PRIMARY DECOMPOSITION AND SECONDARY REPRESENTATION OF MODULES

MASOUMEH HASANZAD AND JAFAR A'ZAMI

ABSTRACT. In this paper we study the notions of primary decomposition and secondary representation of modules over a commutative ring with identity. Also we review these concepts over injective and projective modules.

1. Introduction

Throughout this paper, let R denote a commutative ring (with identity). A submodule N of an R-module M is said to be primary if $N \neq M$ and whenever $r \in R$, $m \in M \setminus N$, and $rm \in N$, there exists a positive integer n such that $r^nM \subseteq N$. An R-module M is said to be secondary if $M \neq 0$ and, for each $a \in R$, the endomorphism $\varphi_a : M \to M$ defined by $\varphi_a(m) = am$ (for $m \in M$) is either surjective or nilpotent. If M is secondary, then $\mathfrak{p} = \operatorname{Rad}(0:M)$ is a prime ideal, and M is said to be \mathfrak{p} -secondary. Any non-zero quotient of a \mathfrak{p} -secondary module is \mathfrak{p} -secondary.

In this paper, we shall follow Macdonald's terminology concerning secondary representation. We refer the reader to [4, 1, 3] for more details about primary decomposition and secondary representation. For each R-module L, we denote by $m \operatorname{Ass}_R L$ the minimal elements of the set $\operatorname{Ass}_R L = \{p \in \operatorname{Spec}(R) \mid p = 0 :_R x, \text{ for some } 0 \neq x \in L\}$. For each R-module L, we denote by $\operatorname{Att}_R L$ the set of all attached prime ideals of L over the ring R. Also, for any ideal $\mathfrak b$ of R, the radical of $\mathfrak b$, denoted by $\sqrt{\mathfrak b}$, is defined to be the set $\{x \in R : x^n \in \mathfrak b \text{ for some } n \in \mathbb N\}$, and set $\Gamma_{\mathfrak b}(M) = \cup_{n \in \mathbb N} (0 :_M \mathfrak b^n)$, the set of elements of M which are annihilated by some power of $\mathfrak b$. Finally we denote $\{\mathfrak p \in \operatorname{Spec}(R) : \mathfrak p \supseteq \mathfrak b\}$ by $V(\mathfrak b)$. For any unexplained notation and terminology we refer the reader to [4, 1].

2. The results

Lemma 2.1. Let M be an R-module such that $m \operatorname{Ass}_R M = \operatorname{Ass}_R M = \{\mathfrak{p}_1, \dots, \mathfrak{p}_n\}$ and $I_j = \bigcap_{\substack{i=1 \ i \neq j}}^n \mathfrak{p}_i$. Then $\bigcap_{j=1}^n \Gamma_{I_j}(M) = 0$ is a minimal primary decomposition for the zero module.

²⁰¹⁰ Mathematics Subject Classification. 13D45, 14B15, 13E05. Key words and phrases. Associated prime; Cohen–Macaulay ring; Symbolic power.

Proof. It is clear that

$$\operatorname{Ass} \frac{M}{\Gamma_{I_{i}}(M)} = \operatorname{Ass} M \backslash V(I_{j}) = \{\mathfrak{p}_{j}\}.$$

Hence by [4, Theorem 6.6], $\Gamma_{I_j}(M)$ is a \mathfrak{p}_j -primary submodule of M. Now let $0 \neq x \in \bigcap_{j=1}^n \Gamma_{I_j}(M)$. Since $\operatorname{Ann}_R(x) \subseteq Z_R(M) = \bigcup_{i=1}^n \mathfrak{p}_i$, it follows that there exists $1 \leq j \leq n$, such that $\operatorname{Ann}_R(x) \subseteq \mathfrak{p}_j$. On the other hand, $xI_j^n = 0$ for some $n \in \mathbb{N}$ and so $I_j^n \subseteq \operatorname{Ann}_R(x) \subseteq p_j$. Consequently $\bigcap_{\substack{i=1 \ i \neq j}}^n \mathfrak{p}_i = I_j \subseteq \mathfrak{p}_j$ and this implies that

 $\mathfrak{p}_i \subseteq \mathfrak{p}_j$ for some $i \in \mathbb{N}$, which is a contradiction. Therefore $\bigcap_{j=1}^n \Gamma_{I_j}(M) = 0$. Now by [4, Theorem 6.8], this is a minimal primary decomposition and $\Gamma_{I_j}(M)$, for all $1 \leq j \leq n$, are uniquely determined.

Now we want to present a direct proof for the following corollary, using Lemma 2.1.

Corollary 2.2. Let R be a Cohen–Macaulay ring and x_1, x_2, \ldots, x_t be an R-sequence such that $\sqrt{I} = I = (x_1, \ldots, x_t)$ and $\operatorname{Ass}_R \frac{R}{I} = \{\mathfrak{p}_1, \ldots, \mathfrak{p}_k\}$. Then for all $n \geq 1$, $I^n = \mathfrak{p}_1^{(n)} \cap \ldots \cap \mathfrak{p}_k^{(n)}$ is a minimal primary decomposition for I^n .

Proof. Since $\sqrt{I} = \bigcap_{j=1}^k \mathfrak{p}_j = I$, it follows that for all $s_i \in (\bigcap_{\substack{j=1 \ j \neq i}}^k \mathfrak{p}_j) \backslash \mathfrak{p}_i$, $s_i \mathfrak{p}_i \subseteq \bigcap_{j=1}^k \mathfrak{p}_j = I$. Therefore $\mathfrak{p}_i R_{\mathfrak{p}_i} = I R_{\mathfrak{p}_i}$ and consequently $\mathfrak{p}_i^n R_{\mathfrak{p}_i} = I^n R_{\mathfrak{p}_i}$ for all $n \in \mathbb{N}$. Also R/I^n is Cohen–Macaulay by [4, Ex. 17.4], and we have the exact sequence

$$0 \longrightarrow \frac{\mathfrak{p}_i^{(n)}}{I^n} \longrightarrow \frac{R}{I^n} \longrightarrow \frac{R}{\mathfrak{p}_i^{(n)}} \longrightarrow 0, \tag{2.1}$$

which implies that $\operatorname{Ass}_R \frac{\mathfrak{p}_i^{(n)}}{I^n} \subseteq \operatorname{Ass} \frac{R}{I^n}$. On the other hand, $\frac{\mathfrak{p}_i^{(n)}R_{\mathfrak{p}_i}}{I^nR_{\mathfrak{p}_i}} = \frac{\mathfrak{p}_i^nR_{\mathfrak{p}_i}}{I^nR_{\mathfrak{p}_i}} = \bar{0}$ and so $\mathfrak{p}_i \not\in \operatorname{Ass} \frac{\mathfrak{p}_i^{(n)}}{I^n}$. Hence

$$\operatorname{Ass}_{R} \frac{\mathfrak{p}_{i}^{(n)}}{I^{n}} \subseteq \operatorname{Ass}_{R} \frac{R}{I^{n}} \setminus \{\mathfrak{p}_{i}\} = \{\mathfrak{p}_{j}\}_{j=1}^{k} \setminus \{\mathfrak{p}_{i}\}. \tag{2.2}$$

Also $\mathfrak{p}_j \in \operatorname{Supp} \frac{R}{I^n}$ and for all $i \neq j$, $\mathfrak{p}_j \notin \operatorname{Supp}_R \frac{R}{\mathfrak{p}_i^{(n)}}$, hence $\mathfrak{p}_j \in \operatorname{Supp} \frac{\mathfrak{p}_i^{(n)}}{I^n}$. This

implies that $\mathfrak{p}_j \in m \operatorname{Ass} \frac{\mathfrak{p}_i^{(n)}}{I^n}$. Therefore

$$\{\mathfrak{p}_j\}_{j=1}^k \setminus \{\mathfrak{p}_i\} \subseteq \operatorname{Ass}_R \frac{\mathfrak{p}_i^{(n)}}{I^n}.$$
 (2.3)

By relations (2.2) and (2.3), we conclude that $\operatorname{Ass} \frac{\mathfrak{p}_i^{(n)}}{I^n} = \{\mathfrak{p}_j\}_{j=1}^k \setminus \{\mathfrak{p}_i\}$. Now let $J_i := \bigcap_{\substack{j=1 \ j \neq i}}^k \mathfrak{p}_j$; then $\sqrt{\operatorname{Ann}_R\left(\frac{\mathfrak{p}_i^{(n)}}{I^n}\right)} = J_i$ and for a large $l \in \mathbb{N}$, we have $J_i^l\left(\frac{\mathfrak{p}_i^{(n)}}{I^n}\right) = 0$, which implies that $\frac{\mathfrak{p}_i^{(n)}}{I^n} \subseteq \Gamma_{J_i}\left(\frac{R}{I^n}\right)$. Since $\Gamma_{J_i}\left(\frac{R}{\mathfrak{p}_i^{(n)}}\right) = 0$, it follows from (2.1), $\frac{\mathfrak{p}_i^{(n)}}{I^n} = \Gamma_{J_i}\left(\frac{R}{I^n}\right)$, and so by Lemma 2.1 we obtain $\bar{0} = \bigcap_{i=1}^k \Gamma_{J_i}\left(\frac{R}{I^n}\right) = \frac{\mathfrak{p}_1^{(n)}}{I^n} \cap \dots \cap \frac{\mathfrak{p}_k^{(n)}}{I^n}$ which implies that $I^n = \bigcap_{j=1}^k \mathfrak{p}_j^{(n)}$.

Also $\operatorname{Ass} \frac{R}{I^n} = \operatorname{Ass} \frac{R}{\Gamma_{J_i}(R)} = \operatorname{Ass} \frac{R}{I^n} \setminus V(J_i) = \{\mathfrak{p}_i\}$. This shows that $\operatorname{Ass} \frac{R}{\mathfrak{p}_i^{(n)}} = \{\mathfrak{p}_i\}$ and so $\mathfrak{p}_i^{(n)}$ is p_i -primary. Consequently $I^n = \bigcap_{i=1}^k \mathfrak{p}_i^{(n)}$ is a minimal primary decomposition.

We shall prove the following well-known theorem as a dual of Lemma 2.1 with a new proof.

Theorem 2.3 (Dual of Lemma 2.1). Let R be an Artinian ring and M be a non-zero finitely generated R-module such that $Att(M) = \{\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_n\}$. Then M has a minimal secondary representation as $M = \Gamma_{\mathfrak{p}_1}(M) + \Gamma_{\mathfrak{p}_2}(M) + \cdots + \Gamma_{\mathfrak{p}_n}(M)$, for $1 \leq i \leq n$, with $\Gamma_{\mathfrak{p}_i}(M)$ a \mathfrak{p}_i -secondary submodule of M.

Proof. Let $M = S_1 + S_2 + \cdots + S_n$ be a minimal secondary representation with S_i a \mathfrak{p}_i -secondary submodule of M, for $1 \leq i \leq n$. We shall stablish the Theorem by showing (a) that $\mathfrak{p}_i = \sqrt{0 :_R \Gamma_{\mathfrak{p}_i}(M)}$ for each $1 \leq i \leq n$, (b) that $\Gamma_{\mathfrak{p}_i}(M)$ is a secondary module, and (c) $M = \Gamma_{\mathfrak{p}_1}(M) + \Gamma_{\mathfrak{p}_2}(M) + \cdots + \Gamma_{\mathfrak{p}_n}(M)$.

(a) Since $\Gamma_{\mathfrak{p}_i}(M)$ is a finitely generated submodule of M, there exists $t \geq 1$ such that $\Gamma_{\mathfrak{p}_i}(M) = 0 :_M \mathfrak{p}_i^t$. Thus $\mathfrak{p}_i \subseteq \sqrt{0 :_R \Gamma_{\mathfrak{p}_i}(M)}$. It is enough to prove that $\sqrt{0 :_R \Gamma_{\mathfrak{p}_i}(M)} \neq R$. Suppose this is not true; then $\Gamma_{\mathfrak{p}_i}(M) = 0$. So $\operatorname{Supp}\left(\frac{R}{\mathfrak{p}_i^t}\right) \cap \operatorname{Ass}_R(M) = \emptyset$ and hence $\mathfrak{p}_i \notin \operatorname{Ass}_R(M)$. By [4, Exer. 6.8], $\operatorname{Ass}_R(S_i) = \{\mathfrak{p}_i\}$ and by the exact sequence $0 \to S_i \to S_i \oplus S_{i+1} \to S_{i+1} \to 0$ we have

$$\emptyset \neq \operatorname{Ass}_{R}(S_{i})$$

$$\subseteq \operatorname{Ass}_{R}(S_{i} \oplus S_{i+1})$$

$$\subseteq \operatorname{Ass}_{R}(S_{i+1}) \cup \operatorname{Ass}_{R}(S_{i}).$$

Since $\operatorname{Ass}_R(S_i \oplus S_{i+1}) \subseteq \operatorname{Ass}_R(M)$, we have $\operatorname{Ass}_R(S_i \oplus S_{i+1}) = \mathfrak{p}_{i+1}$, which shows that $\mathfrak{p}_{i+1} = \mathfrak{p}_i$ and this is contradiction.

(b) Since $\Gamma_{\mathfrak{p}_i}(M)$ is Noetherian and $\mathfrak{p}_i^t.\Gamma_{\mathfrak{p}_i}(M)=0$, $\Gamma_{\mathfrak{p}_i}(M)$ is Artinian. Therefore, this module has finite length. On the other hand,

$$\emptyset \neq \operatorname{Ass}_R \Gamma_{\mathfrak{p}_i}(M)$$

$$= \{\mathfrak{p}_i\} \cap \operatorname{Ass}_R(M)$$

$$= \{\mathfrak{p}_i\}.$$

Therefore $\Gamma_{\mathfrak{p}_i}(M)$ is coprimary, and so $\Gamma_{\mathfrak{p}_i}(M)$ is a secondary module by [4, Exer. 6.9].

(c) Let $m \in M$, so $m = s_1 + s_2 + \cdots + s_n$ for some $s_i \in S_i$ (for $1 \le i \le n$). For $1 \le i \le n$, $\mathfrak{p}_i^{t_i}.S_i = 0$ for some $t_i \ge 1$. Hence $\mathfrak{p}_i^{t_i}.s_i = 0$ and so $s_i \in \Gamma_{\mathfrak{p}_i}(M)$ for $1 \le i \le n$.

3. Injective and projective modules

Lemma 3.1. Let E be an injective R-module and let N be a \mathfrak{p} -primary submodule of E. Then $(0:_E(N:_RE))$, if non-zero, is \mathfrak{p} -secondary.

Proof. Let $a \in R$. If $a \in \mathfrak{p}$, then $a^n \in (N :_R E)$ for some positive integer n, so that a^n annihilates $(0 :_E (N :_R E))$. On the other hand, if $a \notin \mathfrak{p}$, then we can show that $a(0 :_E (N :_R E)) = (0 :_E (N :_R E))$.

Let $x \in (0:_E(N:_RE))$. There is a well-known homomorphism $\varphi: \frac{R}{(N:_RE)} \longrightarrow$

E for which $\varphi(b + (N :_R E)) = bx$ for all $b \in R$. Multiplication by a on $\frac{R}{(N :_R E)}$ is a monomorphism. So the diagram

$$0 \longrightarrow \frac{R}{(N:_R E)} \xrightarrow{a} \frac{R}{(N:_R E)}$$

$$\downarrow^{\varphi}$$

$$E$$

can be completed with a homomorphism $\psi: \frac{R}{(N:_R E)} \longrightarrow E$ which makes the extended diagram commute. Thus

$$x = \varphi(1 + (N :_R E))$$

= $\psi(a + (N :_R E))$
= $\psi(a(1 + (N :_R E)))$
= $a\psi(1 + (N :_R E))$.

Hence $x \in a(0 :_E (N :_R E))$, because

$$(N:_R E)\psi(1+(N:_R E))=\psi(N:_R E)=0_E;$$

this implies that $\psi(1+(N:_R E)) \in (0:_E (N:_R E))$ and the proof is complete. \square

Lemma 3.2. Let I_1, I_2, \ldots, I_n be ideals of R and E an injective R-module. Then

$$\sum_{i=1}^{n} (0 :_{E} I_{i}) = (0 :_{E} \bigcap_{i=1}^{n} I_{i}).$$

Proof. See [5, Lemma 2.2].

We recall that an injective R-module E is said to be an injective cogenerator of R if, for every R-module M and every non-zero $m \in M$, there is a homomorphism $\varphi: M \to E$ such that $\varphi(m) \neq 0$.

Theorem 3.3. Let E be an injective Noetherian R-module. Then E has a secondary representation, and $Att(E) \subseteq Ass(E)$. More precisely, let $0 = N_1 \cap N_2 \cap \cdots \cap N_n$ be a minimal primary decomposition for the zero submodule of E, with N_i a \mathfrak{p}_i -primary submodule of E, for $i = 1, 2, \ldots, n$. Then

$$E = (0 :_E (N_1 :_R E)) + (0 :_E (N_2 :_R E)) + \dots + (0 :_E (N_n :_R E))$$
(*)

and for i = 1, 2, ..., n, $(0 :_E (N_i :_R E))$ is either zero or \mathfrak{p}_i -secondary.

Moreover, if j is an integer such that $1 \leq j \leq n$, and $J = \{1, \ldots, j-1, j+1, \ldots, n\}$, then $E = \sum_{i \in J} (0 :_E (N_i :_R E))$ if and only if $\bigcap_{i \in J} (N_i :_R E)$ annihilates E. Consequently, if E is an injective cogenerator of R, then (*) is a minimal secondary representation for E, and Att(E) = Ass(E).

Proof. By Lemma 3.1, $(0:_E(N_i:_RE))$ is either zero or \mathfrak{p}_i -secondary. Generally, $(0:_RE)=(\bigcap_{i=1}^nN_i:_RE)=\bigcap_{i=1}^n(N_i:_RE)$. Since $(0:_E\bigcap_{i=1}^n(N_i:_RE))=(0:_E(0:_RE))$, we have $e(0:_RE)=0$ for each $e\in E$. Thus $E\subseteq (0:_E(0:_RE))$, and it follows that $E=(0:_E\bigcap_{i=1}^n(N_i:_RE))$. Now, we have $E=\sum_{i=1}^n(0:_E(N_i:_RE))$ by Lemma 3.2. Hence $\operatorname{Att}(E)\subseteq \{\mathfrak{p}_1,\mathfrak{p}_2,\ldots,\mathfrak{p}_n\}$, which shows that $\operatorname{Att}(E)\subseteq \operatorname{Ass}(E)$.

For each set such as J, we can write:

$$\sum_{i \in J} (0 :_E (N_i :_R E)) = (0 :_E \bigcap_{i \in J} (N_i :_R E)).$$

Now, if $\bigcap_{i\in J}(N_i:_RE)$ annihilates E, then $E\subseteq \sum_{i\in J}(0:_E(N_i:_RE))$ and so clearly $E=\sum_{i\in J}(0:_E(N_i:_RE))$ if and only if $\bigcap_{i\in J}(N_i:_RE)$ annihilates E.

Now, let E be an injective cogenerator of R. It is enough to show that, for each $j=1,\ldots,n$, the ideal $\bigcap_{i\in J}(N_i:_RE))$ does not annihilate E. To prove this, let I be a non-zero arbitrary ideal of R, and $y\in I$. Since E is an injective cogenerator of R, there exists a homomorphism $\varphi:R\longrightarrow E$ such that $\varphi(y)\neq 0$. Hence $0\neq \varphi(y)=y\varphi(1)$. Then $\varphi(1)$ is an element of E which is not annihilated by y, and so not annihilated by I. Thus E is not annihilated by $\bigcap_{i\in J}(N_i:_RE))$ and so $E=\sum_{i=1}^n(0:_E(N_i:_RE))$, which shows that $\mathrm{Att}(E)=\{\mathfrak{p}_1,\mathfrak{p}_2,\ldots,\mathfrak{p}_n\}=\mathrm{Ass}(E)$. \square

Remark 3.4. If E is an injective module over the Noetherian ring R, then there is a family $\{\mathfrak{p}_{\alpha}\}_{\alpha\in\Lambda}$ of prime ideals of R for which $E\cong\bigoplus_{\alpha\in\Lambda}E\left(\frac{R}{\mathfrak{p}_{\alpha}}\right)$, and if $\{\mathfrak{q}_{\beta}\}_{\beta\in\Phi}$ is a second family of prime ideals of R for which $E\cong\bigoplus_{\beta\in\Phi}E\left(\frac{R}{\mathfrak{q}_{\beta}}\right)$, then there is a bijection $\gamma:\Lambda\to\Phi$ such that $\mathfrak{p}_{\alpha}=\mathfrak{q}_{\gamma(\alpha)}$ for all $\alpha\in\Lambda$. The set $\{\mathfrak{p}_{\alpha}|\alpha\in\Lambda\}$ is

thus uniquely determined by E; we shall denote this set by Occ(E), and refer to its members as the *prime ideals which occur in the direct decomposition of* E.

Theorem 3.5. Let E be an injective Noetherian R-module. Then

$$\operatorname{Att}(E) = \{ \mathfrak{p}' \in \operatorname{Ass}(E) \mid \mathfrak{p}' \subseteq \mathfrak{p} \text{ for some } \mathfrak{p} \in \operatorname{Occ}(E) \}.$$

Proof. Let $0 = N_1 \cap N_2 \cap \cdots \cap N_n$ be a minimal primary decomposition for the zero submodule of E, with N_i a \mathfrak{p}_i -primary submodule of E (for $i = 1, 2, \ldots, n$). Then

$$E = (0:_E (N_1:_R E)) + (0:_E (N_2:_R E)) + \dots + (0:_E (N_n:_R E)), \quad (**)$$

and (for $i=1,2,\ldots,n$) (0 :_E ($N_i:_R E$)) is either zero or \mathfrak{p}_i -secondary. Also, a minimal secondary representation for E can be written from (**). For proving the Theorem, we shall show: (a) that (0 :_E ($N_i:_R E$)) = 0 for each i for which \mathfrak{p}_i is not contained in any \mathfrak{p} in $\mathrm{Occ}(E)$, and (b) that if j is an integer (with $1 \leq j \leq n$) for which \mathfrak{p}_j is contained in some \mathfrak{p} belonging to $\mathrm{Occ}(E)$, then $\sum_{i \in J} (0 :_E (N_i :_R E)) \neq E$, where $J = \{1, \ldots, j-1, j+1, \ldots, n\}$ so that $(0 :_E (N_j :_R E))$ cannot be omitted from (**).

(a) Let i be an integer (with $1 \le i \le n$) such that $\mathfrak{p}_i \nsubseteq \mathfrak{p}$ for all $\mathfrak{p} \in \mathrm{Occ}(E)$. If $\{\mathfrak{p}_{\alpha}\}_{{\alpha}\in\Lambda}$ is a family of prime ideals of R for which $E = \bigoplus_{{\alpha}\in\Lambda} E(\frac{R}{\mathfrak{p}_{\alpha}})$, then

$$(0:_{E}(N_{i}:_{R}E)) \cong (0:_{\bigoplus_{\alpha \in \Lambda} E(\frac{R}{\mathfrak{p}_{\alpha}})} (N_{i}:_{R}E))$$
$$\cong \bigoplus_{\alpha \in \Lambda} (0:_{E(\frac{R}{\mathfrak{p}_{\alpha}})} (N_{i}:_{R}E)).$$

Now, in order to show that $(0 :_E (N_i :_R E)) = 0$, it is enough to show that $(0 :_{E(\frac{R}{\mathfrak{p}})} (N_i :_R E)) = 0$ for all $\mathfrak{p} \in \mathrm{Occ}(E)$. For such a \mathfrak{p} , we have $(N_i :_R E) \nsubseteq \mathfrak{p}$, since $\mathfrak{p}_i \nsubseteq \mathfrak{p}$. Thus, there is $r \in (N_i :_R E) \setminus \mathfrak{p}$ such that multiplication by r on $E(\frac{R}{\mathfrak{p}})$ provides an automorphism of $E(\frac{R}{\mathfrak{p}})$, and consequently $(0 :_{E(\frac{R}{\mathfrak{p}})} (N_i :_R E)) = 0$.

(b) Assume that j is an integer (with $1 \le j \le n$) for which $\mathfrak{p}_j \subseteq \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Occ}(E)$. Suppose that $E = \sum_{i \in J} (0 :_E (N_i :_R E))$ and J defined as before. Then, by Theorem 3.3, E is annihilated by $a_j = \bigcap_{i \in J} (N_i :_R E)$ and so $E(\frac{R}{\mathfrak{p}})$ is annihilated by a_j . Hence $a_j \subseteq \bigcap_{k=1}^{\infty} \mathfrak{p}^{(k)}$. Now $a_j \nsubseteq (N_j :_R E)$; let $r \in a_j \setminus (N_j :_R E)$. Then $r \in \bigcap_{k=1}^{\infty} \mathfrak{p}^{(k)}$. We know that if $f : R \longrightarrow R_{\mathfrak{p}}$ is a natural ring homomorphism, then $f \otimes id_E : E \longrightarrow E_{\mathfrak{p}}$. Since $\ker f \otimes E \subseteq \ker(f \otimes id_E)$, for each $e \in E$ we have $r \otimes e = re \in \ker(f \otimes id_E)$. Thus, there exists $s \in R \setminus \mathfrak{p}$ such that $s(re) = 0 \in N_j$. But $s \notin \mathfrak{p}_j$ and $re \notin N_j$, this is in contradiction with the fact that N_j is \mathfrak{p}_j -primary. This completes the proof.

Lemma 3.6. Let M be an R-module. Then qM is a \mathfrak{p} -secondary submodule of M for every \mathfrak{p} -secondary ideal \mathfrak{q} of R.

Proof. Let \mathfrak{q} be a \mathfrak{p} -secondary ideal of R and $r \in R$. We consider two cases and prove the lemma. Case 1: $r \in \mathfrak{p}$. Then $r \in \sqrt{0}:_R \mathfrak{q}$ and so $r^n \mathfrak{q} = 0$ for some $n \in \mathbb{N}$. Therefore $r^n \mathfrak{q} M = 0$ and the result follows. Case 2: $r \notin \mathfrak{p}$. Then $r^n \mathfrak{q} \neq 0$ for each $n \in \mathbb{N}$, and so $r\mathfrak{q} = \mathfrak{q}$. Hence $r\mathfrak{q} M = \mathfrak{q} M$. It is clear that $\sqrt{0}:_R \mathfrak{q} M = \mathfrak{p}$.

Theorem 3.7. Let M be a representable projective R-module and let $M = S_1 + S_2 + \cdots + S_n$, with S_i a \mathfrak{p}_i -secondary submodule (for i = 1, 2, ..., n), be a minimal secondary representation of M. Then

$$0_R = (0:_R S_1) \cap (0:_R S_2) \cap \cdots \cap (0:_R S_n)$$

is a primary decomposition for the zero ideal of R.

Proof. We can assume that R is local. Hence M is a free module and so $\operatorname{Ann}_R M = 0$. Therefore the result follows.

Lemma 3.8. Let M be a projective R-module. Then either $\mathfrak{q}M=M$ or $\mathfrak{q}M$ is a \mathfrak{p} -primary submodule of M for every \mathfrak{p} -primary ideal \mathfrak{q} of R.

Proof. See [2, Theorem 2.2].
$$\Box$$

Theorem 3.9. Let M be a representable projective module over an integral domain R and let $M = S_1 + S_2 + \cdots + S_n$, with S_i a \mathfrak{p}_i -secondary submodule (for $i = 1, 2, \ldots, n$), be a minimal secondary representation of M. Also, let $(0:_R S_i)M \neq M$ for $i = 1, 2, \ldots, n$. Then

$$0_M = (0:_R S_1)M \cap (0:_R S_2)M \cap \cdots \cap (0:_R S_n)M$$

is a primary decomposition for the zero submodule of M.

Proof. Clearly, $(0:_R S_i)$, for $i=1,2,\ldots,n$, is a \mathfrak{p}_i -primary ideal of R. Since M is projective, $(0:_R S_i)M$ will be a \mathfrak{p}_i -primary submodule of M, by Lemma 3.8. Let $x \in (0:_R S_1)M \cap (0:_R S_2)M \cap \cdots \cap (0:_R S_n)M$. So x will be expressed as a finite sum $x = \sum_{t=1}^k r_t m_t$ for $r_t \in (0:_R S_1)$ and $m_t \in M$. In order to show that x = 0, it is enough to consider $x = r_1 m_1$ for $r_1 \in (0:_R S_1)$ and $m_1 \in M$.

If $r_1 \in (0:_R S_i)$ for $i=2,3,\ldots,n$, then by Theorem 3.7, $r_1=0$ and so x=0. Now, let $r_1 \notin (0:_R S_j)$ for some $1 \leq j \leq n$. So, there are two cases, $r_1 \notin \mathfrak{p}_j$ or $r_1 \in \mathfrak{p}_j$. If $r_1 \notin \mathfrak{p}_j$, then $m_1 \in (0:_R S_j)M$, since $r_1m_1 \in (0:_R S_j)M$. Therefore $m_1 = tm$ for some $t \in (0:_R S_j)$ and $m \in M$. Then $x = r_1m_1 = r_1tm = 0$. But, if $r_1 \in \mathfrak{p}_j$, we can assume that $r_1 \in \mathfrak{p}_i$ for each $i=2,3,\ldots,n$. Hence there is $k \geq 1$ such that $r_1^k \in (0:_R S_i)$ for $i=1,2,\ldots,n$. So $r_1^k = 0$ by Theorem 3.7 and consequently $r_1 = 0$.

References

- M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra. Addison-Wesley, 1969. MR 0242802.
- [2] M. Alkan and Y. Tiraş, Projective modules and prime submodules, Czechoslovak Math. J. 56 (2006), no. 2, 601–611. MR 2291760.
- [3] I. G. Macdonald, Secondary representation of modules over a commutative ring. In: Symposia Mathematica, Vol. XI (Convegno di Algebra Commutativa, INDAM, Rome, 1971), pp. 23–43. Academic Press, London, 1973. MR 0342506.
- [4] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986. MR 0879273.
- [5] R. Y. Sharp, Secondary representations for injective modules over commutative Noetherian rings, Proc. Edinburgh Math. Soc. 20 (1976), no. 2, 143–151. MR 0414538.

M. Hasanzad

Faculty of Mathematical Sciences, Department of Mathematics, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran

hasanzad.masoumeh@gmail.com

$J.\ A \, {\it `zami'} \boxtimes$

Faculty of Mathematical Sciences, Department of Mathematics, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran

jafar.azami@gmail.com, azami@uma.ac.ir

Received: March 26, 2018 Accepted: July 3, 2018