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PRIMARY DECOMPOSITION AND SECONDARY
REPRESENTATION OF MODULES

MASOUMEH HASANZAD AND JAFAR A’ZAMI

Abstract. In this paper we study the notions of primary decomposition and
secondary representation of modules over a commutative ring with identity.
Also we review these concepts over injective and projective modules.

1. Introduction

Throughout this paper, let R denote a commutative ring (with identity). A sub-
module N of an R-module M is said to be primary if N 6= M and whenever r ∈ R,
m ∈M\N , and rm ∈ N , there exists a positive integer n such that rnM ⊆ N . An
R-module M is said to be secondary if M 6= 0 and, for each a ∈ R, the endomor-
phism ϕa : M → M defined by ϕa(m) = am (for m ∈ M) is either surjective or
nilpotent. If M is secondary, then p = Rad(0 : M) is a prime ideal, and M is said
to be p-secondary. Any non-zero quotient of a p-secondary module is p-secondary.

In this paper, we shall follow Macdonald’s terminology concerning secondary
representation. We refer the reader to [4, 1, 3] for more details about primary
decomposition and secondary representation. For each R-module L, we denote by
mAssR L the minimal elements of the set AssR L = {p ∈ Spec(R) | p = 0 :R
x, for some 0 6= x ∈ L}. For each R-module L, we denote by AttR L the set of all
attached prime ideals of L over the ring R. Also, for any ideal b of R, the radical
of b, denoted by

√
b, is defined to be the set {x ∈ R : xn ∈ b for some n ∈ N},

and set Γb(M) = ∪n∈N(0 :M bn), the set of elements of M which are annihilated
by some power of b. Finally we denote {p ∈ Spec(R) : p ⊇ b} by V (b). For any
unexplained notation and terminology we refer the reader to [4, 1].

2. The results

Lemma 2.1. Let M be an R-module such that mAssRM = AssRM = {p1, . . . , pn}
and Ij =

n⋂
i=1
i 6=j

pi. Then
n⋂
j=1

ΓIj (M) = 0 is a minimal primary decomposition for the

zero module.
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Proof. It is clear that

Ass M

ΓIj (M) = AssM\V (Ij) = {pj}.

Hence by [4, Theorem 6.6], ΓIj (M) is a pj-primary submodule of M . Now let

0 6= x ∈
n⋂
j=1

ΓIj (M). Since AnnR(x) ⊆ ZR(M) =
n⋃
i=1

pi, it follows that there exists

1 ≤ j ≤ n, such that AnnR(x) ⊆ pj . On the other hand, xInj = 0 for some n ∈ N

and so Inj ⊆ AnnR(x) ⊆ pj . Consequently
n⋂
i=1
i 6=j

pi = Ij ⊆ pj and this implies that

pi ⊆ pj for some i ∈ N, which is a contradiction. Therefore
n⋂
j=1

ΓIj (M) = 0. Now

by [4, Theorem 6.8], this is a minimal primary decomposition and ΓIj (M), for all
1 ≤ j ≤ n, are uniquely determined. �

Now we want to present a direct proof for the following corollary, using Lemma 2.1.

Corollary 2.2. Let R be a Cohen–Macaulay ring and x1, x2, . . . , xt be an R-
sequence such that

√
I = I = (x1, . . . , xt) and AssR

R

I
= {p1, . . . , pk}. Then for all

n ≥ 1, In = p
(n)
1 ∩ . . . ∩ p

(n)
k is a minimal primary decomposition for In.

Proof. Since
√
I =

k⋂
j=1

pj = I, it follows that for all si ∈ (
k⋂
j=1
j 6=i

pj)\pi, sipi ⊆
k⋂
j=1

pj =

I. Therefore piRpi = IRpi and consequently pni Rpi = InRpi for all n ∈ N. Also
R/In is Cohen–Macaulay by [4, Ex. 17.4], and we have the exact sequence

0 −→ p
(n)
i

In
−→ R

In
−→ R

p
(n)
i

−→ 0, (2.1)

which implies that AssR
p

(n)
i

In
⊆ Ass R

In
. On the other hand, p

(n)
i Rpi

InRpi

= pni Rpi

InRpi

= 0̄

and so pi 6∈ Ass p
(n)
i

In
. Hence

AssR
p

(n)
i

In
⊆ AssR

R

In
\{pi} = {pj}kj=1\{pi}. (2.2)

Also pj ∈ Supp R

In
and for all i 6= j, pj 6∈ SuppR

R

p
(n)
i

, hence pj ∈ Supp p
(n)
i

In
. This

implies that pj ∈ mAss p
(n)
i

In
. Therefore

{pj}kj=1\{pi} ⊆ AssR
p

(n)
i

In
. (2.3)
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By relations (2.2) and (2.3), we conclude that Ass p
(n)
i

In
= {pj}kj=1\{pi}. Now let

Ji :=
k⋂
j=1
j 6=i

pj ; then

√
AnnR

(p(n)
i

In

)
= Ji and for a large l ∈ N, we have J li

(p(n)
i

In

)
= 0,

which implies that p
(n)
i

In
⊆ ΓJi

(
R

In

)
. Since ΓJi

( R

p
(n)
i

)
= 0, it follows from (2.1),

p
(n)
i

In
= ΓJi

(
R

In

)
, and so by Lemma 2.1 we obtain 0̄ =

k⋂
i=1

ΓJi
(
R

In

)
= p

(n)
1
In
∩

. . . ∩
p

(n)
k

In
which implies that In =

k⋂
j=1

p
(n)
j .

Also Ass
R
In

p
(n)
i

In

= Ass
R
In

ΓJi( RIn )
= Ass R

In
\V (Ji) = {pi}. This shows that Ass R

p
(n)
i

=

{pi} and so p
(n)
i is pi-primary. Consequently In =

k⋂
i=1

p
(n)
i is a minimal primary

decomposition. �

We shall prove the following well-known theorem as a dual of Lemma 2.1 with
a new proof.

Theorem 2.3 (Dual of Lemma 2.1). Let R be an Artinian ring and M be a non-
zero finitely generated R-module such that Att(M) = {p1, p2, . . . , pn}. Then M has
a minimal secondary representation as M = Γp1(M) + Γp2(M) + · · ·+ Γpn(M), for
1 ≤ i ≤ n, with Γpi(M) a pi-secondary submodule of M .

Proof. Let M = S1 + S2 + · · · + Sn be a minimal secondary representation with
Si a pi-secondary submodule of M , for 1 ≤ i ≤ n. We shall stablish the Theorem
by showing (a) that pi =

√
0 :R Γpi(M) for each 1 ≤ i ≤ n, (b) that Γpi(M) is a

secondary module, and (c) M = Γp1(M) + Γp2(M) + · · ·+ Γpn(M).
(a) Since Γpi(M) is a finitely generated submodule of M , there exists t ≥ 1 such

that Γpi(M) = 0 :M pti. Thus pi ⊆
√

0 :R Γpi(M). It is enough to prove that√
0 :R Γpi(M) 6= R. Suppose this is not true; then Γpi(M) = 0. So Supp

(R
pti

)
∩

AssR(M) = ∅ and hence pi /∈ AssR(M). By [4, Exer. 6.8], AssR(Si) = {pi} and by
the exact sequence 0→ Si → Si ⊕ Si+1 → Si+1 → 0 we have

∅ 6= AssR(Si)
⊆ AssR(Si ⊕ Si+1)
⊆ AssR(Si+1) ∪AssR(Si).

Since AssR(Si ⊕ Si+1) ⊆ AssR(M), we have AssR(Si ⊕ Si+1) = pi+1, which shows
that pi+1 = pi and this is contradiction.
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(b) Since Γpi(M) is Noetherian and pti.Γpi(M) = 0, Γpi(M) is Artinian. There-
fore, this module has finite length. On the other hand,

∅ 6= AssR Γpi(M)
= {pi} ∩AssR(M)
= {pi}.

Therefore Γpi(M) is coprimary, and so Γpi(M) is a secondary module by [4,
Exer. 6.9].

(c) Let m ∈M , so m = s1 + s2 + · · ·+ sn for some si ∈ Si (for 1 ≤ i ≤ n). For
1 ≤ i ≤ n, ptii .Si = 0 for some ti ≥ 1. Hence ptii .si = 0 and so si ∈ Γpi(M) for
1 ≤ i ≤ n. �

3. Injective and projective modules

Lemma 3.1. Let E be an injective R-module and let N be a p-primary submodule
of E. Then (0 :E (N :R E)), if non-zero, is p-secondary.

Proof. Let a ∈ R. If a ∈ p, then an ∈ (N :R E) for some positive integer n, so that
an annihilates (0 :E (N :R E)). On the other hand, if a /∈ p, then we can show
that a(0 :E (N :R E)) = (0 :E (N :R E)).

Let x ∈ (0 :E (N :R E)). There is a well-known homomorphism ϕ : R

(N :R E) −→

E for which ϕ(b+ (N :R E)) = bx for all b ∈ R. Multiplication by a on R

(N :R E)
is a monomorphism. So the diagram

0 −−−−→ R

(N :R E)
a−−−−→ R

(N :R E)
ϕ

y
E

can be completed with a homomorphism ψ : R

(N :R E) −→ E which makes the

extended diagram commute. Thus

x = ϕ(1 + (N :R E)
= ψ(a+ (N :R E))
= ψ(a(1 + (N :R E))
= aψ(1 + (N :R E)).

Hence x ∈ a(0 :E (N :R E)), because

(N :R E)ψ(1 + (N :R E)) = ψ(N :R E) = 0E ;

this implies that ψ(1 + (N :R E)) ∈ (0 :E (N :R E)) and the proof is complete. �
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Lemma 3.2. Let I1, I2, . . . , In be ideals of R and E an injective R-module. Then
n∑
i=1

(0 :E Ii) = (0 :E
n⋂
i=1

Ii).

Proof. See [5, Lemma 2.2]. �

We recall that an injective R-module E is said to be an injective cogenerator of
R if, for every R-module M and every non-zero m ∈M , there is a homomorphism
ϕ : M → E such that ϕ(m) 6= 0.

Theorem 3.3. Let E be an injective Noetherian R-module. Then E has a sec-
ondary representation, and Att(E) ⊆ Ass(E). More precisely, let 0 = N1 ∩ N2 ∩
· · · ∩Nn be a minimal primary decomposition for the zero submodule of E, with Ni
a pi-primary submodule of E, for i = 1, 2, . . . , n. Then

E = (0 :E (N1 :R E)) + (0 :E (N2 :R E)) + · · ·+ (0 :E (Nn :R E)) (*)
and for i = 1, 2, . . . , n, (0 :E (Ni :R E)) is either zero or pi-secondary.

Moreover, if j is an integer such that 1 ≤ j ≤ n, and J = {1, . . . , j − 1, j +
1, . . . , n}, then E =

∑
i∈J(0 :E (Ni :R E)) if and only if

⋂
i∈J(Ni :R E) annihi-

lates E. Consequently, if E is an injective cogenerator of R, then (*) is a minimal
secondary representation for E, and Att(E) = Ass(E).

Proof. By Lemma 3.1, (0 :E (Ni :R E)) is either zero or pi-secondary. Generally,
(0 :R E) = (

⋂n
i=1Ni :R E) =

⋂n
i=1(Ni :R E). Since (0 :E

⋂n
i=1(Ni :R E)) = (0 :E

(0 :R E)), we have e(0 :R E) = 0 for each e ∈ E. Thus E ⊆ (0 :E (0 :R E)),
and it follows that E = (0 :E

⋂n
i=1(Ni :R E)). Now, we have E =

∑n
i=1(0 :E

(Ni :R E)) by Lemma 3.2. Hence Att(E) ⊆ {p1, p2, . . . , pn}, which shows that
Att(E) ⊆ Ass(E).

For each set such as J , we can write:∑
i∈J

(0 :E (Ni :R E)) = (0 :E
⋂
i∈J

(Ni :R E)).

Now, if
⋂
i∈J(Ni :R E) annihilates E, then E ⊆

∑
i∈J(0 :E (Ni :R E)) and so

clearly E =
∑
i∈J(0 :E (Ni :R E)) if and only if

⋂
i∈J(Ni :R E) annihilates E.

Now, let E be an injective cogenerator of R. It is enough to show that, for each
j = 1, . . . , n, the ideal

⋂
i∈J(Ni :R E)) does not annihilate E. To prove this, let I

be a non-zero arbitrary ideal of R, and y ∈ I. Since E is an injective cogenerator
of R, there exists a homomorphism ϕ : R −→ E such that ϕ(y) 6= 0. Hence
0 6= ϕ(y) = yϕ(1). Then ϕ(1) is an element of E which is not annihilated by y, and
so not annihilated by I. Thus E is not annihilated by

⋂
i∈J(Ni :R E)) and so E =∑n

i=1(0 :E (Ni :R E)), which shows that Att(E) = {p1, p2, . . . , pn} = Ass(E). �

Remark 3.4. If E is an injective module over the Noetherian ring R, then there is a
family {pα}α∈Λ of prime ideals of R for which E ∼=

⊕
α∈ΛE

(
R
pα

)
, and if {qβ}β∈Φ

is a second family of prime ideals of R for which E ∼=
⊕

β∈ΦE
(
R
qβ

)
, then there is

a bijection γ : Λ → Φ such that pα = qγ(α) for all α ∈ Λ. The set {pα|α ∈ Λ} is
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thus uniquely determined by E; we shall denote this set by Occ(E), and refer to
its members as the prime ideals which occur in the direct decomposition of E.

Theorem 3.5. Let E be an injective Noetherian R-module. Then
Att(E) = {p′ ∈ Ass(E) | p′ ⊆ p for some p ∈ Occ(E)}.

Proof. Let 0 = N1 ∩ N2 ∩ · · · ∩ Nn be a minimal primary decomposition for the
zero submodule of E, with Ni a pi-primary submodule of E (for i = 1, 2, . . . , n).
Then

E = (0 :E (N1 :R E)) + (0 :E (N2 :R E)) + · · ·+ (0 :E (Nn :R E)), (**)
and (for i = 1, 2, . . . , n) (0 :E (Ni :R E)) is either zero or pi-secondary. Also, a
minimal secondary representation for E can be written from (**). For proving the
Theorem, we shall show: (a) that (0 :E (Ni :R E)) = 0 for each i for which pi is
not contained in any p in Occ(E), and (b) that if j is an integer (with 1 ≤ j ≤ n)
for which pj is contained in some p belonging to Occ(E), then

∑
i∈J(0 :E (Ni :R

E)) 6= E, where J = {1, . . . , j − 1, j + 1, . . . , n} so that (0 :E (Nj :R E)) cannot be
omitted from (**).

(a) Let i be an integer (with 1 ≤ i ≤ n) such that pi * p for all p ∈ Occ(E). If
{pα}α∈Λ is a family of prime ideals of R for which E =

⊕
α∈ΛE( Rpα ), then

(0 :E (Ni :R E)) ∼= (0 :⊕
α∈Λ

E( Rpα ) (Ni :R E))

∼=
⊕
α∈Λ

(0 :E( Rpα ) (Ni :R E)).

Now, in order to show that (0 :E (Ni :R E)) = 0, it is enough to show that
(0 :E(Rp ) (Ni :R E)) = 0 for all p ∈ Occ(E). For such a p, we have (Ni :R E) * p,
since pi * p. Thus, there is r ∈ (Ni :R E)\p such that multiplication by r on E(Rp )
provides an automorphism of E(Rp ), and consequently (0 :E(Rp ) (Ni :R E)) = 0.

(b) Assume that j is an integer (with 1 ≤ j ≤ n) for which pj ⊆ p for some p ∈
Occ(E). Suppose that E =

∑
i∈J(0 :E (Ni :R E)) and J defined as before. Then,

by Theorem 3.3, E is annihilated by aj =
⋂
i∈J(Ni :R E) and so E(Rp ) is annihilated

by aj . Hence aj ⊆
⋂∞
k=1 p

(k). Now aj * (Nj :R E); let r ∈ aj \ (Nj :R E). Then
r ∈

⋂∞
k=1 p

(k). We know that if f : R −→ Rp is a natural ring homomorphism,
then f ⊗ idE : E −→ Ep. Since ker f ⊗ E ⊆ ker(f ⊗ idE), for each e ∈ E we have
r ⊗ e = re ∈ ker(f ⊗ idE). Thus, there exists s ∈ R \ p such that s(re) = 0 ∈ Nj .
But s /∈ pj and re /∈ Nj , this is in contradiction with the fact that Nj is pj-primary.
This completes the proof. �

Lemma 3.6. Let M be an R-module. Then qM is a p-secondary submodule of M
for every p-secondary ideal q of R.

Proof. Let q be a p-secondary ideal of R and r ∈ R. We consider two cases and
prove the lemma. Case 1: r ∈ p. Then r ∈

√
0 :R q and so rnq = 0 for some n ∈ N.

Therefore rnqM = 0 and the result follows. Case 2: r /∈ p. Then rnq 6= 0 for each
n ∈ N, and so rq = q. Hence rqM = qM . It is clear that

√
0 :R qM = p. �
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Theorem 3.7. Let M be a representable projective R-module and let M = S1 +
S2 + · · ·+ Sn, with Si a pi-secondary submodule (for i = 1, 2, . . . , n), be a minimal
secondary representation of M . Then

0R = (0 :R S1) ∩ (0 :R S2) ∩ · · · ∩ (0 :R Sn)
is a primary decomposition for the zero ideal of R.

Proof. We can assume that R is local. Hence M is a free module and so AnnRM =
0. Therefore the result follows. �

Lemma 3.8. Let M be a projective R-module. Then either qM = M or qM is a
p-primary submodule of M for every p-primary ideal q of R.

Proof. See [2, Theorem 2.2]. �

Theorem 3.9. Let M be a representable projective module over an integral domain
R and let M = S1 + S2 + · · · + Sn, with Si a pi-secondary submodule (for i =
1, 2, . . . , n), be a minimal secondary representation of M . Also, let (0 :R Si)M 6= M
for i = 1, 2, . . . , n. Then

0M = (0 :R S1)M ∩ (0 :R S2)M ∩ · · · ∩ (0 :R Sn)M
is a primary decomposition for the zero submodule of M .

Proof. Clearly, (0 :R Si), for i = 1, 2, . . . , n, is a pi-primary ideal of R. Since M is
projective, (0 :R Si)M will be a pi-primary submodule of M , by Lemma 3.8. Let
x ∈ (0 :R S1)M ∩ (0 :R S2)M ∩ · · · ∩ (0 :R Sn)M . So x will be expressed as a finite
sum x =

∑k
t=1 rtmt for rt ∈ (0 :R S1) and mt ∈ M . In order to show that x = 0,

it is enough to consider x = r1m1 for r1 ∈ (0 :R S1) and m1 ∈M .
If r1 ∈ (0 :R Si) for i = 2, 3, . . . , n, then by Theorem 3.7, r1 = 0 and so x = 0.

Now, let r1 /∈ (0 :R Sj) for some 1 ≤ j ≤ n. So, there are two cases, r1 /∈ pj or
r1 ∈ pj . If r1 /∈ pj , then m1 ∈ (0 :R Sj)M , since r1m1 ∈ (0 :R Sj)M . Therefore
m1 = tm for some t ∈ (0 :R Sj) and m ∈ M . Then x = r1m1 = r1tm = 0. But,
if r1 ∈ pj , we can assume that r1 ∈ pi for each i = 2, 3, . . . , n. Hence there is
k ≥ 1 such that rk1 ∈ (0 :R Si) for i = 1, 2, . . . , n. So rk1 = 0 by Theorem 3.7 and
consequently r1 = 0. �
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