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LIE n-MULTIPLICATIVE MAPPINGS ON TRIANGULAR
n-MATRIX RINGS

BRUNO L. M. FERREIRA AND HENRIQUE GUZZO JR.

Abstract. We extend to triangular n-matrix rings and Lie n-multiplicative
maps a result about Lie multiplicative maps on triangular algebras due to
Xiaofei Qi and Jinchuan Hou.

1. Introduction

Let R be an associative ring and [x1, x2] = x1x2 − x2x1 denote the usual Lie
product of x1 and x2. Let us define the following sequence of polynomials: p1(x) =
x and pn(x1, x2, . . . , xn) = [pn−1(x1, x2, . . . , xn−1), xn] for all integers n ≥ 2. Thus,
p2(x1, x2) = [x1, x2], p3(x1, x2, x3) = [[x1, x2], x3], etc. Let n ≥ 2 be an integer.
Assume that S is any ring. A map ϕ : R → S is called a Lie n-multiplicative
mapping if

ϕ(pn(x1, x2, . . . , xn)) = pn(ϕ(x1), ϕ(x2), . . . , ϕ(xn)). (1)
In particular, if n = 2, ϕ will be called a Lie multiplicative mapping. And, if n = 3,
ϕ will be called a Lie triple multiplicative mapping.

The study on the question of when a particular application between two rings is
additive has become an area of great interest in the theory of rings. One of the first
results ever recorded was given by Martindale III, which in his condition requires
that the ring possess idempotents, see [4]. Xiaofei Qi and Jinchuan Hou [6] also
considered this question in the context of triangular algebras. They proved the
following theorem.

Theorem 1.1 (Xiaofei Qi and Jinchuan Hou [6]). Let A and B be unital algebras
over a commutative ring R, and let M be a (A,B)-bimodule, which is faithful as a
left A-module and also as a right B-module. Let U = Tri(A,M,B) be the triangular
algebra and V any algebra over R. Assume that Φ : U → V is a Lie multiplicative
isomorphism, that is, Φ satisfies

Φ(ST − TS) = Φ(S)Φ(T )− Φ(T )Φ(S) ∀S, T ∈ U .
Then Φ(S + T ) = Φ(S) + Φ(T ) + ZS,T for all S, T ∈ U , where ZS,T is an element
in the centre Z(V) of V depending on S and T .
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This motivated us to discuss the additivity of Lie n-multiplicative mappings on
another kind of rings: triangular n-matrix rings. In this paper, we give a full answer
to this question, where Xiaofei Qi and Jinchuan Hou’s result is a consequence of
our case.

2. Motivation and definitions

For any unital ring R, let Mod(R) denote the category of unitary R-modules,
i.e., satisfying 1m = m for all elements m. This category is important in many
areas of mathematics such as ring theory, representation theory, and homological
algebra. The purpose of this paper is to work with a more general category, that
is, Mod(R) where R does not have identity element. In this paper R̃ denotes the
unital ring R× Z. Define operations on R̃ by

(r, λ) + (t, µ) := (r + t, λ+ µ),
(r, λ) · (t, µ) := (rt+ λt+ µr, λµ).

Then R̃ is a ring with (0R, 1) := 1R as multiplicative identity. If M is a non unitary
R-module, define a right R̃-module operation by

(r, λ)m := rm+ λm

and a left R̃-module operation by

m(r, λ) := mr + λm,

where the action Z on M is the usual of M as a Z-module. A module over R is
the same thing as a unitary R̃-module.

The following definition is a generalization of the definition that arises in the
work of W. S. Cheung [1]. This definition appears in Ferreira’s paper [3].

Definition 2.1. Let R1,R2, . . . ,Rn be rings and Mij (Ri,Rj)-bimodules with
Mii = Ri for all 1 ≤ i ≤ j ≤ n. Let ϕijk : Mij ⊗Rj

Mjk −→ Mik be (Ri,Rk)-
bimodules homomorphisms with ϕiij : Ri ⊗Ri

Mij −→ Mij and ϕijj : Mij ⊗Rj

Rj −→ Mij the canonical multiplication maps for all 1 ≤ i ≤ j ≤ k ≤ n. Write
ab = ϕijk(a⊗ b) for a ∈Mij , b ∈Mjk. We consider

(i) Mij is faithful as a left Ri-module and faithful as a right Rj-module i < j.
(ii) if mij ∈Mij is such that RimijRj = 0 then mij = 0 i < j.

Let

T =




r11 m12 . . . m1n

r22 . . . m2n

. . .
...
rnn


n×n

: rii ∈ Ri (= Mii), mij ∈Mij︸ ︷︷ ︸
(1≤i<j≤n)


be the set of all n × n matrices [mij ] with the (i, j)-entry mij ∈ Mij for all 1 ≤
i ≤ j ≤ n. Observe that, with the obvious matrix operations of addition and
multiplication, T is a ring iff a(bc) = (ab)c for all a ∈ Mik, b ∈ Mkl and c ∈ Mlj
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for all 1 ≤ i ≤ k ≤ l ≤ j ≤ n. When T is a ring, it is called a triangular n-matrix
ring.

Note that if n = 2 we have the triangular matrix ring. As in [3] we denote by

⊕n
i=1 rii the element


r11 0 . . . 0

r22 . . . 0
. . .

...
rnn

 in T.

Set Tij =
{

(mkt) : mkt =
{
mij , if (k, t) = (i, j)
0, if (k, t) 6= (i, j)

, i ≤ j

}
. Then we can write

T =
⊕

1≤i≤j≤n Tij . Henceforth the element aij belongs to Tij and the corre-
sponding elements are in R1, . . . ,Rn or Mij . By a direct calculation aijakl = 0 if
j 6= k. Also as in [3] we define natural projections πRi

: T −→ Ri (1 ≤ i ≤ n) by
r11 m12 . . . m1n

r22 . . . m2n

. . .
...
rnn

 7−→ rii.

Definition 2.2. Let R, S be rings; we shall say that the Lie n-multiplicative
mapping ϕ : R→ S is almost additive if there exist SA,B in the centre Z(S) of S
depending on A and B such that

ϕ(A+B) = ϕ(A) + ϕ(B) + SA,B

for all A,B ∈ R.
The proposition below appears in [3]; it is a generalization of Proposition 3 of

[1] and will be very useful.
Proposition 2.1. Let T be a triangular n-matrix ring. The center of T is

Z(T) =
{

n⊕
i=1

rii | riimij = mijrjj for all mij ∈Mij, i < j

}
.

Furthermore, Z(T)ii
∼= πRi(Z(T)) ⊆ Z(Ri), and there exists a unique ring isomor-

phism τ j
i from πRi(Z(T)) to πRj (Z(T)) i 6= j such that riimij = mijτ

j
i (rii) for all

mij ∈Mij.
Remark 2.1. Throughout this paper we shall make some identifications. For
example: let rkk ∈ Rk and mij ∈Mij ; then

rkk ≡



0 0 . . . . . . 0 . . . 0
. . .

...
...

... · · ·
...

0 . . . 0 · · · 0
rkk 0 · · · 0

0 · · · 0
. . .

...
0
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and

mij ≡



0 0 . . . . . . 0 . . . 0
. . . · · · · · ·

... · · ·
...

0 · · · mij · · · 0
. . .

...
...

0 · · · 0
. . .

...
0


where i, j, k ∈ {1, 2, . . . , n}.

In addition we have the following identifications:
Let R̃ = R×Z be a unital ring. If r ∈ R then r ≡ (r, 0). And ϕ× Id : R×Z→

S×Z with (ϕ× Id)(r, λ) = (ϕ(r), Id(λ)) = (ϕ(r), λ), where Id is the identity map
on Z. By a straightforward calculus it is shown that ϕ×Id is a Lie n-multiplicative
mapping. Sometimes we shall do ϕ× Id ≡ ϕ.

3. A key lemma

The following results are generalizations of those that appear in [6].

Lemma 3.1 (Standard lemma). Let A,B,C ∈ R and ϕ(C) = ϕ(A) +ϕ(B). Then
for any T1, T2, . . . , Tn−1 ∈ R, we have

ϕ(pn(C, T1, T2, . . . , Tn−1)) = ϕ(pn(A, T1, T2, . . . , Tn−1))
+ ϕ(pn(B, T1, T2, . . . , Tn−1)).

Proof. Using (1) we have
ϕ(pn(C, T1, T2, . . . , Tn−1)) = pn(ϕ(C), ϕ(T1), ϕ(T2), . . . , ϕ(Tn−1))

= pn(ϕ(A) + ϕ(B), ϕ(T1), ϕ(T2), . . . , ϕ(Tn−1))
= pn(ϕ(A), ϕ(T1), ϕ(T2), . . . , ϕ(Tn−1))

+ pn(ϕ(B), ϕ(T1), ϕ(T2), . . . , ϕ(Tn−1))
= ϕ(pn(A, T1, T2, . . . , Tn−1))

+ ϕ(pn(B, T1, T2, . . . , Tn−1)). �

Note that if

ϕ(pn(A, T1, T2, . . . , Tn−1)) + ϕ(pn(B, T1, T2, . . . , Tn−1))
= ϕ(pn(A, T1, T2, . . . , Tn−1) + pn(B, T1, T2, . . . , Tn−1)),

then by the injectivity of ϕ we get
pn(C, T1, T2, . . . , Tn−1) = pn(A, T1, T2, . . . , Tn−1) + pn(B, T1, T2, . . . , Tn−1).

Lemma 3.2. Let R1,R2, . . . ,Rn be rings and Mij (Ri,Rj)-bimodules as in Defini-
tion 2.1. Let T be the triangular n-matrix ring. If p2(A,T) ⊆ Z(T) then A ∈ Z(T)
for each A ∈ T. Moreover, if pn(A,T, . . . ,T) ⊆ Z(T) then A ∈ Z(T) for each
A ∈ T.
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Proof. Let A =
⊕

1≤i≤j≤n

aij such that p2(A,T) ⊆ Z(T). Thus p2(A,Rk) ⊆ Z(T)

for k = 1, . . . , n− 1, and it follows that

p2(A,Rk) =
⊕

i

p2(aik,Rk) +
⊕

j

p2(akj ,Rk) + p2(akk,Rk),

because
• If i < j, k 6= i and k 6= j then p2(aij ,Rk) = 0;
• If i = j and k 6= i then p2(aii,Rk) = 0.

As p2(A,Rk) ⊆ Z(T) we have p2(A,Rk) = p2(akk,Rk) for k = 1, . . . , n − 1 by
Proposition 2.1. Consequently, p2(A,Rk)mkj = 0 for k < j. Since Mkj is faithful
as a left Rk-module, we see that p2(A,Rk) = 0 for k = 1, . . . , n − 1. In the case
k = n we use an analogous argument and we obtain minp2(A,Rn) = 0. And since
Min is faithful as a right Rn-module, it follows that p2(A,Rn) = 0.

Now note that p2(A,Mij) = p2(Aii,Mij) + p2(Ajj ,Mij) and as p2(A,Mij) ⊆
Z(T) we get p2(A,Mij) = 0 for i < j. Therefore p2(A,T) = 0, that is, A ∈
Z(T). �

4. Main results

Let’s state our main result in this section, which is a generalization of Theo-
rem 2.1 in [6].

Theorem 4.1. Let T be the triangular n-matrix ring and S any ring. Consider
ϕ : T→ S a bijection Lie n-multiplicative mapping satisfying

(i) ϕ(Z(T)) ⊂ Z(S).
Then

ϕ(A+B) = ϕ(A) + ϕ(B) + SA,B

for all A,B ∈ T, where SA,B is an element in the centre Z(S) of S depending on
A and B.

To prove Theorem 4.1 we introduce a set of lemmas, almost all of which are
generalizations of claims in [6]. We begin with the following lemma.

Lemma 4.1. ϕ(0) = 0.

Proof. Indeed, ϕ(0) = ϕ(pn(0, 0, . . . , 0)) = pn(ϕ(0), ϕ(0), . . . , ϕ(0)) = [· · · [[ϕ(0),
ϕ(0)], ϕ(0)], . . . ] = 0. �

Lemma 4.2. For any A ∈ T and any Z ∈ Z(T), there exists S ∈ Z(S) such that
ϕ(A+ Z) = ϕ(A) + S.

Proof. Note that ϕ−1 is also a bijection Lie n-multiplicative map. Let A ∈ T,
Z ′ ∈ Z(T) and T2, . . . , Tn ∈ T. As ϕ−1 is surjective we have ϕ−1(S′) = A and
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ϕ−1(S) = Z ′. Now as ϕ(Z(T)) ⊂ Z(S) by condition (i) of Theorem 4.1 we have
ϕ(pn(ϕ−1(S′ + S), T2, . . . , Tn)) = pn(S′ + S, ϕ(T2), . . . , ϕ(Tn))

= pn(S′, ϕ(T2), . . . , ϕ(Tn))
= ϕ(pn(ϕ−1(S′), T2, . . . , Tn)).

Thus, pn(ϕ−1(S′+S)−ϕ−1(S′), T2, . . . , Tn) = 0, and it follows that ϕ−1(S′+S)−
ϕ−1(S′) ∈ Z(T) by Lemma 3.2. Therefore ϕ(A+ Z) = ϕ(A) + S. �

Lemma 4.3. For any akk ∈ Rk, aii ∈ Ri, ajj ∈ Rj and mij ∈Mij, i < j, there
exist S, S1, S2 ∈ Z(S) such that

• ϕ(akk +
⊕
i<j

mij) = ϕ(akk) + ϕ(
⊕
i<j

mij) + S;

• ϕ(aii +mij) = ϕ(aii) + ϕ(mij) + S1;
• ϕ(ajj +mij) = ϕ(ajj) + ϕ(mij) + S2.

Proof. We shall only prove the first item because the demonstrations of the others
are similar. It is important to note that if ϕ is Lie 2-multiplicative mapping (i.e.,
Lie multiplicative mapping), then ϕ is also Lie n-multiplicative mapping for any
n ≥ 3. Therefore, the following proof is valid for all n ≥ 2. As ϕ is surjective, there
is an element H =

⊕
1≤i≤j≤n

hij ∈ T such that

ϕ(H) = ϕ(akk) + ϕ(
⊕
i<j

mij).

Let bjj ∈ Rj , j 6= k and T3, . . . , Tn ∈ T; by Lemma 3.1 we have
ϕ(pn(H, bjj , T3, . . . , Tn)) = ϕ(pn(akk, bjj , T3, . . . , Tn))

+ ϕ(pn(
⊕
i<j

mij , bjj , T3, . . . , Tn))

= ϕ(pn(mij , bjj , T3, . . . , Tn)).
It follows that pn(H−mij , bjj , T3, . . . , Tn) ∈ Z(T) and by Lemma 3.2 we get p2(H−
mij , bjj) ∈ Z(T), thus p2(hjj , bjj) ∈ Z(T). Therefore

⊕
i<j

p2(hij − mij , bjj) = 0,

that is (hij −mij)bjj = 0 for all bjj ∈ Rj and by condition (ii) of Definition 2.1 we
get hij = mij . Now consider bkj ∈Mkj ; by standard Lemma 3.1 we have

ϕ(pn(H, bkj , T3, . . . , Tn)) = ϕ(pn(akk, bkj , T3, . . . , Tn))

+ ϕ(pn(
⊕
i<j

mij , bkj , T3, . . . , Tn))

= ϕ(pn(akk, bkj , T3, . . . , Tn)) + ϕ(0)
= ϕ(pn(akk, bkj , T3, . . . , Tn)).

It follows that pn(H − akk, bkj , T3, . . . , Tn) = 0 and by Lemma 3.2 we have p2(H −
akk, bkj) ∈ Z(T). Thus by Proposition 2.1 we get p2(H − akk, bkj) = 0, which
implies that (hkk−akk)bkj = bkjhjj for all bkj ∈Mkj . Therefore by Proposition 2.1

Rev. Un. Mat. Argentina, Vol. 60, No. 1 (2019)



LIE n-MULTIPLICATIVE MAPPINGS ON TRIANGULAR n-MATRIX RINGS 15

we obtain
⊕

l 6={k,j}

hll + (hkk − akk + hjj) ∈ Z(T). And finally by Lemma 4.2 we

verify that the lemma is valid. �

Lemma 4.4. For any mij , sij ∈Mij with i < j, we have ϕ(mij + sij) = ϕ(mij) +
ϕ(sij).

Proof. Firstly we note that for any mij , sij ∈Mij , i < j, the following identity is
valid:

mij + sij = pn(1Ri
+ sij , 1Rj

+mij , 1Rj
, . . . , 1Rj

).
Indeed, due to Remark 2.1 we get mij + sij = p2(1Ri

+ sij , 1Rj
+mij). It follows

that mij + sij = pn(1Ri
+ sij , 1Rj

+mij , 1Rj
, . . . , 1Rj

). Finally by Lemma 4.3 we
have
ϕ(mij + sij) = ϕ(pn(1Ri

+ sij , 1Rj
+mij , 1Rj

, . . . , 1Rj
))

= pn(ϕ(1Ri
+ sij), ϕ(1Rj

+mij), ϕ(1Rj
), . . . , ϕ(1Rj

))
= pn(ϕ(1Ri) + ϕ(sij) + S1, ϕ(1Rj ) + ϕ(mij) + S2, ϕ(1Rj ), . . . , ϕ(1Rj ))
= pn(ϕ(1Ri) + ϕ(sij), ϕ(1Rj ) + ϕ(mij), ϕ(1Rj ), . . . , ϕ(1Rj ))
= pn(ϕ(1Ri

), ϕ(1Rj
), ϕ(1Rj

), . . . , ϕ(1Rj
))

+ pn(ϕ(1Ri
), ϕ(mij), ϕ(1Rj

), . . . , ϕ(1Rj
))

+ pn(ϕ(sij), ϕ(1Rj ), ϕ(1Rj ), . . . , ϕ(1Rj ))
+ pn(ϕ(sij), ϕ(mij), ϕ(1Rj ), . . . , ϕ(1Rj ))

= ϕ(pn(1Ri
, 1Rj

, 1Rj
, . . . , 1Rj

)) + ϕ(pn(1Ri
,mij , 1Rj

, . . . , 1Rj
))

+ ϕ(pn(sij , 1Rj
, 1Rj

, . . . , 1Rj
)) + ϕ(pn(sij ,mij , 1Rj

, . . . , 1Rj
))

= ϕ(pn(1Ri ,mij , 1Rj , . . . , 1Rj )) + ϕ(pn(sij , 1Rj , 1Rj , . . . , 1Rj ))
= ϕ(0) + ϕ(mij) + ϕ(sij) + ϕ(0)
= ϕ(mij) + ϕ(sij).

�

Lemma 4.5. For any aii, bii ∈ Ri, i = 1, 2, . . . , n, there exists Si ∈ Z(S) such
that ϕ(aii + bii) = ϕ(aii) + ϕ(bii) + Si.

Proof. As ϕ is surjective, there is an element H =
⊕

1≤i≤j≤n

hij ∈ T such that

ϕ(H) = ϕ(aii) + ϕ(bii).
Let ckk ∈ Rk, k 6= i and T3, . . . , Tn ∈ T; by Lemma 3.1 we have

ϕ(pn(H, ckk, T3, . . . , Tn)) = ϕ(pn(aii, ckk, T3, . . . , Tn))
+ ϕ(pn(bii, ckk, T3, . . . , Tn))

= ϕ(0) + ϕ(0) = 0
It follows that pn(H, ckk, T3, . . . , Tn) ∈ Z(T) and by Lemma 3.2 we get p2(H, ckk) ∈
Z(T), thus p2(hkk, ckk) ∈ Z(T). Therefore by condition (i) of Definition 2.1 we
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have hkk ∈ Z(Rk). Moreover,
⊕
i<j

p2(hij , ckk) = 0, that is, hikckk = 0 for all

ckk ∈ Rk and by condition (ii) of Definition 2.1 we get hik = 0. Now consider
cij ∈Mij and rjj ∈ Rj ; by standard Lemma 3.1 and Lemma 4.4 we have

ϕ(pn(H, cij , rjj , . . . , rjj)) = ϕ(pn(aii, cij , rjj , . . . , rjj))
+ ϕ(pn(bii, cij , rjj , . . . , rjj))

= ϕ(pn(aii + bii, cij , rjj , . . . , rjj)).

It follows that pn(H − (aii + bii), cij , rjj , . . . , rjj) = 0 and by (ii) of Definition 2.1
we get (hii− (aii + bii))cij = cijhjj for all cij ∈Mij . Therefore by Proposition 2.1
we obtain

⊕
l 6={i,j}

hll + hii − (aii + bii) + hjj ∈ Z(T). And finally by Lemma 4.2 we

see that the Lemma is valid. �

Lemma 4.6. For any T ∈ T with T =
⊕

1≤i≤j≤n

Tij, there exists S ∈ Z(S) such

that ϕ(T ) =
⊕

1≤i≤j≤n

ϕ(Tij) + S.

Proof. As ϕ is surjective, there is an element H =
⊕

1≤i≤j≤n

Hij ∈ T such that

ϕ(H) =
n⊕

t=1
ϕ(Ttt) +

⊕
1≤i≤j≤n

ϕ(Tij).

Let ckk ∈ Rk, k = 1, 2, . . . , n; by Lemma 3.1 we have

ϕ(pn(H, ckk, ckk, . . . , ckk)) = ϕ(pn(Tkk, ckk, ckk, . . . , ckk))

+
k−1∑
i=1

ϕ(pn(Tik, ckk, ckk, . . . , ckk))

+
n∑

j=k+1
ϕ(pn(Tkj , ckk, ckk, . . . , ckk)).

Now let cll ∈ Rl with l ∈ {1, . . . , k − 1}; again by Lemma 3.1 we get

ϕ(pn(pn(H, ckk, ckk, . . . , ckk), cll, cll, . . . , cll))
= ϕ(pn(pn(Tlk, ckk, ckk, . . . , ckk), cll, cll, . . . , cll)).

Since ϕ is injective we have

pn(pn(H, ckk, ckk, . . . , ckk), cll, cll, . . . , cll)
= pn(pn(Tlk, ckk, ckk, . . . , ckk), cll, cll, . . . , cll).

It follows that pn(pn(H − Tlk, ckk, ckk, . . . , ckk), cll, cll, . . . , cll) = 0 and by (ii) of
Definition 2.1 we obtain Hlk = Tlk. Again let cqq ∈ Rq with q ∈ {k + 1, . . . , n}; by
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Lemma 3.1 we get

ϕ(pn(pn(H, ckk, ckk, . . . , ckk), cqq, cqq, . . . , cqq))
= ϕ(pn(pn(Tkq, ckk, ckk, . . . , ckk), cqq, cqq, . . . , cqq)).

Since ϕ is injective we have

pn(pn(H, ckk, ckk, . . . , ckk), cqq, cqq, . . . , cqq)
= pn(pn(Tkq, ckk, ckk, . . . , ckk), cqq, cqq, . . . , cqq).

It follows that pn(pn(H − Tkq, ckk, ckk, . . . , ckk), cqq, cqq, . . . , cqq) = 0 and by (ii) of
Definition 2.1 we obtain Hkq = Tkq. Finally let ctt ∈ Rt and ckt ∈Mkt, k < t; by
Lemma 3.1 we have

ϕ(pn(H, ckt, ctt, . . . , ctt))
= ϕ(pn(Tkk, ckt, ctt, . . . , ctt))

+ ϕ(pn(Ttt, ckt, ctt, . . . , ctt)) +
k−1∑
i=1

ϕ(pn(Tik, ckt, ctt, . . . , ctt))

+
n∑

j=t+1
ϕ(pn(Ttj , ckt, ctt, . . . , ctt))

= ϕ(pn(Tkk, ckt, ctt, . . . , ctt))

+ ϕ(pn(Ttt, ckt, ctt, . . . , ctt)) +
k−1∑
i=1

ϕ(pn(Tik, ckt, ctt, . . . , ctt)) + ϕ(0)

= ϕ(pn(Tkk, ckt, ctt, . . . , ctt)) + ϕ(pn(Ttt, ckt, ctt, . . . , ctt))

+
k−1∑
i=1

ϕ(pn(Tik, ckt, ctt, . . . , ctt)).

Now let ckk ∈ Rk; by Lemma 3.1 and Lemma 4.4 we obtain
ϕ(pn(pn(H, ckt, ctt, . . . , ctt), ckk, ckk, . . . , ckk))

= ϕ(pn(pn(Tkk, ckt, ctt, . . . , ctt), ckk, ckk, . . . , ckk))
+ ϕ(pn(pn(Ttt, ckt, ctt, . . . , ctt), ckk, ckk, . . . , ckk))

+
k−1∑
i=1

ϕ(pn(pn(Tik, ckt, ctt, . . . , ctt), ckk, ckk, . . . , ckk))

= ϕ(pn(pn(Tkk, ckt, ctt, . . . , ctt), ckk, ckk, . . . , ckk)

+ pn(pn(Ttt, ckt, ctt, . . . , ctt), ckk, ckk, . . . , ckk)) +
k−1∑
i=1

ϕ(0)

= ϕ(pn(pn(Tkk + Ttt, ckt, ctt, . . . , ctt), ckk, ckk, . . . , ckk)).
Since ϕ is injective we have

pn(pn(H − (Tkk + Ttt), ckt, ctt, . . . , ctt), ckk, ckk, . . . , ckk) = 0.
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By (ii) of Definition 2.1 it follows that (Hkk − Tkk)ckt = ckt(Htt − Ttt) for all

ckt ∈Mkt. Therefore
n⊕

i=1
Hii =

n⊕
i=1

Tii + Z, where Z ∈ Z(T). Now by Lemma 4.2

the result is true. �

We are ready to prove our Theorem 4.1.

Proof of Theorem 4.1. Let A,B ∈ T. By the previous lemmas we have

ϕ(A+B) = ϕ(
⊕

1≤i≤j≤n

Aij +
⊕

1≤i≤j≤n

Bij)

= ϕ(
n⊕

k=1
(Akk +Bkk) +

⊕
1≤i≤j≤n

(Aij +Bij))

=
n⊕

k=1
ϕ((Akk +Bkk)) +

⊕
1≤i≤j≤n

ϕ((Aij +Bij)) + S′A,B

=
n⊕

k=1
ϕ(Akk) +

n⊕
k=1

ϕ(Bkk) +
n⊕

k=1
SRk

+
⊕

1≤i≤j≤n

ϕ(Aij)

+
⊕

1≤i≤j≤n

ϕ(Bij) + S′A,B

= ϕ(
n⊕

k=1
Akk +

⊕
1≤i≤j≤n

ϕ(Aij))− SA

+ ϕ(
n⊕

k=1
Bkk +

⊕
1≤i≤j≤n

ϕ(Bij))− SB +
n⊕

k=1
SRk

+ S′A,B

= ϕ(A) + ϕ(B) + SA,B ,

where SA,B =
n⊕

k=1
SRk
− SA − SB + S′A,B , so the theorem is proved. �

5. Final remarks

Corollary 5.1. Let T be the triangular n-matrix unital ring and S be a ring
satisfying the condition

If p2(s,S) ⊆ Z(S) then s ∈ Z(S).
If ϕ : T→ S is a bijective Lie n-multiplicative mapping then ϕ is almost additive.

Proof. Indeed, let ϕ : T→ S be a bijective Lie n-multiplicative mapping, T2, . . . , Tn ∈
T, and Z ∈ Z(T); we have

pn(ϕ(Z), ϕ(T2), . . . , ϕ(Tn)) = ϕ(pn(Z, T2, . . . , Tn)) = ϕ(0) = 0.
Since T2, . . . Tn are arbitrary and ϕ is surjective it follows that ϕ(Z) ∈ Z(S). �
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Proposition 5.1. For any prime ring R, the statement

If p2(r,R) ⊆ Z(R) then r ∈ Z(R)

holds true.

Proof. See [5, Lemma 3]. �

Theorem 5.1. Let T be a triangular n-matrix unital ring and S be a prime ring.
Then any bijective Lie n-multiplicative mapping from T onto S is almost additive.

Corollary 5.2 (Xiaofei Qi and Jinchuan Hou [6]). Let A and B be unital algebras
over a commutative ring R, and let M be a (A,B)-bimodule, which is faithful as a
left A-module and also as a right B-module. Let U = Tri(A,M,B) be the triangular
algebra and V any algebra over R. Assume that Φ : U → V is a Lie multiplicative
isomorphism, that is, Φ satisfies

Φ(ST − TS) = Φ(S)Φ(T )− Φ(T )Φ(S) ∀S, T ∈ U .

Then Φ(S + T ) = Φ(S) + Φ(T ) + ZS,T for all S, T ∈ U , where ZS,T is an element
in the centre Z(V) of V depending on S and T .

Proof. This is consequence of our Theorem 4.1 for n = 2. �

6. Application in nest algebras

A nest N is a totally ordered set of closed subspaces of a Hilbert space H
such that {0} ,H ∈ N , and N is closed under the taking of arbitrary intersections
and closed linear spans of its elements. The nest algebra associated to N is the
set T (N ) = {T ∈ B(H) : TN ⊆ N for all N ∈ N} , where B(H) is the algebra of
bounded operators over a complex Hilbert space H.

We recall the standard result ([1, Proposition 16]) that says that we can view

T (N ) as a triangular algebra
(
A M

B

)
where A,B are themselves nest algebras.

Proposition 6.1. If N ∈ N \ {0, H} and E is the orthonormal projection onto
N , then ENE and (1−E)N (1−E) are nest, T (ENE) = ET (N )E, and T ((1−
E)N (1− E)) = (1− E)T (N )(1− E). Furthermore,

T (N ) =
(
T (ENE) ET (N )(1− E)

T ((1− E)N (1− E))

)
.

We refer the reader to [2] for the general theory of nest algebras.

Corollary 6.1. Let Pn be an increasing sequence of finite dimensional subspaces
such that their union is dense in H. Consider P = {{0} , Pn, n ≥ 1,H} a nest and
T (P) the set consists of all operators which have a block upper triangular matrix
with respect to P. If a mapping ϕ : T (P) −→ T (P) satisfies

ϕ(p2([f, g]) = p2(ϕ(f), ϕ(g))

for all f, g ∈ T (P), then ϕ is almost additive.
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