
product structures given by (3.1), then

(2σp,q − p)2∇(E±) − 4∇(J) − ((2σp,q − p)2 − 4)∇ = −2p∇J.

ii) If E is an almost product structure on M and J± are the metallic structures
given by (3.2), then

4∇(J±) − (2σp,q − p)2∇(E) − ((2σp,q − p)2 − 4)∇ = ±p(2σp,q − p)∇E.

iii) In each of the previous cases, it holds (∇(J))(E) = (∇(E))(J).
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Proof. i) Replacing E± from (3.1) in the expression of ∇(E±) ([5]):

∇(E±)
X Y = E±(∇XE±Y )

we get

∇(E±)
X Y = 4

(2σp,q − p)2 J(∇XJY )− 2p
(2σp,q − p)2 J(∇XY )

− 2p
(2σp,q − p)2∇XJY + p2

(2σp,q − p)2∇XY,

and replacing J(∇XJY ) = ∇(J)
X Y − (1− q)∇XY + pJ(∇XY ) we obtain

∇(E±)
X Y = 4

(2σp,q − p)2∇
(J)
X Y − 4(1− q)− p2

(2σp,q − p)2 ∇XY

− 2p
(2σp,q − p)2 (∇XJY − J(∇XY ))

= 4
(2σp,q − p)2∇

(J)
X Y + (2σp,q − p)2 − 4

(2σp,q − p)2 ∇XY

− 2p
(2σp,q − p)2 (∇XJ)Y.

ii) Replacing J± from (3.2) in

∇(J±)
X Y = (1− q)∇XY − pJ±(∇XY ) + J±(∇XJ±Y )

we get

∇(J±)
X Y = (1− q − p2

4 )∇XY ±
p(2σp,q − p)

4 (∇XEY − E(∇XY ))

+ (2σp,q − p)2

4 E(∇XEY ),

and replacing E(∇XEY ) = ∇(E)
X Y we obtain

∇(J±)
X Y = (2σp,q − p)2

4 ∇(E)
X Y − (2σp,q − p)2 − 4

4 ∇XY ±
p(2σp,q − p)

4 (∇XE)Y.

iii) From a direct computation we obtain

(∇(J))(E±)
X Y = (1−q)E±(∇XE±Y )−p(E±◦J)(∇XE±Y )+(E±◦J)(∇X(J ◦E±)Y )

and respectively

(∇(E±))(J)
X Y = (1−q)E±(∇XE±Y )−p(J◦E±)(∇XE±Y )+(J◦E±)(∇X(E±◦J)Y ),

and taking into account that J ◦ E± = E± ◦ J , we get (∇(J))(E±) = (∇(E±))(J).
Also,

(∇(E))(J±)
X Y = (1− q)E(∇XEY )− p(J± ◦ E)(∇XEY ) + (J± ◦ E)(∇X(E ◦ J±)Y )

and respectively

(∇(J±))(E)
X Y = (1− q)E(∇XEY )− p(E ◦ J±)(∇XEY ) + (E ◦ J±)(∇X(J± ◦E)Y ),
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and taking into account that E ◦J± = J± ◦E, we get (∇(E))(J±) = (∇(J±))(E). �

We showed in [5] that for an almost product structure E, the structural and
virtual tensor fields satisfy

∇(E) = ∇− CE∇ +BE∇. (3.3)
From (2.4) and (3.3) we obtain:

Corollary 3.2. i) If J is a metallic structure on M and E± are the almost product
structures given by (3.1), then

(2σp,q − p)2(CE±
∇ −BE±

∇ ) = 4(CJ∇ −BJ∇)− 2p∇J.
ii) If E is an almost product structure on M and J± are the metallic structures
given by (3.2), then

4(CJ±
∇ −B

J±
∇ ) = (2σp,q − p)2(CE∇ −BE∇)± p(2σp,q − p)∇E − 2((2σp,q − p)2 − 4)∇.

Proof. Replacing the expressions

∇(J) = ∇− CJ∇ +BJ∇ + p∇J

and
∇(E) = ∇− CE∇ +BE∇

in the two relations stated in Proposition 3.1, we get the required relations between
the structural and the virtual tensors. �

4. Invariant distributions

Let J be a metallic structure on M and Dl and Dm be the complementary
orthogonal distributions corresponding to the projection operators ([12]):

l = σp,q
2σp,q − p

· I − 1
2σp,q − p

· J, m = σp,q − p
2σp,q − p

· I + 1
2σp,q − p

· J.

Notice that the operators l and m verify the following equalities:
l +m = I, l2 = l, m2 = m, lm = ml = 0,

Jl = lJ = (p− σp,q)l, Jm = mJ = σp,qm.

Definition 4.1. Let D ⊂ TM be a distribution considered as a vector subbundle
of TM . We say that:

i) the distribution D is J-invariant if X ∈ Γ(D) implies JX ∈ Γ(D);
ii) ([7]) the linear connection ∇ restricts to D if Y ∈ Γ(D) implies ∇XY ∈ Γ(D),

for any X ∈ Γ(TM).

If ∇ restricts to D, then ∇ may be considered as a connection in the vector
bundle D. From this fact, in [2] a connection which restricts to D is called adapted
to D.

Proposition 4.2. If the linear connection ∇ restricts to Dl (respectively, Dm),
then ∇(J) also restricts to Dl (respectively, Dm).
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Proof. Fix Y ∈ Γ(Dl). Then JY ∈ Γ(Dl) and for any X ∈ Γ(TM), we have
∇XY ∈ Γ(Dl). It follows that J(∇XY ), J(∇XJY ) ∈ Γ(Dl), so ∇(J)

X Y = (1 −
q)∇XY − pJ(∇XY ) + J(∇XJY ) ∈ Γ(Dl). Analogously for Dm. �

A more general notion is given by geodesic invariance [7]. The distribution D is
∇-geodesically invariant if for every geodesic γ : [a, b]→M of ∇ with γ̇(a) ∈ Dγ(a)
it follows that γ̇(t) ∈ Dγ(t), for any t ∈ [a, b]. A necessary and sufficient condition
for a distribution D to be ∇-geodesically invariant is given in [7]: for any X and
Y ∈ Γ(D), the symmetric product 〈X : Y 〉 := ∇XY +∇YX to belong to Γ(D) or
equivalently, for any X ∈ Γ(D) to have ∇XX ∈ Γ(D).

The following result is a direct consequence of definitions:

Proposition 4.3. If the linear connection ∇ restricts to Dl (respectively, Dm),
then Dl (respectively, Dm) is geodesically invariant for ∇(J).

We remark that E := l−m is an almost product structure and both Dl and Dm
are E-invariant. The product conjugate connection of ∇ is

∇(E)
X Y = l(∇X lY )− l(∇XmY )−m(∇X lY ) +m(∇XmY ), (4.1)

and then we have:

Proposition 4.4. If ∇(E) is symmetric, then E is integrable, which means that
Dl and Dm are involutive distributions.

Proof. From (4.1) we get

l[X,Y ] +m[X,Y ] = ∇(E)
X Y −∇(E)

Y X = l(∇X lY −∇Y lX) +m(∇X lY −∇Y lX)
and then

l[X,Y ] = ∇X lY −∇Y lX, m[X,Y ] = ∇XmY −∇YmX.
WithX → mX and Y → mY in the first relation above it follows that l[mX,mY ] =
0 and the change X → lX and Y → mY in the second relation yields m[lX, lY ] =
0. �

We have:
1) ∇ restricts to Dl means m(∇X lY ) = 0 and l(∇X lY ) = ∇X lY ,
2) ∇ restricts to Dm means l(∇XmY ) = 0 and m(∇XmY ) = ∇XmY .
A straightforward computation gives that ∇(E) from (4.1) restricts to Dl and

Dm. Moreover, if ∇ restricts to both Dl and Dm, then

∇(E)
X Y = ∇X lY +∇XmY = ∇XY (4.2)

and so ∇ ∈ CE(M). Let us remark that the above connection (4.2) is exactly the
Schouten connection of the pair (l,m) [8]:

∇XY = l(∇X lY ) +m(∇XmY ).
We shall express the structural and the virtual tensor fields of the almost product

structure E in terms of the projectors l, m as follows:
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Proposition 4.5. The structural and virtual tensor fields of E := l −m are:{
Cl−m∇ (X,Y ) = 2[l(∇mXmY ) +m(∇lX lY )]

Bl−m∇ (X,Y ) = −2[l(∇lXmY ) +m(∇mX lY )].

Proof. From [5] we know that

CE∇(EX,EY ) = CE∇(X,Y ), BE∇(EX,EY ) = −BE∇(X,Y )

and we get {
Cl−m∇ (lX,mY ) = −Cl−m∇ (mX, lY )

Bl−m∇ (lX, lY ) = −Bl−m∇ (mX,mY ).
By making X → mX in the first relation and X → lX in the second one, it results
that {

Cl−m∇ (lX,mY ) = 0 = Cl−m∇ (mX, lY )

Bl−m∇ (lX,mY ) = 0 = Bl−m∇ (mX,mY )
and then {

Cl−m∇ (X,Y ) = Cl−m∇ (lX, lY ) + Cl−m∇ (mX,mY )

Bl−m∇ (X,Y ) = Bl−m∇ (lX, lY ) +Bl−m∇ (mX,mY ).
But {

Cl−m∇ (lX, lY ) = 2m(∇lX lY )

Cl−m∇ (mX,mY ) = 2l(∇mXmY )
and {

Bl−m∇ (lX,mY ) = −2l(∇lXmY )

Bl−m∇ (mX, lY ) = −2m(∇mX lY )
and then we have the conclusion. �

Remark 4.1. If T and A are the fundamental tensor fields of O’Neill–Gray,{
T (X,Y ) = l(∇mXmY ) +m(∇mX lY )
A(X,Y ) = m(∇lX lY ) + l(∇lXmY ),

a comparison of the last two equations yields{
Cl−m∇ (X,Y ) = 2[T (X,mY ) +A(X, lY )]

Bl−m∇ (X,Y ) = −2[T (X, lY ) +A(X,mY )],

a fact which justifies the second name of T and A as invariants of the considered
orthogonal decomposition of TM [8].
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Ştefan cel Mare University from Suceava
University Str., nr. 13, 720229 Suceava, România
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