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ON FAMILIES OF HOPF ALGEBRAS WITHOUT THE DUAL
CHEVALLEY PROPERTY

NAIHONG HU AND RONGCHUAN XIONG

ABSTRACT. Let k be an algebraically closed field of characteristic zero. We
construct several families of finite-dimensional Hopf algebras over k with-
out the dual Chevalley property via the generalized lifting method. In par-
ticular, we obtain 14 families of new Hopf algebras of dimension 128 with
non-pointed duals which cover the eight families obtained in our unpublished
version, arXiv:1701.01991 [math.QA].

1. INTRODUCTION

Let k be an algebraically closed field of characteristic zero. This work is a con-
tribution to the classification of finite-dimensional Hopf algebras over k without
the dual Chevalley property, that is, the coradical is not a subalgebra. Until now,
there are few classification results on such Hopf algebras without pointed duals,
with some exceptions in [I5]. More examples are needed to get a better under-
standing of the structures of such Hopf algebras.

Our strategy follows the principle proposed by Andruskiewitsch and Cuadra [3],
that is, the so-called generalized lifting method as a generalization of the lifting
method introduced by Andruskiewitsch and Schneider in [7]. Let A be a Hopf alge-
bra over k without the dual Chevalley property. Andruskiewitsch and Cuadra [3]
replaced the coradical filtration {A(,)},>0 with the standard filtration {Af,}n>o,
which is defined recursively by Ap,) = Ap—1) /A Ajg), where Ajg) is the subalgebra
generated by the coradical Ag. Under the assumption that S4(Ap)) € Apj, it
turns out that the standard filtration is a Hopf algebra filtration, and the associ-
ated graded coalgebra gr A = ©52 (A, /Afn—1) with Aj_y) = 0 is a Hopf algebra.
Denote by 7 : grA — Ajg the canonical projection which splits the inclusion
i: Ap) — grA. By a theorem of Radford [26], gr A = R# Ay as Hopf algebras,
where R = (gr A)°°™ = @,,>0R(n) is a connected IN-graded braided Hopf algebra in
ﬁg YD called the diagram of A. Moreover, R(1) as a subspace of P(R) is a braided
vector space called the infinitesimal braiding of A. If the coradical Ag is a Hopf

2010 Mathematics Subject Classification. 16T05.

Key words and phrases. Nichols algebra; Hopf algebra; generalized lifting method.

The paper is supported by the NSFC (Grant No. 11771142) and in part by Science and
Technology Commission of Shanghai Municipality (No. 18dz2271000).

443


http://arxiv.org/abs/1701.01991

444 NAIHONG HU AND RONGCHUAN XIONG

subalgebra, then the standard filtration coincides with the coradical filtration. In
this case, gr A is coradically graded and the diagram R of A is strictly graded, that
is, R(0) =k, R(1) = P(R). In general, it is an open question whether the diagram
R is strictly graded. See [8) 3] for details. The generalized lifting method consists
of the following questions (see [3]):

e Question 1. Let C be a cosemisimple coalgebra and S : C — C an injective
anti-coalgebra morphism. Classify all Hopf algebras L generated by C, such
that S|c = S.

e Question 2. Given L as in the previous item, classify all connected graded
Hopf algebras R in £YD.

e Question 3. Given L and R as in previous items, classify all liftings, that
is, classify all Hopf algebras A such that gr A = R§L. We call A a lifting
of R over L.

The motivation of this paper is [I5] (also [3]). We fix two 16-dimensional Hopf
algebras H and H appearing in [T}, [16] without the dual Chevalley property and
study questions 2 and 3.

The Hopf algebras H and H defined in Definitions and are generated
by their coradicals and have pointed duals appearing in [I4]. In particular, H &
K ® k[Z5] as Hopf algebras, where K is isomorphic to the Hopf algebra I defined
in [I5], Proposition 2.1]. See subsections and for details.

For H, we determine all simple objects in Z2YD by using the equivalence £ YD =
p(Heor)yM [25, Proposition 10.6.16]. Indeed, we show in Theorem that there
are 16 one-dimensional objects ]kXi,j,k with 0 <4, 7 < 2,0 <k < 4 and 48 two-
dimensional objects V; ;r, with (4,7, k,0) € A = {(4,7,k,0) | 0 < i, 5 < 4,0 <
kyo < 2,2k4+ 75 # 2(t+ 1) mod 4}. Then we determine all finite-dimensional
Nichols algebras over simple objects in £YD. Finally, we calculate their liftings
following the techniques in [7, [I5]. We obtain the following result.

Theorem A. Let A be a finite-dimensional Hopf algebra over H such that the
corresponding infinitesimal braiding is a simple object V in BYD. Assume that
the diagram of A is strictly graded. Then V' is isomorphic either to ky, ., for
(i,7,k) € A® or to Vi j . for (i,4,k,1) € A2 UA3UA*, and A is isomorphic either
to

o Aky, ,  tH for (i,j.k) € A°;

o BV k. )tH for (i,j,k,0) € A2UA3;

o &\ (n) for p €k and (i,j,k,1) € A%

RN

The sets A®, A2, A3, A* as subsets of A are introduced in Lemma and Propo-
sition and |A?| —4 = |A%] — 8 = |A*| =8 = 0. It turns out that B(k,, ,,) is
an exterior algebra for (i,j, k) € A°, and B(V; jx,) is isomorphic as an algebra to
a quantum plane of dimension 4 or 8 for (4,4, k,t) € A% or A% U A*, respectively.
These Nichols algebras appearing firstly in [23] were also described in [4] as special
kinds. As stated in [4], they are not of diagonal type.

The Hopf algebras Aky, ,  $H with (i,7,k) € A%, B(V; j . )tH with (4, j,k,¢) €
A? or with (i,7,k,t) € A>UA* are the duals of pointed Hopf algebras of dimension
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32, 64 or 128, respectively. The Hopf algebras €7 ik, ,(1) depending on the param-
eters 1 € k and (4, j,k,¢) € A* are introduced in Definitions and They
have dimension 128 with non-pointed duals and constitute new examples of Hopf
algebras without the dual Chevalley property except for p = 0.

For H, we determine all simple objects in H yD by using the isomorphism H

K ® k[Zs]. We show that there are 16 one—dlmensmnal objects ky, ., in gyD

1,7,k
for 4,5 € Ip1, k € Io3, and 48 two-dimensional simple objects W; ;. in gy’D
for (i,7,k,0) € Q = {(i,75,k,¢) | 4,5 € Togs, k,t € Io1, 20 # j mod 4}. Then
we determine all finite-dimensional Nichols algebras over simple objects in gyD.
Finally, we calculate their liftings. We obtain the following result.

Theorem B. Let A be a finite-dimensional Hopf algebra over H such that the
corresponding infinitesimal braiding is a simple object W in ~)JD Assume that
the diagram of A is strictly graded. Then W is isomorphic ezther to ky, ;, for
(i,7,k) € QY or to W, j k., for (i,4,k,0) € QLUQZUQ3 and A is isomorphic either
to

o Nk, tH for (i,j,k) € Q°;

o BW, jx JtH for (i,5,k,1) € Q' UQ2;

o QF () for p ek and (4,4, k, L)€Q3

The set QF for 0 < i < 3 as a subset of Q is introduced in Lemma or
Proposition and |QY)—4 = |Q%| -8 = |Q*| -8 = 0. It turns out that B(ky, , ,)
is an exterior algebra for (i, j, k) € Q°, dim B(W; jx,) = 4 for (i,j,k,.) € Q! and
dim B(W; j 1,.) = 8 for (i,j,k,1) € Q2 U Q3. These 8-dimensional Nichols algebras
were firstly introduced in [15] and these 4-dimensional Nichols algebras did not
appear in [I5] but have already appeared in [4]. They are isomorphic to quantum
planes as algebras but not as coalgebras since they are not of diagonal type.

For (i,j.k) € Q0 (i, 4, k, DES Qb and (4,4, k,0) € Q2 U Q3 the Hopf algebras
AR kﬁH and B(W; ; « L)ﬁH are the duals of pointed Hopf algebras of dimension
32, 64 and 128, respectively. In particular, B(Ws ;¢ O)IjH B(Ws..0,0) 1K ® Kk[Zs]
as Hopf algebras for j € {1,3}. For (¢,5,k,¢) € 93 the Hopf algebra Q” ko (1)
depending on the parameter p € k is introduced in Definition [f.16] Note that
Q’LS_] k, (0) = B(W; jr . EH for (i,j,k,0) € Q?* and 957]‘,070(#) = Az 5 (p) @ k[Zs] as
Hopf algebras, where j € {1,3} and 23 ;(n) is given in [I5, Definitions5.4/5.6].
The Hopf algebras Q” & L( ) with (k,¢, ) # (0,0,0) are not isomorphic to the
tensor product Hopf algebra of a Hopf algebra of dimension 64 and k[Zs], and do
not have the dual Chevalley property with non-pointed duals. To the best of our
knowledge, they constitute new examples of Hopf algebras of dimension 128.

The paper is organized as follows. In section [2] we recall some basic knowledge
and notations of Yetter—Drinfeld modules, Nichols algebras and Radford biproduct.
In section@, we determine all finite-dimensional Nichols algebras over simple objects
in HyD and their liftings. We first describe the structures of H and the Drinfeld
double D := D(HP). Next, we determine all simple D-modules and describe
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simple objects in YD by using the equivalence £YD = p M. Then we describe the
braidings and determine all finite-dimensional Nichols algebras over simple objects
in #YD. Finally, we calculate the liftings of all finite-dimensional Nichols algebras
and prove Theorem [Al In section @} we determine all finite-dimensional Nichols

algebras over simple objects in gyD and their liftings. For this, we first describe

the structure of H and determine simple objects in gyD by using the isomorphism

H = K®Kk[Zs]. Then we describe the braidings and determine all finite-dimensional
Nichols algebras over simple objects in gyD. Finally, we calculate the liftings of
all finite-dimensional Nichols algebras and prove Theorem [B]

2. PRELIMINARIES

Conventions. Throughout the paper, our ground field k is an algebraically closed
field of characteristic zero. We denote by £ a primitive 4th root of unity. Our
references for Hopf algebra theory are [25] 27].

The notation for a Hopf algebra H over k is standard: A, €, and S denote the
comultiplication, the counit and the antipode. We use Sweedler’s notation for the
comultiplication and coaction; for example, for any h € H, A(h) = hq) ® hy),
A = (A ®id®")A=1 . We denote by H the Hopf algebra with the opposite
multiplication, by H<? the Hopf algebra with the opposite comultiplication, and
by H®°P the Hopf algebra H°P<°P. Denote by G(H) the set of group-like elements
of H. Forany g,h € G(H), Py n(H) ={z € H| A(x) = zQg+h®xzx}. In particular,
the linear space P(H) := P1,1(H) is called the set of primitive elements.

Given two (braided monoidal) categories € and ©, denote by € = ® the (braided
monoidal) equivalence between € and ©. Given n > 0, we denote Z,, = Z/nZ and
Ip, = {0,1,...,n}. In particular, the operations ij and i+ are considered modulo
n+ 1 for 7, j € Iy, when not specified.

2.1. Yetter—Drinfeld modules and Nichols algebras. Let H be a Hopf al-
gebra with bijective antipode. A left Yetter—Drinfeld module M over H is a left
H-module (M,-) and a left H-comodule (M, ¢) satisfying

O(h-v) = h(l)v(_l)S(h(g)) ® h(g) V(0 YveV, heH.

Let #YD be the category of Yetter—Drinfeld modules over H. £YD is braided
monoidal. For V,W € £YD, the braiding cv,w is given by

cyw: VaW=WeV, v@ww vy wuvg, YveV,weW. (1)
Moreover, 2D is rigid. Denote by V* the left dual defined by
(h- fo) = (f,8(h)v),  fnlfoy,v) =S vn)(f v0)-
Assume that H is a finite-dimensional Hopf algebra. Then g: YD is braided
equivalent to HYD, see [5, 2.2.1]. Let {h;}ic1,, and {h‘};c1,, be the dual bases
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of H and H*. If V € YD, then V € 2. YD with the Yetter-Drinfeld module
structure given by

fro=f(S(vcn))ve), )= ZSfl(hi) ®h;-v, YveV, feH. (2)

Definition 2.1 ([8, Definition 2.1]). Let H be a Hopf algebra and V € BYD. A
braided graded Hopf algebra R = @®,>oR(n) in YD is called a Nichols algebra
over V if

R(0)=k, R(1)=YV, Risgenerated as an algebra by R(1), P(R)=1V.

Let V € BYD, then the Nichols algebra B(V') over V is unique up to isomorphism
and isomorphic to T'(V)/I(V'), where I(V) C T(V) is the largest IN-graded ideal
and coideal in #YD such that I(V)NV = 0.

Remark 2.2. Let (V,c¢) be a braided vector space, that is, ¢ : VRV = V@V
is a linear isomorphism satisfying the braid equation (¢ ® id)(id ® ¢)(c ® id) =
(id®c)(c®id)(id®c). As well-known, B(V') as a coalgebra and an algebra depends
only on (V,c). Let (W, c) be a vector subspace of V' such that (W QW) C W W.
Then dim B(V') = oo if dim B(W) = oo. See [17, ] for details.

Nichols algebras play a key role in the classification of pointed Hopf algebras.
We close this subsection by giving the explicit relation between V and V* in gyD.

Proposition 2.3 ([5, Proposition 3.2.30]). Let V' be an object in LYD. If B(V)
is finite-dimensional, then B(V*) = B(V)*bep,

2.2. Bosonization and Hopf algebras with a projection. Let R be a Hopf al-
gebra in YD, We write Ag(r) = r) @73 to avoid confusions. The bosonization
RiH is defined as follows: R{H = R ® H as a vector space, and the multiplica-
tion and comultiplication are given by the smash product and smash-coproduct,
respectively:

(rig)(sth) = r(g) - 8)tgyh,  Alrig) = rVir®) g0y © ) 0)ge).  (3)
Clearly, the map ¢« : H — R#{H, h — 18h, Vh € H, is injective and the map
7w : REH — H, rfh — eg(r)h, Vr € R, h € H, is surjective such that o1 = idgy.
Moreover, R = (R{H)" = {x € R{H | (id @ m)A(z) =z ® 1}.

Conversely, if A is a Hopf algebra with bijective antipode and 7 : A — H is a
bialgebra morphism admitting a bialgebra section ¢ : H — A such that wo. = idg,
then A ~ R{H, where R = A°H is a Hopf algebra in ZYD. See [26] for details.

3. ON FINITE-DIMENSIONAL HOPF ALGEBRAS OVER H

In this section, we determine all finite-dimensional Nichols algebras over simple
objects in YD and their liftings. These Nichols algebras have already appeared
in [I5, 4] and consist of 2-dimensional exterior algebras, 4- and 8-dimensional al-
gebras with non-diagonal braidings [29] [I5]. The bosonizations of these Nichols
algebras are finite-dimensional Hopf algebras over H without the dual Chevalley
property. Moreover, the non-trivial liftings of these Nichols algebras constitute new
examples of Hopf algebras of dimension 128 without the dual Chevalley property.
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3.1. The Hopf algebra H and its Drinfeld double. We firstly describe the
Hopf algebra H, which already appeared in [I1] [16] and is generated by a simple
subcoalgebra C' = k{a, b, ¢,d} as follows.

Definition 3.1. H as an algebra is generated by a, b, ¢, d satisfying the relations

at=1, v¥»’=0, =0, d*=1, da*d®=1, ad=da, bc=0=cb, (4)
ab=¢ba, ac=éEca, bd=tdb, cd=¢&de, bd=ca, ba=cd, (5

and as a coalgebra is given by

Ala) =a®@a+b®c, Ab)=a®b+b®d, Alc)=c®a+d®c, (6)
Ald)=d®d+c®b, €la)=1, €b) =0, €ec)=0, ed =1, (7

and its antipode is given by S(a) = a3, S(b) = £ca?, S(c) = &3ba?, S(d) = d3.

Remark 3.2. (1) G(H) = k{1,a® da,da®}, Py aes(H) = k{1l — da® ca’},
P1g(H) = k{1 — g} for g € k{a? da} and a linear basis of H is given
by {a’,ba’, ca’,da’, i € Iy 3}.
(2) Denote by {(a’)*, (ba®)*, (ca’)*, (da*)*, i € Ly 3} the basis of the dual Hopf
algebra H*. Let

3 3 3
T = Z(bai)* +(ca), g= Zfi(ai)* + & (da')*, h= Z(ai)* — (da®)*.
=0 i=0 i=0
Then using the multiplication table induced by the relations of H, we have
G*=1, h*=1, hg=gh, §i=21ag, hi=—7h,
AT)=i®c+gh®% AG=§27 AMR)=heh

In particular, G(H*) = Zy X Zo with the generators g and h.

(3) Let A be the Hopf algebra defined by A := (g,h,x | g* =1, h? =1, hg
gh, hx = —zh, gr = xg, ¥° = 1—g¢?); A(g9) = g®g, A(h) = h®h, A(z) =
x®1+4+ gh®x. It is listed in |14, section 2.5]. Clearly, G(A) = Zy X Zo
and {g?,¢°h, ¢z, ¢’ hx}o<j<a is a linear basis of A. Moreover, A = H*
and the Hopf algebra isomorphism 1 : A — H™* is given by

3 3
W(g') =) €9(a) + €97 (da’)", Y(g’h) =) €9 (") — €9 (da')",

i=0 i=0

3 3
Ug'e) = S VEET (b)) + (ca)), bgPhe) = 37 VEEIH((ba')” — (ea)).
i=0 1=0

Now we describe the Drinfeld double D := D(HP) of H°°P. Recall that D(H) =
H**°P ® H is a Hopf algebra with the tensor product coalgebra structure and the
algebra structure given by (p ® a)(q ® b) = p{q(s), a(1))q(2) ® a2)(qa)s Sil(a(g)»b.
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Proposition 3.3. D := D(HP) as a coalgebra is isomorphic to AP @ HP, and
as an algebra is generated by the elements g, h, x, a, b, ¢, d satisfying the relations
in HP the relations in AP and

ag = ga, ah="ha, dg=gd, dh=hd, bg=gb, cg=gc,
bh = —hb, ax + fxa = 2E(c— ghb), dx— Exd = /2¢(ghe —b),
ch = —he, bx+ Exb=2¢(d — gha), cx — &xc=/2¢(ghd — a).
Proof. After a direct computation, we have that
Ao (9) =9®9g® g, Aluey(h) =h@h®h,
A%, () =1®1R2+1®2® gh+ 1 ® gh® gh,
A%{mp(a):a®a®a+a®c®b+c®b®a+c®d®b,
AZ.(b)=bRaRa+bRc@Rb+dRbRa+dRdRDb,
A2p(c)=a®a®@ct+a®c®d+cdd+clbRc,
AYeop(d) =d®dRd+dRbRc+bRa®@c+bRc®d.
It follows that

Cc

ax = (1,a)c{x, S(b)) + (1, a)zalgh, S(a)) + (x, c)ghb{gh, S(a))
= V2tc — Ewa — V26 ghb,
dx = (1,d)b{z, S(c)) + (1,d)zd{gh, S(d)) + {(z,b)ghc(gh, S(d))
=263 + €xd + V2Eghe,
br = (1,d)d{z, S(b)) + (1,d)xb{gh, S(a)) + (z,b)gha{gh, S(a))
=V2¢d — xb — V2€gha,
cx = (1,a)a{z, S(c)) + (1,a)xzc{gh, S(d)) + (x, c)ghd{gh, S(d))
=283 + Exe + V2Eghd. O

3.2. The representations of D. We compute simple D-modules. We begin this
subsection by describing the one-dimensional D-modules.

Lemma 3.4. There are 16 non-isomorphic one-dimensional simple modules k, .,
given by the characters x; jr with 1,5 € Ip 1,k € Iy 3, where

Xigk(9) = (=1 xijr(h) = (-1), xijr(z) =0,
Xigk(@) =& Xijk(®) =0, xijn(€) =0, xijn(d) = (=1)"(=1)7¢".

Moreover, any one-dimensional D-module is isomorphic to ky, ., for some i,j €
]1071, ke ]Io’g.
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Proof. 1t is clear that these modules k,, ., are pairwise non-isomorphic. Let x €
G(D*) = hom(D, k). Since a* = g* = d* = h? = 1, we have x(a)* = x(9)* =
x(d)* = x(h)? = 1. Since b> = ¢ = hx + zh = 0, it follows that x(b) = x(z) =
x(c) = 0. Then the relation 22 = 1 — g2 yields x(g)? = 1. From the relation
br + &xb = /26(d — gha), we have x(d) = x(g9)x(h)x(a). Thus y is completely
determined by x(a), x(¢) and x(h). Let x(a) = £, x(g9) = (=1), x(h) = (=1)/
for some 7,5 € llp;1,k € Ip,3. Then x = x; 5. The lemma is proved. O

Next, we describe two-dimensional simple D-modules. For this, consider the
finite set given by
A={(,5,k ) eENXNXNxN|i,jeclys k,e€lp1,2k+75#2(t+1) mod 4}.
A direct calculation shows that |A| = 48.

Lemma 3.5. For any 4-tuple (i,7,k,1) € A, there exists a simple left D-module
Vi,jk,. of dimension 2 with the action on a fized basis given by

= (C o) w=(§ ). w=(3 )

a=(0 o) W=(5 &) w=(" ).

] = 0 PEE(-1)F - (1)
VEEH(E (-1 + (-1)) 0 |

Moreover, any simple D-module of dimension 2 is isomorphic to V; ;.. for some

(4,4, k1) € A and Vi j ko = Vp e if and only if (i,5,k, 1) = (p,q,7, k).

Proof. Since the elements g, h, a, d commute with each other and ¢g* = h? = a* =

d* = 1, the matrices defining D-action on V can be of the form

d=(4 o) w=(" ) m=(2 ) w=(% )
a=(5 o) m=(p ) w=(2 ).

where a = a3 = d} = d3 = g} = g5 = h3 = h3 = 1. Since zh + hx = bh + hb =
ch + he = 0, it follows that 1 = x4 =by = by =c1 = ¢4 =0, (h1 + ho)za =0 =
(h1 + ho)xs, (h1 + he)ba = 0 = (hy + ha)bs and (h1 + ho)ea =0= (h1 + ha)cs.

If hy + hy # 0, then [z],[b], [c] are zero matrices and hence V' is not simple
D-module, a contradiction. Therefore, we have h; = —hs. Similarly, the relations
gr = xg, bg = gb and cg = gc yield g1 = gs.

Since b2 = 0 = ¢? and bc = 0 = cb, it follows that babs = cocs = bacs = bgco =
cobg = c3by = 0. By permuting the elements of the basis, we may assume that b3 =
0 = c3. From the relations ax + £xa = v/26(c — ghb) and dx — £xd = v/26(ghc — b),

a1z + Easma = V26(ca — gihaba),  asxs + Earxs = V26(c3 — gahabs),
dizy — Edoxay = V26(g1hics — ba),  doxs — Edixy = V2£(gahacs — b).
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Suppose that b, = 0 = c3. Then it is clear that V is simple if and only if
xox3 # 0. By , we have that a; + £as = 0 = as + £a; and hence a; = 0 = aq, a
contradiction. We may also assume that co = 1.

Since ab = &ba, ac = Eca, bd = £db and cd = £dc, it follows that a3 — as =0 =
ds — &dy. By the relations bd = ca and ba = cd, we have b% —1=0=ay — bads.

From the relations bx + xb = v/2£(d — gha) and cx — Exc = v/2¢(ghd — a),

bows + Ebzra = V2E(d1 — gihiar), b3xa + Ebsxs = V26(ds — gahaas),
cow3 — Ecaa = V26 (gr1hady — ay),  cazo — Ecaxy = V2E(gahady — az),

which implies that Tr3 = \/§§d1 (bg +glh1). By , we have To = gﬁd?(g1h1 —bg).
From the relations 22 = 1 — g% and a%d® = 1, we have xow3 = 1 — g7 and a?d? =
1 = a%d% Indeed, Ao = bgdg, a; = fag, d2 = gdl, ay = —b2d1 and hence the
relations a?d? = 1 = a2d3 hold. Moreover, it follows by a direct computation that
the relation xy23 = 1 — g% holds.

From the discussion above, the matrices defining the action on V are of the form

d=( 70 ol ) a=(h 8 ) m=(0 v )

a=(0 o) W=(% o) m=(% 5 )

o] = 0 YZEA3 (Mg — Aa)
VZEA (AaAs + A1) 0 ’

where \} = 1, A3 = 1, A2 = 1 and \? = 1. It is clear that V is simple if and only if
A3+ AL #0. If A\ = fi, Ao = fj, A3 = (—1)k and \y = (—l)b, then (i,j,k,b) € A.

We claim that V; j k., =V q.r« if and only if (4, 5, k, ) = (p,¢,7, k) in A. Assume
that ® : V; k. + Vpgre is an isomorphism of D-modules. Denote by [®] =
(Pi,j)i,j=1,2 the matrix of ® in the given basis. Since [¢][¥] = [V¥][c] and [a][¥] =
[W][a], po1 = 0 = p11 — paz and (£ — E)p1y = 0 = (6P — £ )pyy. Since ¥ is
isomorphic, £ = £P, which implies that p;2 = 0 and [®] = p11/, where I is the
identity matrix. Similarly, & = €9, k = r, ¢ = k. Thus, the claim follows. O

Remark 3.6. For a left D-module V', there exists a left dual module V* with the
module structure given by (h — f)(v) = f(S(h)-v) for allh e D,v eV, f e V*.

A direct calculation shows that iTj,k,L = Vo1 —jkt1,41 for all (4,5, k, ) € A.

Finally, we describe all the simple D-modules up to isomorphism.
Theorem 3.7. There exist 64 simple left D-modules up to isomorphism, among

which 16 one-dimensional modules are given in Lemmal[3.4 and 48 two-dimensional
simple modules are given in Lemma [3.5

Proof. We first claim that pM = p(g, 4)M. Indeed, pM = gyD by [25] Proposi-
tion 10.6.16] and £YD = 4YD by [5, Proposition 2.2.1]. By [I8, Theorem 4.3], A
is a cocycle deformation of gr A. Then by [24] Theorem 2.7, ﬁyD =~ g; ﬁyD and
hence the claim follows. Note that gr.A = B(W)gk[I'], where I' & Z4 x Zy with
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generators g,h and W := k{v} € KYD with the Yetter-Drinfeld module struc-
ture given by g -z = z,h -z = —z and §(z) = gh ® z. A direct computation
shows that D(gr.A) is isomorphic to the Hopf algebra B generated by the elements
91,92, 93, g4, T1, To satisfying the relations

9i9; = 9i%i, Giyn =095k =1 23 =0, 21T2+ 2271 = 19291 — 1,
git1 = x(9:)719i,  giw2 = X (9:)T2gs,
with the coalgebra structure given by A(g;) = ¢;: ® i, A(x1) =21 @1+ g192 @ 24
and A(r2) = 72 ® 1 + g4 ® T2, where i,j € loz,k € Io1, x(91) = Lx(g2) =
X(g94) = —1 and x(g3) = €. Clearly, B is a lifting of a quantum plane. Thus by [2]

Theorem 3.5, dim V' < 3 for any simple B-module V. The proposition follows by
DM = D(gr _A)M O

3.3. Nichols algebras in ¥ )D. We describe simple objects in YD and deter-
mine all finite-dimensional Nichols algebras over them. We first describe simple
objects in gyD by using the equivalence gyD &~ p M |25, Proposition 10.6.16].

Lemma 3.8. Let k,, ., =k{v} for any (i,j,k) € Ip1 x o1 x o 3. Then k
HYD with the Yetter—Drinfeld module structure given by
a-v=_E, bv=0, cv=0, d-v=(=1)"Ticky,

a®' ® v if j = 0;
o(v) = 2i+3 o
da Qv ifj=1.

Xle

Proof. Since k,, ,, is a one-dimensional D-module, the H-action is given by the
restriction of the character of D given by Lemma [3.:4] and the coaction must be of
the form §(v) = t®wv, where t € G(H) = {1,a?, da,da®} such that (g, t)v = (—1)%
and (h,t)v = (—=1)7v. Then the lemma follows by Remark (3). O
Lemma 3.9. Let V; i, = k{vi,ve} for (4,5,k,0) € A. ThenV; 1, € HEYD with
the module structure given by
a-vy = (=1, by =0 c-v1=0, d-v =&,
a-vg = (=1 vy, bowvg=(=1'vy, c-va=wv1, d-vg=~ET
and the comodule structure given by
(1) ifk=0: 6(v1) = @’ @ui+waba? 1 @vs, 6(v2) = da? " @ua+wical L@y ;
(2) ifk=1: 0(v1) = da’ ' ®@v;+waca’ "t Quy, 0(v2) = @’ @uy—wiba! 1@y,
where wy = 367 — (=1)F) and wy = € ((-1)" + (-1)*¢).

Proof. Note that by Remark [3.2] we have that
3

3
é- il z _|_§ erl)lda'L7 (glh)* _ g E gleaz —57(’+1)lda1,

| =

i=0

(g')" = Sfo O (b 4 cal), (g'he)’ ngf ! (b — cat).
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Let {h;}1<i<16 and {h'}1<;<16 be the dual bases of H and H*. Then the comodule
structure is given by 6(v) = Egl c;@c v for any v € V; ji.,. If we denote Ay = £,
Ay = fj, A3 = (—l)k and Ay = (—1)*, then

3 1
5(1}1) = ZZ(glhn)* ®glhn v+ (glh"x)* ®glhn$"l]1

=0 n=0
3 1
=D ) NG R @ v+ A (he) (g h 1) ® w0
=0 n=0
- %[(1 +A3)a’ + (1= Ag)da’ 1] @ vy + %xz(l + A3)ba’ ' @ vy
1 )
S50l = d)ed’ " @en,

+
3
S(v2) =D Y (G g'h™) @ g'h™ - va + (¢'h"2)* @ g'h - vy

N
Il
o
3
Il
o

I
NE
MH

(=A3)" Ao (g"h™)* @ v + (—A3)"(A2) (¢'h"2)* @ 2101

)
=3
Il

<

n

, , 1
[(1—X3)a? + (14 X3)da? ™| @ vy +

2V2

.’El(]. — Ag)ba‘jil X v

DO =

1 .
+ ——21(1 4+ A3)ca? ' @ vy,

2V2
where I = ng‘;’(AgAg — )\4) and o = \/ig)\l()\Q)\g + )\4) O

Remark 3.10. Let V; ., = k{vi,v2} € BYD for (i,j,k,0) € A. Then by (2),
Vigka € ﬁyD with the module structure given by

g-vn=&Ev, h-vy= (=D, x-v = (=1)Fagg v,
g-va=Evy, hovg = (=D, zovy = (—1)FxE 0y,
and the comodule structure given by

(1) forit=0: 6(v1) =g 2 "h@uv1, 6(v2) = 9_1_i®1}2+%51_i9_2_ih33®01,
(2) fO’f’ t=1: 5(’[}1) = g_i X vy, (5(’(}2) = g_H_lh X v — %fl_ig_i$ & vy,

where x1 = g{l’i(@(—l)k — (=1)") and xo = —/26 1T (=1)F + (—1)").
Then we describe the braidings of the simple objects in ZYD.

Lemma 3.11. Let ky, ., = k{v} € YD for (i,j, k) € lox x Ip1 x Io.3. Then the
braiding of k is given by

_ =D @w, =0
C(’U X U) = {(1)(i+1)kv ® v, if 1 =1.

Xi,j,k
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Lemma 3.12. LetV; i, = k{vi, v} € BYD for (i,j, k,t) € A. Then the braiding
of Vi j k. is given by:

(1) If k=0, thenc([zl ]@)[vl o ]>

2
(71)(L+1)j§ij1)1 & vy (71)jL£(i+1)j’U2 X v1 + c12V1 K V2
(_1)(L+1)(j_1)§ijvl & V2 (_l)b(j_l)g(”l)jw @2 + 111 ® V1
where ¢1p = (—1)70HDed 4 (—1)pU-DelDi ) = %(_1)L(j*1)§(j+2)i+j(§j _
(1))

2) Ifk =1, thenc([zl ]@9[@1 us ]>:

2
[ (—=1)ADE=D gy @ vy (1) U0y @ vy + digvr ® vs }

(_1)(L+1)jfijvl X V2 (—1)jbf(i+1)jv2 ® vy — d11v1 @ V1
where dyy = (_1)(L+1)(j_1)fij + (_1)jb§(i+1)j’ dy = %(_1)jL£(J’+2)i+j(§j + (_l)L)'

Finally, we determine all finite-dimensional Nichols algebras over simple objects
in #YD and present them by generators and relations. We shall show that all
finite-dimensional Nichols algebras over the one-dimensional objects in #YD are
parametrized by the set

A = {(i,j,k) €To1 xTo1 xToz | 21ik if j=0o0r, 2| (i + 1)k if j = 1}.
By Lemma the next lemma follows immediately.
Lemma 3.13. Let (i,5,k) € Ip1 x o1 x Io3. The Nichols algebra B(ky, ., ) over
k is

Xi,j,k

B(]k ) — /\]sz\j,k’ (iaja k) € AO;
Xk Kk[v], others.

We shall determine all finite-dimensional Nichols algebras over two-dimensional
simple objects in EYD. Set n € Iy ;. Consider the finite subsets of A given by

A ={(i,§, k) EAJE=0, (20+2+4)j =0 mod 4,
ork=1,2t4+1)({—-1)+4j=0 mod 4},
A ={(i,§, k) €A k=0, 20(j — 1)+ (i+1)j =0 mod 4,
ork=1, (2t+i+1)j =0 mod 4},
A? = {(i, g, k,0) € N (3,5, k,0) € {(2n,2,1,0), (2n +1,2,0,1)},
A3 ={(i,j,k,0) € A 7€ {1,3}, (i, k,0) € {(0,0,0),(2,0,1)} or (i,k) = (2,1)},
A ={(i, 4, k,0) € A5 €{1,3}, (i, k,0) € {(1,1,0),(3,1,1)} or (i, k) = (1,0)}.

Clearly, A = Uj_; A’ UA™ and [A?| —4 = |[A®] =8 = |[A*| =8 = 0. Tt turns out that
the Nichols algebra B(V; j x,,) is finite-dimensional if (4, j, k, 1) € Uf_,A".
Proposition 3.14. Let V be a two-dimensional simple object in HYD. Then
B(V) is finite-dimensional if and only if V' is isomorphic to V; j ., for (3,7, k,¢) €
A% U A3 U A% Moreover, the generators and relations are given by:
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(4,4, k1) € relations of B(V; jk,.) with generators vy, vs dim B(V)
A2 v2 =0, vjvg — (=1)Fvv; =0, v2 =0 4
A? v? =0, vivg — EFRIpgu; =0, v5 =0 8
At vf =0, vivg + (—1)'vovy =0, v} +2(—1)v3 =0 8

Proof. We claim that dimB(V; j,.) = oo for (i,4,k,.) € A UA™. Indeed, by

Lemma the braiding of V; ; x., with (4,4, k,¢) € A! has the eigenvector v1 ®v;

of eigenvalue 1. For any (i,7j,k,t) € A, there exists (p,q,r,u) € Al such that
iTj,kw = Vpgr,p i HYD, then by Proposition the claim follows.

For (o, B, p,v) € A2, (i,7,k,t) € A3 U A%, a direct computation shows that the
braided vector spaces Vi 8,40, Vi j,k,1 and V; ;1 o belong to the cases Rz 1, Ri,2 and
M1 2(a) in [22], 4], respectively. That is, the braiding matrices of Vi g 0, Vijk1
and V; ; 0 are given by

[vg ] _ [ 20, @y tque @ vy + (2 — pg)vr @ vo
c( Vo ®[v1vz ]>__tpv1®vg 205 @ vy )

c( 1 ®[U11}2 ]): poL e U1 q02®v1+(p—q)vl®v2]’ and

L V2 | | pu1 ® V2 —qus ® Vg + kv ® vq
[ o ] [ —qui®vr pra®@ur+ (p— @)1 @ vo
C(_ Vg | & [ V1 V2 ]) - q’U1®U2 pU2®U2—‘rk’v1®v1 )

respectively. More precisely,
o If (i,5,k, 1) € A2 then t? = —1, tqg = (—1)*, tp=—1, 1> — pg = —2;
if (4,7,k,1) € A3, then p = —1, g = (4207 | = %(1 — (142R)7),
if (4,7,k,0) € A%, then ¢ = 1, p = £1F2R7 | = —L(£0+2R)7 4 1),
if (i,j,k,1) € A%, then p = €020 =1k = %(1 4 ¢(1+2k)7).
if (4,5,k,0) € A*, then ¢ = (1207 p = —1 | = L((+207 — 1),
Then by [4, Proposition 3.3], [4, Proposition 3.10] and [4, Proposition 3.11], the
assertion follows. O

Remark 3.15. By Remark and Proposition B(Vo,j.00) = B(Vs _j1.1)*bP,
B(‘/Qﬂ"o,l) = B(‘/L_j’l,o)*boin and B(Vrgij)L) = B(Vl)_j707L+1)*b0p’ wherej S {1,3}
and v € {0,1}. From the proof of Proposition[3.14, the braiding matrices of Va j, 0.1
and Vo j, 1.1 are, up to a primitive 4th root of unity, the same and so are Vy j, 0,0
and ‘/2,j2,1,01 Vvlyjl_’oyl and ‘/37]'21171, ‘/.17j11070 and Vl,jg,l,Oy where jl,jg € {1,3}

Remark 3.16. The Nichols algebras B(V; j x..) with (i,j, k,) € A3 and B(V; j x.0)
with (i,7,k,0) € A* are isomorphic (up to a primitive 4th root of unity) to the
Nichols algebras B(Va ;) and B(Vs ;) appearing in [15] as algebras but not as coal-
gebras since the braidings differ.

Remark 3.17. Let V; j ., € YD with (i,j,k,1) € A2 UA3UA*. Then Vi ., €
ij with the Yetter—Drinfeld module structure given by Remark |3.10, Denote
by Bi j i, the subalgebra of B(V; ;r,.)iA generated by g,h,x,v1. Then B; j ., is a
pointed Hopf algebra withT' := G(B; j1,.) = ZaxZy. Note that B, 1, is tsomorphic
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to the quotient of B(X; i )ik[I'] by the relation 22 =1 — ¢2, where Xijk, =
k{x,v1} € RYD with the Yetter-Drinfeld module structure given by

g-x=x, h-a=-z, g-vi=E7v, hv=(-1)\y,
S()=gh®z, 6w)=g 2 "hev ord(v)) =g '@uvi, ift=0o0ri=1.
It is easy to see that gr B, j 1, = B(X; ;& )HKk[I] and B(X; ;) is of diagonal type

q11 gq12921 922
O — O

with the generalized Dynkin diagram (see [20]) given by

(1) for 1 =10: qui = =1, quagor = (1)1, gag = (—1)F¢HI;
(2) forv=1: 11 = —1, qragor = (=1)FEI, goo = €Y.
We claim that dim B; j ., = dim B(V; j .. )4A and hence B; j i, = B(Vi jk.)iA

as Hopf algebras. Indeed, if (i,j,k,1) € A%, then a direct computation shows
N follows by [9, 10] that

that the Dynkin diagram of B(X; j.,.) is 5
dim B(X; j x,.) = 8 and hence

dim Bi,j,k,L = dlmB(XZ,j’k7L)ﬁﬂ{[F] =64 = dimB(‘/vi7j7k7L)liA.
— i _
If (i,7,k,t) € A3, then the Dynkin diagram is i 5. If (i,5,k,1) € A%,
gt gFi

then the Dynkin diagram is o . It follows that dim B(X; j x,.) = 16 and
hence dim B; ; , = 128 = dim B(V; j 1., )fA.

We claim that gr B; j 1., = B(V; j.x,.)igr A. Recall that gr A = A, for some Hopf
2-cocycle o. By [19, Proposition 4.2], ¢ = € ® € — (, where ((z'g’h*, z™mg"h!) =
(=)™ 82 i4m for i k,m,l € Iy, j,n € lys. By [24, Theorem2.7], a direct com-
putation shows that V; j 1, € g;j{yp with the module structure given by

g-oi=E7v, hevr= (=D, 201 = o1 + agve,
g-v2=Eva,  hova = (=1)"vy,  @vy = Broy + Bavs,
and the comodule structure given by
(1) for1=0:8(v1) =g 2" h@uvy, 6(va) =g 1 @uvy + @flﬂ'g’zﬂ'hx ®vy;
(2) fOT’ L= 1: (S(’Ul) = gfi ® V1, (5(1}2) = girH*lh X vg — ggliigiix X U1,
where aq, s, B1, B2 € k. By [21], Proposition 8.8], B(V; i, )iB(W) = B(X; jk,.)
and hence the claim follows.
From the preceding discussion, the Nichols algebras of dimension greater than 2
in Proposition can be related to the Nichols algebras B(X; ;.) of diagonal
type. More precisely, if (i,j,k,u) € A2, then the Dynkin diagram of B(X; ;)

-1 -1

. -1 &%
is o

o . If (i,j,k,0) € A3, then the Dynkin diagram is o o .

. L L=l g g .
If (i,§,k,1) € A%, then the Dynkin diagram is o o These generalized
Dynkin diagrams appeared in the second row or the third row in [20, Table1]. They
are of Cartan type Ay or standard type As. Note that Vi j ., € SYD (or g; ﬁyD) is
characterized by (i,7,k,t) € A. By [21], Proposition 8.6], we are able to obtain these
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Nichols algebras B(V; jr,.) (up to isomorphism) by splitting the Nichols algebras
B(Xi k) of diagonal type.

It should be mentioned that a similar idea was used in a recent work [1] to study
the Nichols algebras over basic Hopf algebras. In particular, our examples can be
recovered in a similar way.

3.4. Hopf algebras over H. We determine all finite-dimensional Hopf algebras
over H such that their diagrams are strictly graded and their infinitesimal braidings
are simple objects in ¥ YD. We first show that the diagrams of these Hopf algebras
are Nichols algebras.

Lemma 3.18. Let A be a finite-dimensional Hopf algebra over H such that the
corresponding infinitesimal braiding V' is a simple object in gyD. Assume that the
diagram of A is strictly graded. Then gr A= B(V)#H.

Proof. Let S be the graded dual of the diagram R of A. Then by the duality
principle [8, Lemma 2.4], S is generated by S(1) if and only if P(R) = R(1). Since
R is strictly graded, there exists an epimorphism S — B(W), where W := S(1). If
V is a simple object in Z£YD, then by Remark W must be simple in ZYD. To
show that R is generated by R(1), it suffices to show that S is a Nichols algebra,
that is, to show that the relations of B(W) also hold in S.

Assume W = ki, ,, = k{v} with (4,5,k) € A°. Then B(W) = Ak, ,, for
(i,7,k) € A°. Suppose that v? # 0 in S. Since c(v ® v) = —v @ v, it follows that
v? € P(S) and c(v?®v?) = v2®v?, which implies that dim S = oo, a contradiction.
Therefore, the relation v? = 0 holds in S.

Assume that W = V; ;o, with (4,5,0,.) € A3 Set r1 = vivg — wgvy for
simplicity. By Proposition B(W) = k(vy,ve | v? = 0,71 = 0,v3 = 0) and the
relations of B(W) are all primitive elements. As §(v1) = o/ ® vy + ETH((—1)" +
ENba? ™t @ vy and 6(v2) = da? ! @ vy + LE3F(¢0 — (—1)")ca’ ™! @ vy, we have that

§(v?) =a? @v? + (=) + Eba@ 1, 0(r) =da®r.

Then by the formula defining the braiding in YD, c(r@r) =r@r for r = v?, r,
and hence v? = 0 = 71 in S. Finally, we have that §(v3) = 1 ® v3, which implies
that c(vj ® v3) = v ® v3 and hence v =0 in S.

Similarly, the claim follows for the remaining cases. O

Next, we shall show that there do not exist non-trivial liftings for the bosoniza-
tions of the Nichols algebras over k,, . with (4,7, k) € A and over V; j, with
(i,7,k, 1) € A2U A3,

Proposition 3.19. Let A be a finite-dimensional Hopf algebra over H such that
grA = B(V)iH, where V is isomorphic either to lky, ., for (i,j,k) € A° or to
Vijgew for (i,5,k,0) € A2 UA3. Then A~ gr A.

Proof. We prove the assertion for V=V, ; ;. , with (i, j,k,¢) € A3, being the proof
for ky, ,, and (i, j, k, 1) € A* completely analogous. Note that gr A = B(V; ; 1, ){H

for (i,7,k,1) € A3. We prove the assertion by showing that the relations of gr A
also hold in A.
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Assume that k = 0. Then B(V; o, )tH is generated by z,y, a, b, ¢, d, subject to
the relations of H, the relations of B(V; ;1,) and the relations

ar = —zxa, br=—xb, cx=~Exc, dv=E2d, ay—Efya=(—1)zc,
by — yb = (—1)'ad, cy— & ye=2za, dy— €T yd = xb.

The coalgebra structure is given by @, @, A(z) = 2@14+a? @z+£(14+T)ba? 7t ®
yand A(y) =y ®1+da? '@y + 5651 — (—1)")ca’ ' @ x. Then

A@?)=2’®@1+ad* @a” + (& — E)ba ® (vy — Fyx),
Alzy — yz) = (2y — Fyz) @ 1 + da @ (zy — Eyz).

From the second equation, we have xy —&/yz € Py 40 (B(W)EH) = P 4a(H). Since
P1.da(H) = k{1 —da}, it follows that zy — &fyx = p(1 — da) for some p € k. Then
from the first equation, we get that

A(? 4+ (& — pba) = (2% + (¢ =& pba) © 1 + a® @ (2% + (¢~ pba),

which implies that 22 +£(¢7 — £ uba = v(1 — a?) for some v € k. Since az? = z2a,
br? = 2%b and ab = £ba, it follows that 4 = 0 = v and hence 2% = 0 = zy — &yx
in A. Finally, a tedious computation shows that y* € P(A4) and hence the relation
y* = 0 holds in A. Consequently, A = gr A.

Assume that k = 1. Then B(V; ;1,)tH is generated by z,y, a, b, ¢, d, subject to
the relations of H, the relations of B(V; ;1,) and the relations

br = (—1)be, cr = —xc¢, dxr = —$d7 ay + 5(_1)Lya — (_1)L.’IJC,
ar = (=1)'za, by+&(=1)'yb=(-1)'zd, cy+&yc=wa, dy+&yd=zb.

The coalgebra structure is given by (@), (7)), A(z) =z ® 1 +da? ' @ x + £ —
(1) )ea’ "t @y and Aly) =y @1+a @y+ 56(¢0 + (=1))ba/ ' @ .

A direct computation shows that zy + &yz € P1 4o (B(Vij1,)0H) = P1,aa(H).
Since Py ga(H) = k{1 — da}, zy + &yxr = p(1 — da) for some u € k. Then it
follows by a direct computation that 2% +£(1+&7(—1)")uba € Py o2 (B(Vi i1, )4H) =
P12 (H). Since Py o2 (H) = k{1l —a?}, 22 +£(1+ & (—1)")uba = v(1—a?) for some
v € k. Since az?® = x2%a, bx? = 22b and ab = £ba, it follows that 4 = 0 = v and
hence 22 = 0 = zy + &yx in A. Finally, A(y?) = A(y)? = y* @ 1 + 1 ® y*, which
implies that the relation y* = 0 holds in A. Consequently, A4 = gr A. O

Now we define eight families of Hopf algebras Cﬁ ik (1) depending on the param-
eter p € k and show that they are indeed liftings of the Nichols algebras B(V; j x..)
for (i,4,k, 1) € A*.

Definition 3.20. For p € k and (i,5,0,0) € A*, let €}, (1) be the algebra

K2

generated by x, y, a, b, ¢, d subject to the relations , ’c;rid
axr = —(—1)€zxa, br=—(-1)¢xb, cx=~Exc, dr=~Exd,
ay + (—1)'ya = (—1)'ze, by + (—1)'yb = (—1)‘zd, cy + yc = za, dy + yd = xb,
2?2 +2(=1)y? = u(l —a?), zy+ (=1)'yx = pca, z*=0.

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



FAMILIES OF HOPF ALGEBRAS WITHOUT DUAL CHEVALLEY PROPERTY 459

4

€5 j.0,. (1) is a Hopf algebra whose coalgebra structure is given by @, and

Al)=z®1+d @z — (& + (1))’ @y,
Aly) =y@1+da ' @y+ 5 (57 (—1)")ea ' @ a.

Remark 3.21. It is clear that €} (0) = B( ia0.)tH and €} o () with p # 0
s mot isomorphic to QJOL(O) as Hopf algebras for (i,7,0,1) € A*. Moreover,
€0 (1) =T (Vi tH/J?, where JO is the ideal generated by the elements given
by the last row of the equations in Definition [3.20,

Definition 3.22. For p € k and (i,7,1,1) € A%, let Q]“(u) be the algebra
generated by x, y, a, b, ¢, d subject to the relations | ., and

ar = —(—1)"€'za, br=—(-1)"¢ab, cx=~Ec, dr=E2d,

ay +ya = (=1)‘zc, by +yb = (=1)'ad, cy — & yc = za, dy — £ yd = ab,
2?2 +2(—=1)y? = pu(l —d?), zy+ (—1D'yx = (-1)'pca, z*=0.

(1) is a Hopf algebra whose coalgebra structure is given by @, and
Al)=2@1+dd '@z + ((-1)¢ —1)ea’ ' @y,

o4

49,15t

. 1 ) .
Aly) =y@1+d @y - S((-1)'¢ + 1’ " .

Remark 3.23. It is clear that €} ;| ,(0) = B(V; j1,)8H and €} ; | (n) with p# 0
is mot isomorphic to 6” 1,.(0) as Hopf algebras for (i,7,1,1) € A% Moreover,
¢l (m) =T 1,]7k7L)ﬂH/J , where J* is the ideal generated by the elements given
by the last row of the equations in Definition [3.23

Lemma 3.24. A linear basis of €} k(1) s given by
{y"z*d'c"b’a”, s, w € oz, m t+u+v€lgy}.
In particular, dim €}, (u) = 128.

Proof. We prove the assertion for ¢ .k (1) by applying the Diamond Lemma [I3]
with the order y < x < d < ¢ < b < a. By the Diamond Lemma, it suffices to
show that all overlap ambiguities are resolvable, that is, the ambiguities can be
reduced to the same expression by different substitution rules. To verify all the
ambiguities are resolvable is tedious but straightforward. Here we only check the
overlaps (zy)y = z(y?), 2*(zy) = (¢*)y and (ay)y = a(y?).

Assume k = 0. Note that az? = —z2a. After a direct computation, cay =
(—1)*yca — (—1)*za®. Then

(zy)y = —(=1)"yzy + pcay = —(=1)"y(uca — (—1)"yz) + pcay
—(=1)' pyca + y*z + pcay = y*x + p(cay — (—1)"yca)

=y — (-1)pra® = (1) (a1 — a) — o) — (~1)'uza?
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Note that cax = (—1)‘xca, z(xy) = —(fl)bxyx + pxea = —(—1)(—(-1D)‘yz +
uca)x + prca = yr* — (=1)‘pcax + prca = ya?. It follows that 22(zy) = y:v4 =
0 = (2*)y. Similarly, we have that

(ay)y = —(—1)'yay + (—1)'zcy = —y(—ya + zc) + (—1)"z(za — ye)
=y’a+ (-1)'za— (yzr + (=1)'zy)ec = y?a+ (-1)'z%a — p(-1)'cac
1 1 1
= S0 (1 - @+ S (-1faPa = S(-1) (e - 0®) - S(-1)ar® = a(s?)
Assume k = 1. The proof follows the same line as for k = 0. (|

Now we show that CH k. (w) is a lifting of the bosonization B(V; ;. )§H for
(1,5, k, 1) € A%

Lemma 3.25. For (i,5,k,t) € A*, gr &}, (1) = B(Vi k. )tH.

Proof. Let Ag be the subalgebra of ¢} ik, (1) generated by the subcoalgebra C =
k{a,b,c,d}. We claim that Ag =& H. Indeed, consider the Hopf algebra map
Y H— ¢ ’J,“( ) given by the composition H — T'(V; 5, iH — €; ’j,“(u) =

T(Vi k) iH/J*. Tt is clear that 1(C) = C as coalgebras and 1 (H) = Ay as Hopf
algebras. By Lemma dim Ay = 16. Hence dim¢(H) = 16 and (H) = H,
which implies that the claim follows.

Let Ay = Ao+ H{x,y}, Ay = Ay + H{2? zy}, A3 = Ay + H{23, 2%y} and Ay =
As + H{z3y}. A direct computation shows that {A¢}7_, is a coalgebra filtration
of Qf” k. (1). Hence, (Qﬁ” k. (#))o € H, which implies that (Qt?,j,k,b(ﬂ))[o] = H
Therefore, gr&; ;. (1) = R4 k LﬁH By definition, it is easy to see that V; ;1. C
P(R} ;.,)- Then by Lemma [3.24] dim R}, ., =8=dimB(V.). Consequently,
gr Q:’L JJ.k, L(:u’) = B( 17]7k7L)ﬁH U
Proposition 3.26. Let A be a finite-dimensional Hopf algebra over H such that
gr A = B(V)iH, where V is isomorphic to Vi j k.., for (i,j,k,.) € A*. Then A =
¢4,j,k L(lu’)

Proof. Assume k = 0. Then gr A= ¢} (0) as Hopf algebras. As A(z) =zx®1+
o) @z — (&7 +(=1)")ba’ ' @y and A(y) = y@1+da’ ! @y+5(¢ — (=1)" )’ ' @,
A@® +2(-1)'y%) = (@* +2(-1)'y") @ 1 + 0”@ (2% + 2(-1)"y"),

Azy + (-1)'yz) = (zy + (—1)'y2) ® 1 = ca @ (2* +2(-1)"y*)
+da® (zy + (—1)'yx).

From the first equation, we have that z? + 2(—1)'y? € P; .2(B ( G0t H) =
P1a2(H). Since Py 42(H) = k{1 — a?}, it follows that 2 + 2(—1)"y* = pu(1 — a?)
for some p € k. Then from the second equation, we get that

A(zy + (-1)'yz — pea) = (zy + (—1)'yz — pea) ® 1 + da @ (zy + (—1)" yz — pca).

Thus zy + (—1)'yx — pca = v(1 — da) for some v € k. Since v(1 — da)c =
ve(l —da) and c(zy + (—1)'yz) = —€&(zy + (—1)'yz)c, it follows that v = 0 and
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hence zy + (fl)by:z: = pca. Finally, A(z*) = A(z)* = 2* ® 1 + 1 ® z* and hence
the relation * = 0 must hold in A.

Since the defining relations of €}, (u) hold in A, there is a Hopf algebra
epimorphism from €}, (1) to A. Since dim A = dim €}, (1) by Lemma
it follows that A =&}, (u).

Assume k = 1. Then grA = ¢}, (0) as Hopf algebras. As A(z) =z® 1+
da’ ' @z+((—1)'¢/ —1)ca’ '@y and A(y) = y@1+a’ @y—3((-1)"¢ +1)ba’ ' @,
a direct computation shows that z2 + 2(—1)*y? = u(1 — a?) and xy + (—=1)‘yx —
(=1)*pca = v(1—da) for some p, v € k. Since c(zy+(—1)'yz) = —&(zy+(—1)'yz)c
and ¢(1 —da) = (1 — da)c, it follows that v = 0 and xy + (=) 'yx = (=1)"pca.
Finally, A(z*) = A(z)* = 2*®1+1®2z* and hence * = 0 in A. Since the deﬁning
relations of €} ; | () hold in A, there is a Hopf algebra epimorphism from €3 ; ; , ()
to A. By Lemma“7 3.24) dim A = dlmQZfJ 1,.(p) and hence A = Qlfml (). d

Finally, we have the classification of finite-dimensional Hopf algebras over H
such that their diagrams are strictly graded and their infinitesimal braidings are
simple objects in £YD.

Proof of Theorem A. The Hopf algebras from different families are pairwise
non-isomorphic since their infinitesimal braidings are pairwise non-isomorphic as
Yetter-Drinfeld modules over H. And the rest of assertions follow by Lemmas [3.13]

and [3.18] and Propositions [3.14] [3.19] and [3.26]

4. ON FINITE-DIMENSIONAL HOPF ALGEBRAS OVER H

In this section, we determine all finite-dimensional Nichols algebras over simple
objects in gy’D and their liftings. These Nichols algebras have already appeared in
[15, [4] and consist of 2-dimensional exterior algebras, 4- and 8-dimensional algebras
with non-diagonal braidings. The bosonizations of these Nichols algebras are finite-
dimensional Hopf algebras over H without the dual Chevalley property. Moreover,
the non-trivial liftings of these Nichols algebras might constitute new examples of
Hopf algebras of dimension 128 without the dual Chevalley property.

4.1. Finite-dimensional Nichols algebras in ~y’D We firstly describe the

Hopf algebra H , which already appeard in [T, [16] and is generated by its coradical
as follows:

Definition 4.1. H as an algebra is generated by a, b, ¢ satisfying the relations
at=1, =1, =0, ac=Eca, ba=ab, bc=cb, (9)
and as a coalgebra is given by
Ala)=a®@a+ad’c@c, Ab)=bb, Alc)=c®a+ad®@c, (10)
and its antipode is given by S(a) = a3, S(b) = b, S(c) = E3ec.

Remark 4.2. (1) G(H) = {1,a%,b,a2b}, Py o2(H) = {1 — a2, a3c}.
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(2) Let K be the subalgebra offI generated by the elements a,c. Then K is a
Hopf subalgebra ofﬁ which is isomorphic to the Hopf algebra €4 given in
[16l Lemma 3.3] or K given in [I5, Proposition 2.1] as Hopf algebras. In
particular, HYK® k[Zs) as Hopf algebras.

(3) Let Ay be the pointed Hopf algebra of dimension 16 defined by Ay :=
k{g,h,x | gh—hg = h? = g*—1 = 22— g’ +1 = gr+xg9 = ha—xh = 0) with
Alg)=9g®g, A(h) =h®@h and A(z) =x®g+1Q@x. Let A be the Hopf
subalgebra of Ay generated by g,x. Then AJ is the unique pointed Hopf
algebra of dimension 8 with non-pointed dual [28] and A; = A] ® k[Zs).
Moreover, Al = K* by [16, Lemma 3.3] and hence H* =~ A} @ k[Zy] = A;.

(4) The set {g?,xg?, j € lo3} is a linear basis of Aj]. Let {(a’)*, (a'c)*, i €
Io3} be the basis of A] dual to {a’,a’c, i € Iy 3}. By [15, Remark 2.4], the
Hopf algebra isomorphism ¢ : A — K* is given by

3 3
Bg") = _&V(a), dlag’) = V2 & HI(ale).
1=0 i=0

Lemma 4.3. Let H and K be finite-dimensional Hopf algebras. Suppose that V

or W is a simple object in LYD or EYD, respectively. Then V@ W is a simple

object in ggg)}l} by the diagonal action and coaction. Moreover, for any simple

object U € ggﬁyu UZVeW for some simple object V € ZJ}D and simple
object W € EyD.

Proof. Since ggg)}D = pnex)M = p(r)ep ()M, the proposition follows. O

Next, we determine the simple objects in gyl). Consider the set 2 given by
Q={(44,k,t) ENXxNxNxN|0<1i,j<4,0<k, <2, 2i# jmod 4}.
Clearly, || = 48.
Proposition 4.4. Letky, ., = k{e} for (i,j,k) € lo,1 x Io,1 x Ioz. Then ky
g.)/D with the Yetter—Drinfeld module structure given by

ivg.k €
a-e=¢€", b-e=(=1), ce=0, d)=d* Ve

Let Wi j k. = k{er,ea} for (i,j,k,0) € Q. Then W j 1, is a simple object in gyD
with the Yetter—Drinfeld module structure given by

a-e;=E%y, b-ep=(—-1)*e, c-e; =0,

a-eg=—ETey, b-eg=(—1)Fea, c-ex=ey,

S(er) =ba* 7 @er + (&3 — €N al e ® ey,

, 1 . o 4

S(en) =b'a®> 7 @ ey + 5(8 + TN P e ®e.
Moreover, any simple object W in EJJD is isomorphic to ky, ;. for some (i, j, k) €
Ioq x TIp1 x To3 or Wik, for some (i,j,k,¢) € Q.
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Proof. Tt follows by [15, Propositions 3.1 and 3.3] and Lemma O
Remark 4.5. By [I5, Remark2.8], W, , = W_;11 _jiok, for (i,5,k, 1) € Q.

Remark 4.6. Let W; 1, = k{er,ea} € gyD for (i,5,k,1) € Q. Then by (),
Wik € ﬁi)}D with the Yetter—Drinfeld module structure given by

grev==E6er, hoer=(—1)er, z-ex=v2EE T — e,

(giij + 572’)61,

» ) 1
grea=E"ey, hoex=(—1)es, T-e2=—35

, . 5 .
5(er) =g'hF @er, d(ex) =g 'hF @es+ %fl_ll’gz_lhk ®ey.

Now we describe the braidings of the simple objects in g)}D.

Proposition 4.7. Let ky, ,, =k{e} € gyD for (i,4,k) € Ipq x Ip1 x Io3. Then
the braiding of ky, ., is given by cle®e) = (—1)¥ ke ®e.

20k

Proposition 4.8. Let W; ., = k{ei,ea} € g)}D for (i,j,k,0) € Q. Then the
braiding of W; j k. s given by

€1 | e ®e €0=Diey @ e14s1261 ® €2
c <|: €5 :| & [ €1 €2 ]) ( ) |: 62(273)61 ® ey —52171]+]62 ® eatsiie; ® ey )
where s1 = €71 — Ui+ gy, = L(g= 4 g2imiiti),

Finally, we determine all finite-dimensional Nichols algebras over simple ob-
jects in gyp and present them by generators and relations. We shall show that
all finite-dimensional Nichols algebras over one-dimensional objects in g)}D are
parametrized by the set

QO = {(Z,j, k‘) S HO,l X 1[071 X ]1073 | 2*1] + k}
By Proposition [£.7] the next result follows immediately.
I'Jemma 4.9. The Nichols algebra B(ky, ;) overky, . for (i,j, k) € Io,1 xIo1 xIo 3
is
kkle] if (i,5,k) € (i,7,k) €lo1 x o1 x Ip3 — Q°,
/\E{Ai,j,k Zf (27]7k) € QO'

We shall determine all finite-dimensional Nichols algebras over two-dimensional

simple objects in g)ﬂD. For simplicity, denote by Q¢ for 1 < i < 3 the finite subset
of 2 given by

O ={(i,j k) €Q]j=02k=1=1},
O ={(i,j, k1) €Q|i—2=ki=00ri=k—1=1—-1=0,j #2},
Q3:{(i,j,/€,b)EQ|i—3:kL:00ri—1:]g_1:L_1:O’j#o}.
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It is easy to check that |Q'| = 4, |Q?] = 8 = |Q%] and £1-9I(—1)" = —¢J for
(i,7,k,0) € QLU Q% It turns out that the Nichols algebra B(W; j,) is finite-
dimensional for (4,7, k,¢) € Q1 U Q2 U N3,

Proposition 4.10. Let W be a two-dimensional simple object in g)}D. Then
B(W) is finite-dimensional if and only if W is isomorphic to W; j r., for (¢,],k,¢) €
QL U2 U Q3. Moreover, the generators and relations are given by

(1,7, k,1) € | relations of B(V; jx,.) with generators vi,vy | dim B(V)
ol €2 =0, erea +&eze1 =0, €3 =0 4
02 €2 =0, erea +&eze1 =0, e5=0 8
Q3 et =0, erea +eze1 =0, €2 —2e3 =0 8

Proof. Assume that (i,j,k,¢) € Q — U3_;Q% we claim that dim B(W, jx,) = oo.
Indeed, a direct computation shows that (—1)¥¢7% =1 or (—1)k €24+ = 1.
If (—1)¥¢~% = 1, then the braiding of W; ;x, contains an eigenvector e; ® e;
of eigenvalue 1 and hence the claim follows. If (—1)*¢2=9+i = —1, then by
Remark (.5 and Proposition the claim follows.

Assume that (i, j, k,¢) € U3_; Q% Then the braided vector space W; j ., belongs
to the case Ry 1, Ri2 or Ry 2(a) in [ for (i,4,k,) € Q', Q2 or Q3] respectively.
More precisely,

o If (i,5,k,0) € QY then 12 = ¢9(—1)" = —1, tg = 0D (—1)k = —¢J,
tp = £1D (-1 = (-1,
o if (i,7,k,0) € 2%, then p = —1, ¢ = €0V (1) = —¢J, k= L(p + q);
o if (i,5,k,1) € Q3, then ¢ = (—1)F ¢ p=—1, k= —1(q+p).
Then by [4, Proposition 3.3, 3.10 and 3.11], the assertion follows. O

Remark 4.11. By Remark and Pmposz’tion BW;211) = B(Wlfi,oyl,l)*b"p
and BW; jk.) = BWi_ijx.) P, where j =1,3,i=0,2 and k,. € {0,1}. From
the proof of Pmposz'tz’on the braiding matrices of Wi jr., for (i,j,k,t) € 0?2
are, up to a primitive 4th root of unity, the same and so are for (i,j, k,1) € Q3.
The Nichols algebras B(W; j.) for (i,j, k,v) € Q> UQ3 have already appeared in
[15], and B(W; jk.) with (i,j,k,t) € Q' are isomorphic to the Nichols algebras
B(V; k) with (i,7,k, 1) € A%

Remark 4.12. It should be pointed out that B(W; j 1.0)1K is a Hopf subalgebra of
B(Wi7j)k,0)ﬁH fOT (i,j,k,O) e QLUuQ2Ud and B(Wiyj,()’())ﬁH = B(Wi,j’o,o)ﬁK ®
k[Z2] as Hopf algebras, where i € {2,3}, j € {1,3}.

Remark 4.13. Note that gr A] = (A)), for some Hopf 2-cocycle o. By [19]
Proposition 4.2],

o=e®e—C(, where((z'g’,2"g") = (=1)"b3.i1s for i,k €loy, j,l € los.

Similar to Remark[3.17, the Nichols algebras of dimension greater than 2 in Propo-
sition can be related to the Nichols algebras B(Y; j x,.) of diagonal type. More
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-1 -1
o .

precisely, if (i, j,k,.) € Q', then the Dynkin diagram of B(Yi jx.,.) is e
+j

If (i, 7, k, ) € Q2, then the Dynkin diagram is o o . If (i, 4, k, 1) € Q3, then

N A
the Dynkin diagram is o o

4.2. Finite-dimensional Hopf algebras over ﬁ . In this subsection, we de-
termine all finite-dimensional Hopf algebras over H such that their diagrams are

strictly graded and their infinitesimal braidings are simple objects in gyD. We
first show that the diagrams of these Hopf algebras are Nichols algebras.

Lemma 4.14. Let A be a finite-dimensional Hopf algebra over H such that the
corresponding infinitesimal braiding W is a simple object in gyD. Assume that

the diagram of A is strictly graded. Then gr A = B(W)jjﬁ
Proof. Similar to the proof of Proposition [3.18] O

Next, we shall show that there do not exist non-trivial liftings for the bosoniza-
tions of the Nichols algebras over ky, ., with (i,7,k) € Q°, and over W, ;. with
(i,5,k,1) € QLU

Proposition 4.15. Let A be a finite-dimensional Hopf algebra over H such that
grA = B(W)iH, where W is isomorphic either to ky, ., for (i,j,k) € Q0 or to
Wi ik for (i,j k,0) € Q2 UQ%. Then A= gr A.

Proof. We prove the assertion by showing that the defining relations of gr A hold
in A. Assume that W = W, ;. for (i,j,k,¢) € Q. Note that B(W; ;.. )tH is
generated by z,y, a, b, ¢ satisfying the relations @D and the relations

ar = &'za, br = (-1)Fzb, cx=¢E%zc, ay+EMya = (—1)'zc,
by = (=1)*yb, cy+ & yc=ra, 2*=0, ay+&yr=0, y* =0,

with the coalgebra structure given by (10), A(z) = 2 ® 1+ b'a* 7 @z + (&3 —
e ey and A(y) =y @1+ ba® 7 @y + (& + EMNbadTe® .

A direct computation shows that y* € P(A) and zy + &yx € Py 42(A). Then
y2 =0in A. Since Py q2(A) = P1.o2(B(Vij k. )tH) = Py o2 (H) = k{1 — a2, a3c}, it
follows that xy + &/yx = u(1 — a?) + va3c for some u, v € k. Since a(zy + &yx) =
2 N (py + Fyx)a and c(xy + Eyx) = 271 (ay + Eyx)c, it follows that u=v =0
and hence zy + &yx = 0 in A. Finally, A(2?) = 22 ® 1 + 1 ® 22, which implies
that the relation 22 = 0 holds in A. Consequently, the assertion follows.

For W 2 W, ;. for (i,j,k,.) € Q2 or ky, ., for (i,4,k) € 00, the proof follows
the same lines as W, j 1., for (i, 4, k,c) € QL. O

Now we define eight families of Hopf algebras QF ; ;.  (u) with (i,7,k,1) € Q°
and show that they are indeed liftings of the Nichols algebras B(W; ;) with
(i,4,k, 1) € Q3.

Rev. Un. Mat. Argentina, Vol. 59, No. 2 (2018)



466 NAIHONG HU AND RONGCHUAN XIONG

Definition 4.16. For p € k and (i,5,k,t) € Q3, let ijkb( ) be the algebra

generated by x, y, a, b, ¢, satisfying the relations @[) and the following ones:
ax = E'za, br=(-1)*zb, cx=E%c, ay+ETya=(—1)'zc, by = (—1)kyb,

cy + §3<i+1)yc =za, z*=0, zy+yzr=—ullac, 2%—2°= (1 —a?).
0?1, (1) is a Hopf algebra with the coalgebra structure given by and

Al@) =z@1+ba’ @+ (531' — e ey,
Aly) =y@1+ba* 7 @y+ - (51 + &8Nyt .

Remark 4.17. (1) It is clear that Qf] k. (0) = B(Wi ik, DtH and Q. (1)
with p # 0 is not isomorphic to Q3 ., (0) for (i,j,k, 1) € Q3.

(2) Denote by Q3 k(1) the subalgebra of Q3 k(1) generated by a, ¢, x and y.
It is clear that Q3 (1) = Qf’j 0..(1) @ k[Zs] as algebras but not as coal-
gebras. Moreover, Q2 ;o o(n) = Q2 (1) @ k[Zs] as Hopf algebras. In

particular, Q?,j,o,o(:“) is isomorphic to the Hopf algebra 2A; ;(p) in [15), Def-
initions 5.4/5.6].

i,5,k,t

Lemma 4.18. A linear basis of Q” k.. (1) ds given by
{y "z a’b"c’, s, t €lg s, m, u, v €Ig1}.
In particular, dim Q3 (p) = 128.

Proof. By the Diamond Lemma, it suffices to show that all overlaps ambiguities

are resolvable with the order y < x < a < b < ¢ < d. Here we only show that

(zy)y = z(y?), (2*)y = 23(xy) are resolvable and the others are completely similar.
After a direct computation, we have that (ac)y — y(ac) = £'za®. Then

(zy)y = (—yz — p'ac)y = —yzy — p€lacy = —y(—yx — pé'ac) — p€acy
= y’x + p'(yac — acy) = y*x — p&*'za® = y*x + pwa®

1 1 1

= 5[332 — (1 = a?)]x + pzra® = 5:53 - §u(1 —a*)z + pwa®
1 1 1

= 51‘3 — ke + iuxa2 = z(y?).

Note that acx = zac, then
22y = —zyr — plrac = (yx + uﬁiac)x — puélzac = ya® + pclace — pélrac = ya?.

Therefore 2®(zy) = yz* = 0 = y(z*). Tt follows that the overlaps (zy)y =
2(y?), (z*)y = 23(zy) are resolvable. 0

Now we show that Q3 .

7 k. (1) 1s a lifting of the bosonization B(W; W)EH for
(i,4,k, 1) € Q3.

Lemma 4.19. For (i,j,k,1) € Q3, gr Q” o (1) = B(kab)ﬁﬁ
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Proof. Similar to the proof of Proposition [3:25] O

Proposition 4.20. Let A be a finite-dimensional Hopf algebra over H such that
grA = B(W)tH, where W is isomorphic to W; .. for (i,j,k,.) € Q3. Then
A= Qg ()

K2

Proof. Note that gr A = QF ., (0) as Hopf algebras. As A(z) =z ®1+b'a*/ @
4 (= M)ba' ey and Ay) = y@14+b'a? T @y+ (T +EH)ba’ T c@a, a
direct computation shows that 22 — 2y? € Py ,2(A4) = ,Pl}az(f‘j). Since ’Plﬁaz(ﬁI) =
k{1—a?,a3c}, we have 22 —2y? = p(1—a?)+va3c for some p, v € k. Furthermore,
it follows by a direct computation that
Alzy + yx + ' pac) = (xy + yr + & pac) @ 1+ 1@ (zy + yr + & pac) + vac ® a’c.
Then a tedious computation on Ay shows that the last equation holds only if
v = 0, which implies that zy + yz + &uac = 0 and 2% — 2y? = p(1 — a?) in A.
Finally, A(z*) = A(z)* = 2* ® 1+ 1 ® z* and hence z* = 0 in A.

Since the defining relations of Q?,j,k,b(,“) hold in A, there is a Hopf algebra
epimorphism from QF ;; (1) to A. By Lemma dim A = dim Q7 , (¢) and
hence A = Qij,k,/,(u)' O

Finally, we have the classification of finite-dimensional Hopf algebras over H
such that their diagrams are strictly graded and their infinitesimal braidings are

simple objects in gyp.

Proof of Theorem B. The Hopf algebras from different families are pairwise
non-isomorphic since their infinitesimal braidings are pairwise non-isomorphic as
Yetter Drinfeld modules over H. And the rest of assertions follow by Lemmas
and and Propositions [£.10}, [£.15] and [£.20]
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