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PRIMARY DECOMPOSITION AND SECONDARY
REPRESENTATION OF MODULES

MASOUMEH HASANZAD AND JAFAR A’ZAMI

ABSTRACT. In this paper we study the notions of primary decomposition and
secondary representation of modules over a commutative ring with identity.
Also we review these concepts over injective and projective modules.

1. INTRODUCTION

Throughout this paper, let R denote a commutative ring (with identity). A sub-
module N of an R-module M is said to be primary if N # M and whenever r € R,
m € M\N, and rm € N, there exists a positive integer n such that r"M C N. An
R-module M is said to be secondary if M # 0 and, for each a € R, the endomor-
phism ¢, : M — M defined by p,(m) = am (for m € M) is either surjective or
nilpotent. If M is secondary, then p = Rad(0 : M) is a prime ideal, and M is said
to be p-secondary. Any non-zero quotient of a p-secondary module is p-secondary.

In this paper, we shall follow Macdonald’s terminology concerning secondary
representation. We refer the reader to [4, [I, B] for more details about primary
decomposition and secondary representation. For each R-module L, we denote by
m Assg L the minimal elements of the set Assg L = {p € Spec(R) | p = 0 :g
x, for some 0 # x € L}. For each R-module L, we denote by Attr L the set of all
attached prime ideals of L over the ring R. Also, for any ideal b of R, the radical
of b, denoted by /b, is defined to be the set {z € R : 2™ € b for some n € N},
and set 'y (M) = Upen(0 :pr 6™), the set of elements of M which are annihilated
by some power of b. Finally we denote {p € Spec(R) : p 2 b} by V(b). For any
unexplained notation and terminology we refer the reader to [4 [I].

2. THE RESULTS

Lemma 2.1. Let M be an R-module such that m Assg M = Assg M = {p1,...,pn}

n n

and Ij = () p;. Then () 1, (M) =0 is a minimal primary decomposition for the
SIS

zero module.
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Proof. 1t is clear that

Ass =Ass M\V(I;) = {p;}.

L'y, (M)

Hence by [4, Theorem 6.6], I';, (M) is a pj- primary submodule of M. Now let

0#xe () I'1;(M). Since Anng(xz) C Zr(M) = U pi, it follows that there exists
j=1 i=1

1 <j <n, such that Anng(z) C p;. On the other hand, zI} = 0 for some n € N

and so 7' C Anng(z) C p;. Consequently ﬂ p; = I; C p; and this implies that

1#]
p; C p; for some ¢ € N, which is a contradiction. Therefore ﬂ Iy, (M) = 0. Now
j=1
by [4, Theorem 6.8], this is a minimal primary decomposition and I'r; (M), for all
1 < 5 < n, are uniquely determined. O

Now we want to present a direct proof for the following corollary, using Lemma

Corollary 2.2. Let R be a Cohen—Macaulay ring and x1,xs,...,x: be an R-
R
sequence such that VT =1 = (x1,...,1;) and Assg 7= {p1,.-.,px}- Then for all

n>11I"= pﬁ") Nn...N p,(cn) is a minimal primary decomposition for I™.

k k k
Proof. Since vI = ) p; = I, it follows that for all s; € ([ p;)\ps, sips € () p; =
j=1 =1 =
J#i
I. Therefore p;R,, = IR, and consequently p}'R,, = I"R,, for all n € N. Also

R/I™ is Cohen—Macaulay by [4, Ex. 17.4], and we have the exact sequence

(n)
0—>pi——>£—>R—>0 (2.1)
I I pl n)
R 'R "R, -
which implies that Assg p} C Ass —. On the other hand, le R: I;:L R:: =0
p(n)
and so p; & Ass —=—. Hence
P(n) k
Assp - C Assp —\{pz} = {ps}i= \pi}- (2.2)

R R
Also p; € Supp Tn and for all i # j, p; & Suppr —— Ok hence p; € Supp p} This
p;

(n)
implies that p; € m Ass p}

Therefore

(n)

{p; }§:1\{Pi
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(n)

By relations and (2.3), we conclude that Ass pz = {p; le\{pi}. Now let
: p."” o

Ji = lepj; then {/ Anng ( n ) = J; and for alarge | € N, we have J; ( n ) =0,
j#i

which implies tha plgz) CTIy, (ﬁ) Since I, (pi)) = 0, it follows from (2.I)),

P}n =Ty (I”)’ and so by Lemmawe obtain 0 = ﬂ Iy, (I”) = pjl—n N

(n)

..N pj_k—n which implies that I™ = ﬂ pjn).
j=1

R R
Also Ass —— = Ass
p{" Tr

I'n

R . R
; (Iﬂ) = Ass I—H\V(Ji) = {p;}. This shows that Ass pg—n) =

k
{pi} and so pz(-n) is p;-primary. Consequently I" = [ pl(.n) is a minimal primary
i=1

decomposition. O

We shall prove the following well-known theorem as a dual of Lemma [2.1] with
a new proof.

Theorem 2.3 (Dual of Lemma. Let R be an Artinian ring and M be a non-
zero finitely generated R-module such that Att(M) = {p1,p2,...,pn}. Then M has
a minimal secondary representation as M =Ty, (M) +Tp,(M)+---+Ty, (M), for
1<i<n, withTy,(M) ap;-secondary submodule of M.

Proof. Let M = S1 + Sy 4+ ---+ 5, be a minimal secondary representation with
S; a p;-secondary submodule of M, for 1 < i < n. We shall stablish the Theorem

by showing (a) that p; = \/0:g I'y,(M) for each 1 < ¢ < n, (b) that I'y, (M) is a
secondary module, and (¢) M = Fpl(M) + T, (M) + -+ Fp"(M).
(a) Since I'y, (M) is a finitely generated submodule of M, there exists t > 1 such

that Ty, (M) = 0 :pr pt. Thus p; C /0 :5 Ty, (M). It is enough to prove that
R
VO :r Ty, (M) # R. Suppose this is not true; then I'y, (M) = 0. So Supp (p—) N

Assgp(M) = () and hence p; ¢ Assg(M). By [, Exer. 6.8], Assg(S;) = {p;} and by
the exact sequence 0 — S; — S; ® S;+1 — Siy1 — 0 we have

0 # Assg(S;)
C Assp(S; ® Siy1)
C Assgp(Si+1) U Assg(S;).

Since Assr(S; ® S;11) C Assp(M), we have Assr(S; ® S;1+1) = pi+1, which shows
that p;+1 = p; and this is contradiction.
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(b) Since Ty, (M) is Noetherian and pt.T'y, (M) = 0, Ty, (M) is Artinian. There-
fore, this module has finite length. On the other hand,

0 # Assp Ty, (M)
= {pi} N Assp(M)
= {pi}.
Therefore T'y, (M) is coprimary, and so I'y,(M) is a secondary module by [4]
Exer. 6.9].
(c) Let me M, som =81+ 82+ -+ s, for some s; € 5; (for 1 <7 <n). For

1 <i<n, pf’lSi = 0 for some t; > 1. Hence pfsZ =0 and so s; € I'y, (M) for
1<i<n. O

3. INJECTIVE AND PROJECTIVE MODULES

Lemma 3.1. Let E be an injective R-module and let N be a p-primary submodule
of E. Then (0:g (N :g E)), if non-zero, is p-secondary.

Proof. Let a € R. If a € p, then a™ € (N :g E) for some positive integer n, so that
a™ annihilates (0 :g (N :g E)). On the other hand, if a ¢ p, then we can show
that a(0:g (N :g E)) = (0:g (N :g E)).

Letz € (0:g (N :g E)). There is a well-known homomorphism ¢ : R —
(N :r E)
E for which p(b+ (N :g E)) = bz for all b € R. Multiplication by a on (N:]ZE)
is a monomorphism. So the diagram
0 R a R
(N :r E) (N :r E)
gl
E
can be completed with a homomorphism ) : (NiRE) — F which makes the
extended diagram commute. Thus .
z=9(1+(N:pE)
=1Y(a+ (N :g E))
=¢(a(l+ (N :g E))

Hence z € a(0 :g (N :g E)), because
(N :r E)Yp(1+ (N :g E)) = (N :g E) = Op;
this implies that ¢(14 (N :g E)) € (0 :g (N :g E)) and the proof is complete. [
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Lemma 3.2. Let I1,1,...,1I, be ideals of R and E an injective R-module. Then
S (05 L)=(0:5 (1)
i=1 i=1

Proof. See [5, Lemma 2.2]. O

We recall that an injective R-module F is said to be an injective cogenerator of
R if, for every R-module M and every non-zero m € M, there is a homomorphism
¢ : M — E such that ¢(m) # 0.

Theorem 3.3. Let E be an injective Noetherian R-module. Then E has a sec-
ondary representation, and Att(E) C Ass(E). More precisely, let 0 = Ny N No N

--N N, be a minimal primary decomposition for the zero submodule of E, with N;
a pi-primary submodule of E, fori=1,2,...,n. Then

E=(0:5(N1:rE))+(0:5 (N2:r E)) 4+ (0:5 (Nn :r E)) (*)

and fori=1,2,...,n, (0:g (N; :g E)) is either zero or pi—secondary.
Moreover, if j is an integer such that 1 < j < n, and J = {1,...,5— 1,5 +
yn}, then E =37, (0 :5 (N; :r E)) if and only if (;c;(Ns :r E) annihi-
lates E. Consequently, if E is an injective cogenerator of R, then (ED s a minimal
secondary representation for E, and Att(E) = Ass(E).

Proof. By Lemma (3.1} (0 :g (N; :g E)) is either zero or p;-secondary. Generally,
(021 E) = (M) Nein ) = (Vy(V: i E). Since (00 (Vo (V; 3 E)) = (035
(0 :gr E)), we have e(0 :gp E) = O for each e € E. Thus E C (0 :g (0 :g E)),
and it follows that E = (O 5 (Niey(N; :r E)). Now, we have E = > (0 :p
(N; :r E)) by Lemma Hence Att(E) C {p1,p2,-..,Pn}, which shows that
Att(E) C Ass(E).

For each set such as J, we can write:

Z(O B (Nz ‘R E)) = (0 ‘E m(NZ ‘R E))

icJ icJ
Now, if (\;c,(Ni :r E) annihilates E, then E C 3>, (0 :g (N; :g E)) and so
clearly £ =3, (0 :g (N; :g E)) if and only if ﬂleJ( i :r E) annihilates E.

Now, let E be an injective cogenerator of R. It is enough to show that, for each

j=1,...,n, the ideal (", ;(N; :r E)) does not annihilate E. To prove this, let I
be a non-zero arbitrary ideal of R, and y € I. Since FE is an injective cogenerator
of R, there exists a homomorphism ¢ : R — E such that ¢(y) # 0. Hence
0 # ¢(y) = yp(1). Then (1) is an element of E which is not annihilated by y, and
so not annihilated by I. Thus E is not annihilated by (. ;(N; :r E)) and so E =
Y1 (0:5 (N; :r E)), which shows that Att(E) = {p1,p2,...,pn} = Ass(E). O

Remark 3.4. If E is an injective module over the Noetherian ring R, then there is a
family {pa}aca of prime ideals of R for which E= &\ £ (F%), and if {qs}sea

is a second family of prime ideals of R for which E = P sea £ (%), then there is

a bijection v : A — ® such that p, = q(q) for all @ € A. The set {po|a € A} is
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thus uniquely determined by E; we shall denote this set by Occ(E), and refer to
its members as the prime ideals which occur in the direct decomposition of E.

Theorem 3.5. Let E be an injective Noetherian R-module. Then
Att(E) = {p’ € Ass(E) | p’ Cp for some p € Occ(E)}.

Proof. Let 0 = Ny N NyN---N N, be a minimal primary decomposition for the
zero submodule of E, with N; a p;-primary submodule of E (for i = 1,2,...,n).
Then

E = (0 ‘E (N1 ‘R E)) + (0 ‘E (NQ ‘R E)) + -+ (O ‘E (Nn ‘R E’))7 (**)

and (for i = 1,2,...,n) (0 :g (N; :r E)) is either zero or p;-secondary. Also, a
minimal secondary representation for E' can be written from (@ For proving the
Theorem, we shall show: (a) that (0 :g (N; :g E)) = 0 for each i for which p; is
not contained in any p in Occ(E), and (b) that if j is an integer (with 1 < j < n)
for which p; is contained in some p belonging to Occ(E), then » . (0 :g (N; :r
E)) # E, where J ={1,...,j—1,j+1,...,n} so that (0:g (N; :g E)) cannot be
omitted from @

(a) Let i be an integer (with 1 < i < n) such that p; Z p for all p € Occ(E). If
{Pataen is a family of prime ideals of R for which £ = @, E(p%), then

(O ‘E (Nz ‘R E)) =~ (0 :®QGAE(%) (Nz ‘R E))

=P (N ir B)).
aEA

Now, in order to show that (0 :g (N; :g E)) = 0, it is enough to show that
0 (k) (Ni :gr E)) =0 for all p € Occ(E). For such a p, we have (N; :g E) € p,
since p; € p. Thus, there is r € (N, :g E)\p such that multiplication by 7 on E(%)
provides an automorphism of E(%)7 and consequently (0 ‘B (N;:r E))=0.

(b) Assume that j is an integer (with 1 < j < n) for which p; C p for some p €
Occ(E). Suppose that £ =3, (0 :g (N; :r F)) and J defined as before. Then,
by Theorem E is annihilated by a; = [, ;(N; :r E) and so E(%) is annihilated
by a;. Hence a; C (5o, p*). Now a; ¢ (N; :g E); let v € a; \ (N; :g E). Then
r e ﬂ;’;lp(k). We know that if f : R — R, is a natural ring homomorphism,
then f ®idg : E — E,. Since ker f ® E C ker(f ® idg), for each e € E we have
r®e=re € ker(f ®idg). Thus, there exists s € R\ p such that s(re) =0 € N;.
But s ¢ p; and re ¢ N, this is in contradiction with the fact that N; is p;-primary.
This completes the proof. O

Lemma 3.6. Let M be an R-module. Then qM is a p-secondary submodule of M
for every p-secondary ideal q of R.

Proof. Let q be a p-secondary ideal of R and » € R. We consider two cases and
prove the lemma. Case 1: r € p. Then r € /0 :g q and so r™q = 0 for some n € N.
Therefore rqM = 0 and the result follows. Case 2: r ¢ p. Then r"q # 0 for each
n € N, and so rq = q. Hence rqM = qM. It is clear that /0 :p qM = p. (]
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Theorem 3.7. Let M be a representable projective R-module and let M = S1 +
So+ -+ Sy, with S; a p;-secondary submodule (fori=1,2,...,n), be a minimal
secondary representation of M. Then

OR:(OZRsl)ﬂ(OZRSQ)ﬂ"'ﬁ(O ‘R Sn)
is a primary decomposition for the zero ideal of R.

Proof. We can assume that R is local. Hence M is a free module and so Anng M =
0. Therefore the result follows. O

Lemma 3.8. Let M be a projective R-module. Then either qM = M or qM is a
p-primary submodule of M for every p-primary ideal q of R.

Proof. See [2, Theorem 2.2]. O

Theorem 3.9. Let M be a representable projective module over an integral domain
R and let M = Sy + So + -+ + Sn, with S; a p;-secondary submodule (for i =
1,2,...,n), be a minimal secondary representation of M. Also, let (0 :g S;)M # M
fori=1,2,....n. Then

O =0:rS1)MNO:gSo)MN---N(0:g Sp)M
s a primary decomposition for the zero submodule of M.

Proof. Clearly, (0:5 S;), fori=1,2,...,n, is a p;-primary ideal of R. Since M is
projective, (0 :g S;)M will be a p,;-primary submodule of M, by Lemma Let
x€(0:g S)MNO0:g So)MN---N(0:5 Sy)M. So x will be expressed as a finite
sum = Zle rymy for ry € (0:g S1) and my € M. In order to show that z = 0,
it is enough to consider x = rym; for r1 € (0 :5 S1) and m; € M.

If ry € (0:5 S;) for i =2,3,...,n, then by Theorem ry = 0 and so x = 0.
Now, let r; ¢ (0 :gr S;) for some 1 < j < n. So, there are two cases, r1 ¢ p; or
1 € p;. If vy ¢ pj, then mq € (0 :g S;)M, since rymq € (0 :g S;)M. Therefore
my = tm for some ¢t € (0 :g S;) and m € M. Then x = rymy = ritm = 0. But,

if 11 € p;j, we can assume that r; € p; for each 7 = 2,3,...,n. Hence there is

k > 1 such that ¥ € (0 :5 S;) for i = 1,2,...,n. Sorf =0 by Theoremand

consequently r; = 0. O
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