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GENERALIZATIONS OF HYPERBOLIC AREA FOR
TOPOLOGICAL SURFACES

ALDO-HILARIO CRUZ-COTA

Abstract. We introduce two generalizations of hyperbolic area for connected,
closed, orientable surfaces: the complexity and the simple complexity of a sur-
face. These concepts are defined in terms of collections of branched coverings
M → P1, where M is a Riemann surface homeomorphic to S and P1 is the Rie-
mann sphere. We prove that if S is a surface of positive genus, then both the
topological complexity and the simple topological complexity of S are linear
functions of its genus.

1. Introduction

In this article we study the simplest way in which a given Riemann surface
can be realized as a branched cover of the Riemann sphere. The simplicity of a
branched cover is defined in terms of its complexity, which is defined below.

Let p be a branched covering of a Riemann surface M to the Riemann sphere P1.
Let X be the complement of the branching set of p in P1. Since X is a domain of
the Riemann sphere, then it naturally has the structure of a Riemann surface. We
define the complexity of the branched covering p as the product of its degree and
the area of X. Here, the area of X is defined as its hyperbolic area, if X admits a
hyperbolic structure, and infinity otherwise.

The above definition of complexity is a generalization of that introduced in [2]
and is motivated as follows. Given a Riemann surface M , one can adopt the
topological point of view that the simplicity of a branched covering M → P1

is determined by its degree and the cardinality of its branching set (taking into
account the multiplicities or degrees of the branching points). From a geometric
point of view, however, a more natural invariant to consider is the area of the
complement of the branching set in the Riemann sphere. This is in accordance with
a principle usually adopted in three-dimensional topology: the hyperbolic volume
somehow measures how complicated a hyperbolic manifold is. The definition of
complexity given above encompasses both the topological and geometric points of
view.

For a Riemann surface M , we define its complexity as the infimum of the set
of all the complexities of branched coverings M → P1. Thus, the complexity of a
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Riemann surface M measures the most economical way in which M can be realized
as a branched cover of the Riemann sphere P1.

We extend the definition of complexity to topological surfaces as follows. If
S is a surface, we define its topological complexity as the infimum of the set of
all the complexities of the Riemann surfaces that are homeomorphic to S. The
complexity of a surface measures how complicated the surface is. Because of that,
we can think of the complexity for surfaces as a 2-dimensional topological analog
of the hyperbolic volume for hyperbolic 3-manifolds. The definition of complexity
also has the advantage that is defined for all surfaces.

In [2], the authors found a formula for the complexity of a Riemann surface,
but that formula is in terms of an integer that is hard to find in practice, mainly
because of its close connection to the Hurwitz problem for the sphere. This problem
is very difficult: it has been open for more than a century and is still open today
in its full generality (see the next paragraph). The raison d’être for this article
was to find explicit formulas for the topological complexity of a surface that did
not involve using the general Hurwitz problem. One of the main ingredients in the
proofs of these formulas was adapting a variety of partial solutions to the Hurwitz
problem to our context.

The Hurwitz problem for the sphere essentially asks when a collection of parti-
tions of a positive integer can be realized as the combinatorial data of a branched
covering of the sphere. This problem was first studied by Hurwitz in [7], albeit
in the more general case in which the sphere is replaced by an arbitrary surface.
Since then, many people have studied the Hurwitz problem, such as the authors
of [3, 6, 8, 4, 1, 10, 11, 9]. In particular, we now know that the problem has been
solved for almost all surfaces. The only instances of the problem that remain open
reduce to the Hurwitz problem for the sphere (see [10, Section 2]).

There is another classical invariant for topological surfaces: the genus. Our first
main theorem relates the complexity of a topological surface to its genus.

Main Theorem 1. Let S be a connected, closed, orientable surface of genus g.
Let Ctop(S) denote the topological complexity of S. Then

Ctop(S) =
{

2π(2g + 1) if g ≥ 1,
6π if g = 0.

We say that a branched covering p : M → P1 of degree d is simple if the cardi-
nality of p−1(y) is at least d − 1 for all y ∈ P1. We define the simple topological
complexity of a surface S as the infimum of the complexities of all simple branched
coverings M → P1 with M homeomorphic to S. Our second main result gives us
explicit formulas for the simple topological complexity of a surface.

Main Theorem 2. Let S be a connected, closed, orientable surface of genus g.
Let Csimp(S) denote the simple topological complexity of S. Then

Csimp(S) =
{

8πg if g ≥ 1,
12π if g = 0.
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Our proofs of the two main theorems are constructive; they exhibit the combi-
natorial data of branched coverings of minimal complexity (among those coverings
whose domains have a fixed topological type).

Notation 1.1. Throughout this article, all Riemann and topological surfaces will
be assumed to be connected, closed and orientable, unless otherwise stated. A
Riemann surface will be denoted by M , except in the case of the Riemann sphere,
which we denote by P1. A topological surface will be denoted by S. The topological
2-sphere will be denoted by S2. We use χ(M) to denote the Euler characteristic of
the surface M . The infimum of a subset A of the extended real line [−∞,∞] will
be denoted by inf(A). A sequence of positive integers in square brackets represents
the elements of a partition. For example, [1, 1, 1] denotes the trivial partition
3 = 1 + 1 + 1. The number of elements of a partition is called its length. For
example, [5, 3] is a partition of 8 of length 2. The cardinality of a set B will be
denoted by |B|.

2. (d, n)-branched coverings and the Hurwitz problem

Definition 2.1. A (d, n)-branched covering is a branched covering p : M → P1

that satisfies the following conditions:
• M is a Riemann surface.
• The degree of p is d.
• The cardinality of the branching set of p is n.

For (d, n)-branched coverings, the Riemann–Hurwitz formula takes the following
form.

Theorem 2.2. Let p : M → P1 be a (d, n)-branched covering with branching set B.
If the pre-image p−1(B) has cardinality m, then

χ(M)−m = d(χ(P1)− n).

Let p : M → P1 be a (d, n)-branched covering. Suppose that y1, y2, . . . , yn are
all the distinct branch points of the branched covering. For each i = 1, 2, . . . , n, the
ramification indices of the points in p−1(yi) form a partition Πi of the integer d. We
gather these partitions in a single collection Π = {Π1,Π2, . . . ,Πn} (with repetitions
allowed). We call the triplet (d, n,Π) the branch triplet of the branched covering
p : M → P1.

We generalize the idea of branch triplet as follows.

Definition 2.3. The triplet (d, n,Π) is called an abstract branch triplet if the
following conditions are satisfied:

• d and n are positive integers;
• Π is a collection (with repetitions allowed) of n partitions of d, none of

which is the trivial partition [1, 1, . . . , 1] of d.
The sum of the lengths of the partitions in Π is called the total length of the abstract
branch triplet.
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Definition 2.4. Let T be an abstract branch triplet and let M be a Riemann
surface. We say that T is realizable on M if there exists a branched covering
p : M → P1 whose branch triplet is equal to T . An abstract branch triplet is called
realizable if it is realizable on a Riemann surface.

A natural question to ask is the following:
Question 1. What abstract branch triplets are realizable?

The Riemann–Hurwitz formula gives a necessary condition for an abstract branch
triplet to be realizable. For if (d, n,Π) is an abstract branch triplet of total length m
that is realizable on a Riemann surface M , then:

χ(M)−m = d(2− n). (2.1)
Definition 2.5. An abstract branch triplet (d, n,Π) of total length m that satisfies
equation (2.1) is called compatible with M .

Every abstract branch triplet that is realizable on a Riemann surface M is
compatible with M . However, the converse of the last statement is not true (see
[3, Corollary 6.4]). The problem of determining what compatible branch triplets
are realizable as branched coverings of the sphere is known as the Hurwitz problem
for the sphere.

In the rest of the section we collect the partial solutions to the Hurwitz problem
that we need to prove our main theorems. We start with a classical result of
Edmonds, Kulkarni and Stong ([3]), who studied the problem of realizability of
topological branched covers, mainly in the algebraic setting of representations of
fundamental groups of punctured surfaces into symmetric groups.
Theorem 2.6 ([3, Proposition 5.2]). Let T = (d, n,Π) be an abstract branch triplet
of total length m. Suppose that the length of one of the partitions in Π is one, and
that nd−m is an even number such that nd−m ≥ 2d− 2. Then T is realizable.

The next two results are corollaries of Theorem 2.6.
Lemma 2.7. The abstract branch triplet T = (3, 3, {[3], [1, 2], [1, 2]}) is realizable
on a Riemann surface homeomorphic to the sphere.
Theorem 2.8. Let S be a surface of genus g ≥ 1 and let d = 2g + 1. Then the
abstract branch triplet T = (d, 3, {[d], [d], [d]}) is realizable on a Riemann surface
that is homeomorphic to S.

In [1], Barański approached the Hurwitz problem in the setting of rational maps
on the Riemann sphere. Using his geometric criterion ([1, Lemma 5]), Barański
proved the following.
Theorem 2.9 ([1, Theorem 12]). Let T = (d, n,Π) be an abstract branch triplet
with n ≥ d. Suppose that T is compatible with the topological 2-sphere S2. Then T
is realizable by a Riemann surface homeomorphic to S2.

Theorems 2.6 and 2.9 are also mentioned in [10, Section 2], where Pervova and
Petronio compile an extensive list of known results and techniques related to the
Hurwitz problem.
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3. Different notions of complexity

We define several notions of complexity: one for branched coverings, another for
Riemann surfaces, and the last one for topological surfaces.

Definition 3.1. Let p : M → P1 be a branched covering of degree d of the Riemann
surface M to the Riemann sphere P1. Let B ⊂ P1 be the branching set of p. Then
the complement P1 \B of B in P1 inherits the structure of a Riemann surface from
the Riemann sphere P1.

(1) We call the branched covering p : M → P1 hyperbolic if P1 \ B admits a
hyperbolic structure. In this case, we denote the hyperbolic area of P1 \B
by A(P1 \B).

(2) We define the complexity CCov(p) of the branched covering p as follows:

CCov(p) =
{
d · A(P1 \B) if p is hyperbolic,
∞ otherwise.

Remark 3.2. By [5, Theorem 27.12], a (d, n)-branched covering is hyperbolic if
and only if n ≥ 3.

The complexity of a hyperbolic branched covering is a mixture of a topological
invariant, the degree, and a geometric invariant, the hyperbolic area of the com-
plement of the branching set in P1. Thus, we can use the Gauss-Bonnet theorem
to find an explicit formula for the complexity of a hyperbolic branched covering.

Lemma 3.3.
(1) The hyperbolic area of the complement of n ≥ 3 points in the Riemann

sphere equals 2π(n− 2).
(2) The complexity of a (d, n)-branched covering with n ≥ 3 is finite and equal

to 2πd(n− 2).

Proof.
(1) Let A(Mn) denote the hyperbolic area of the complement Mn of n ≥ 3

points in the Riemann sphere P1. It follows from the Gauss-Bonnet theorem
that A(Mn) = −2πχ(Mn) = −2π(χ(P1)− n) = 2π(n− 2).

(2) Let p : M → P1 be a (d, n)-branched covering with n ≥ 3. Let B be the
branching set of the covering p. By Remark 3.2, P1 \B admits a hyperbolic
structure. Thus, the complexity C(p) of p is equal to

C(p) = d · A(P1 \B) = dA(Mn) = 2πd(n− 2). �

Combining Remark 3.2 and Lemma 3.3, we obtain the following.

Corollary 3.4. For a (d, n)-branched covering p : M → P1, the following state-
ments are equivalent:

(1) p : M → P1 is hyperbolic;
(2) n ≥ 3;
(3) CCov(p) <∞.
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Let C be the set of all complexities of branched coverings of Riemann surfaces
to the Riemann sphere. Let Zπ be the set of all integer multiples of the number π.
Since C is a subset of Zπ ∪ {∞} and Zπ is a discrete subset of the real line, then
we have the following:

Observation 3.5. The infimum of a non-empty subset of C is attained, although
it could be infinite.

We now define the complexity of a Riemann surface. It essentially measures the
most economical way in which the Riemann surface can be expressed as a branched
covering of the Riemann sphere.

Definition 3.6. We define the complexity, CRiem(M), of a Riemann surface M
as the infimum of the set of all complexities of branched coverings of M to the
Riemann sphere:

CRiem(M) = inf{CCov(p) | p : M → P1 is a branched covering}.

It is a well-known fact that every compact Riemann surface is a branched cov-
ering of the Riemann sphere P1. Thus, Observation 3.5 implies that the infimum
in Definition 3.6 is attained.

In [2], the authors find a formula for the complexity of a Riemann surface.

Theorem 3.7 ([2, Theorem 5.4]). Let M be a Riemann surface of genus g ≥ 1.
Suppose that the complexity CRiem(M) of M is finite. Let mmin be the minimum
total length of an abstract branch triplet that is realizable on M . Then

CRiem(M) = 2π(mmin + 2g − 2). (3.1)

We now find a lower bound for the number mmin.

Proposition 3.8. The number mmin from equation (3.1) is greater than or equal
to 3.

Proof. Let T = (d, n,Π) be an abstract branch triplet that is realizable on M .
We prove that the total length of T is always greater than or equal to three. Let
p : M → P1 be the (d, n)-branched covering associated to T .

Suppose that y1, y2, . . . , yn are all the distinct branch points of the branched
covering p. For each i = 1, 2, . . . , n,

• let Πi be the partition of d given by the ramification indices of the points
in p−1(yi);

• let mi be the length of the partition Πi.
Since m = m1 +m2 + · · ·+mn and each mi ≥ 1 (i = 1, 2, . . . , n), then m ≥ n.

It remains to prove that n ≥ 3.
Since the abstract branch triplet T is compatible with M , then

m− χ(M) = d(n− 2). (3.2)
Equation (3.2) implies that n− 2 > 0, as m > 0, χ(M) ≤ 0 and d > 0. �

Definition 3.9. A compact Riemann surface M is called hyperelliptic if there
exists a double branched covering p : M → P1.
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Notice that our definition allows the existence of hyperelliptic Riemann surfaces
of genus 0 and 1.

Applying the Riemann–Hurwitz formula to a double branched covering we obtain
the following.

Lemma 3.10. Let p : M → P1 be a (2, n)-branched covering. If the genus of M is
equal to g ≥ 0, then n = 2g + 2.

Notation 3.11. Given a surface S, we will use the symbol XS to denote the set
of all Riemann surfaces that are homeomorphic to S.

The following is a well-known result (see for example [5]).

Proposition 3.12. For every surface S there exists a hyperelliptic Riemann sur-
face in XS.

We now define a notion of complexity for topological surfaces.

Definition 3.13. We define the topological complexity, Ctop(S), of a surface S as
the infimum of the set of all complexities of the Riemann surfaces in XS :

Ctop(S) = inf{CRiem(M) |M ∈ XS}.

Given a surface S, Proposition 3.12 shows that the set of all complexities of the
Riemann surfaces in XS is not empty. Thus, by Observation 3.5, there exists a
Riemann surface M ∈ XS such that Ctop(S) = CRiem(M).

In the rest of this section we prove that the topological complexity of a surface
is always finite. We start with the case of surfaces with positive genus.

Proposition 3.14. The topological complexity of a surface of genus g ≥ 1 is finite.

Proof. Let S be a surface of genus g ≥ 1. By Proposition 3.12, there exists a
hyperelliptic Riemann surface M ∈ XS . Let p : M → P1 be the associated (2, n)-
branched covering. By Lemma 3.10, n = 2g+ 2. Since g ≥ 1, then n = 2g+ 2 ≥ 4,
and so CCov(p) <∞. Thus,

Ctop(S) ≤ CRiem(M) ≤ CCov(p) <∞. �

The above proof does not work for g = 0, because, in that case, CCov(p) = ∞.
However, we can complement Proposition 3.14 as follows.

Proposition 3.15. The topological complexity of the sphere is finite.

The proof of Proposition 3.15 follows from Lemma 2.7 and Corollary 3.4. The
details are left to the reader.

Combining our last two results, we obtain the following.

Theorem 3.16. The topological complexity of a surface is finite.

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



438 ALDO-HILARIO CRUZ-COTA

4. The main theorems

In this section we compute the topological complexity of all surfaces. We start
with the case of surfaces with positive genus.

Theorem 4.1. Let S be a surface of genus g ≥ 1. Then the topological complexity
Ctop(S) of S is equal to 2π(2g + 1).

Proof. By Theorem 3.16, Ctop(S) < ∞. Let M be a Riemann surface in XS such
that CRiem(M) = Ctop(S). Let mmin be the minimum total length of an abstract
branch triplet that is realizable on M . By Theorem 3.7,

CRiem(M) = 2π(mmin + 2g − 2). (4.1)

Let d = 2g + 1. Consider the abstract branch triplet T = (d, 3, {[d], [d], [d]}) of
total length mT = 3. By Theorem 2.8, the abstract branch triplet T is realizable
on a Riemann surface M ′ ∈ XS . Let p′ : M ′ → P1 be the (d, n)-branched covering
associated to T . Since n = 3, then CCov(p′) <∞, and so

CRiem(M ′) ≤ CCov(p′) <∞.

Let m′min be the minimum total length of an abstract branch triplet that is
realizable on M ′. By Theorem 3.7,

CRiem(M ′) = 2π(m′min + 2g − 2). (4.2)

Since CRiem(M) = Ctop(S) ≤ CRiem(M ′), then equations (4.1) and (4.2) imply
that mmin ≤ m′min. Further, m′min ≤ mT = 3, as T is realizable on M ′. Therefore,
mmin ≤ 3. On the other hand, by Proposition 3.8, mmin ≥ 3. Hence, mmin = 3,
and so we obtain:

Ctop(S) = CRiem(M) = 2π(3 + 2g − 2) = 2π(2g + 1). �

To compute the topological complexity of the sphere we need the following
lemma.

Lemma 4.2. Let p : M → P1 be a hyperbolic (d, n)-branched covering with M
homeomorphic to the sphere. Then:

(1) d ≥ 3, and
(2) CCov(p) ≥ 6π.

Proof. (1) It suffices to prove that if d ≤ 2 then n < 3. This is obvious for d = 1
and it follows from the Riemann–Hurwitz formula for d = 2.

(2) By (1), d ≥ 3. Further, n ≥ 3 and CCov(p) = 2πd(n− 2). Therefore,

CCov(p) = 2πd(n− 2) ≥ 2π(3)(3− 2) = 6π. �

The following result complements Theorem 4.1.

Theorem 4.3. The topological complexity of the sphere is equal to 6π.
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Proof. Let S2 denote the 2-sphere. Consider the abstract branch triplet T =
(3, 3, {[3], [1, 2], [1, 2]}). By Lemma 2.7, T is realizable on a Riemann surface
M0 ∈ XS2 . Let p0 : M0 → P1 be a (d, n)-branched covering whose branch data
is equal to T . Since d = 3 and n = 3, then CCov(p0) = 2πd(n− 2) = 6π. Hence,

Ctop(S2) ≤ CRiem(M0) ≤ CCov(p0) = 6π. (4.3)

Let M ∈ XS2 and suppose that p : M → P1 is a (d, n)-branched covering. If p
is hyperbolic, then Lemma 4.2 implies that CCov(p) ≥ 6π. If p is not hyperbolic,
CCov(p) =∞. In either case, CCov(p) ≥ 6π. Thus, CRiem(M) ≥ 6π.

Since CRiem(M) ≥ 6π for all M ∈ XS2 , then Ctop(S2) ≥ 6π. Combining this
with equation (4.3), we obtain that Ctop(S2) = 6π. �

We can merge Theorems 4.1 and 4.3 into the following result.

Theorem 4.4. Let Ctop(S) denote the topological complexity of a surface S of
genus g. Then

Ctop(S) =
{

2π(2g + 1) if g ≥ 1,
6π if g = 0.

5. The simple complexity of a topological surface

In this section we define a special type of (d, n)-branched coverings that we call
simple. As usual, |B| denotes the cardinality of the set B.

Definition 5.1. A (d, n)-branched covering p : M → P1 is called simple if |p−1(y)| ≥
d− 1 for all y ∈ P1.

For simple branched coverings, the Riemann–Hurwitz formula takes the follow-
ing form.

Theorem 5.2. Let p : M → S2 be a simple (d, n)-branched covering. Let g be the
genus of M . Then

2− 2g = 2d− n.

We use Theorem 5.2 to obtain a lower bound for the complexity of a simple
branched covering.

Lemma 5.3. Let p : M → P1 be a simple (d, n)-branched covering. Suppose that
the genus g of M is positive. Then CCov(p) ≥ 8πg.

Proof. If n < 3 the conclusion of the lemma is clearly satisfied. We assume that
n ≥ 3 for the rest of the proof, which implies that d ≥ 2.

By Theorem 5.2, n = 2d+ 2g − 2 ≥ 4. Therefore,

CCov(p) = 2πd(n−2) = 2πd(2d+2g−4) = 4πd(d+g−2) ≥ 4π(2)(2+g−2) = 8πg.
�

We now define a notion of simple complexity for topological surfaces.
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Definition 5.4. We define the simple topological complexity, Csimp(S), of a surface
S as the infimum of the set of all complexities of simple branched coverings of M
to P1 with M ∈ XS :

Csimp(S) = inf{CCov(p) | p : M → P1 is a simple branched covering and M ∈ XS}.

Proposition 3.12 and Observation 3.5 imply that the infimum in Definition 5.4
is attained, although it could be infinite.

We now compute the simple topological complexity of surfaces of positive genus.

Theorem 5.5. Let S be a surface of genus g ≥ 1. Then the simple topological
complexity Csimp(S) of S is equal to 8πg.

Proof. By Proposition 3.12, there exists a hyperelliptic Riemann surface M0 ∈ XS .
Let p0 : M0 → P1 be the associated (2, n)-branched covering. By Lemma 3.10,
n = 2g + 2 ≥ 4. Therefore,

CCov(p0) = 2πd(n− 2) = 2π(2)(2g) = 8πg.

Since p0 is simple, then Csimp(S) ≤ CCov(p0) = 8πg. By Lemma 5.3, Csimp(S) ≥
8πg. Combining the last two inequalities, we obtain that Csimp(S) = 8πg. �

Before extending Theorem 5.5 to the case g = 0, we need the following.

Lemma 5.6. Let p : M → P1 be a simple (d, n)-branched covering with M ∈ XS2 .
Then CCov(p) ≥ 12π.

The proof of Lemma 5.6 is similar to that of Lemma 5.3 and left to the reader.

We state the analog of Theorem 5.5 for genus zero.

Theorem 5.7. The simple topological complexity of the sphere is equal to 12π.

Proof. Consider the abstract branch triplet T = (3, 4, {[1, 2], [1, 2], [1, 2], [1, 2]}). By
Theorem 2.9, there exists a (3, 4)-branched covering p0 : M0 → P1, with M0 ∈ XS2 ,
whose branch triplet coincides with T . This branched covering is simple because
the length of the partition [1, 2] is equal to 2 = d− 1. Further,

Csimp(S2) ≤ CCov(p0) = 2πd(n− 2) = 2π(3)(4− 2) = 12π.

By Lemma 5.6, Csimp(S2) ≥ 12π. Combining the last two inequalities, we obtain
that Csimp(S2) = 12π. �

We can merge Theorems 5.5 and 5.7 into the following result.

Theorem 5.8. Let Csimp(S) denote the simple topological complexity of a surface
S of genus g. Then

Csimp(S) =
{

8πg if g ≥ 1,
12π if g = 0.
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