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ON SOME FIXED POINT THEOREMS IN ABSTRACT
DUALITY PAIRS

KINGA CICHOŃ, MIECZYS LAW CICHOŃ, AND MOHAMED M. A. METWALI

Abstract. We study the existence of fixed points for some functional prob-
lems. We focus on bilinear operators which are extensions of the product
of operators (Banaś–Dhage-type results) and obtain some results on abstract
duality pairs (abstract triples). However, we do not restrict ourselves to these
cases; in fact, some special cases which do no fit in the above description are
indicated. In particular, our approach allows us to study some differential or
integral problems, for which the operators are not acting on a fixed Banach
space.

1. Introduction

A classical fixed point problem x = K(x), x ∈ E, is investigated in a large class of
spaces E, including product of some spaces ([27, 36]) or in a form x = H(x, x) with
bilinear operators on E ×E ([34, 3]). Simultaneously, if E is a Banach algebra, an
operator K can be investigated also in a form of a product ([5, 16, 17]), which allows
to apply such results for quadratic problems. We recently solved the problem of
the existence of fixed points for the case when E = X×Y with some pairs of spaces
(X,Y ) for which the product of operators is in the third space (cf. [15]). However,
for convolution integral equations ([9, 31, 36]) it is not sufficiently investigated. At
the same time, in many special cases K is of a special form of a superposition of
operators acting on different spaces. In this interesting case we can find a solution
in different spaces; in particular, quadratic integral equations can be solved out of
the class of Banach algebras (see [15], for instance).

In this paper we consider the general situation, i.e. not only for the pointwise
product or the convolutions, but when K is defined on a product of spaces E1×E2.
We follow the idea of abstract duality pairs (triples, in fact) from [43]. Clearly, this
operator should be a superposition with some operators acting on E1 and E2 with
values in an expected space of fixed points E. The problem considered is more
general than those considered in [5, 8, 15, 27] for compact operators on products
of spaces.
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We stress the applicability of the problem considered for many different operators
and triples of spaces (E1, E2, E). Our approach allows us to solve the problem
outside the recently investigated class of Banach algebras, i.e. when (E,⊗,+) is
a Banach algebra, E1 = E2 = E, and H(t, s) = t ⊗ s for t, s ∈ E. Although
the approach to quadratic problems via bilinear operators has a long history (see
[34, 2, 3], for instance), it is not sufficiently investigated and the problems are
studied separately for different bilinear operators. We will extend and unify existing
results.

Our new general approach is motivated by some very recent studies of the prob-
lem of the abstract duality pairing of spaces (or abstract triples, see Swartz [43]).
Although this concept was investigated till now with different goals (see [41, 42]),
it seems to be very convenient in our study. We extend both the theory of fixed
points and the research about abstract duality pairing provided in [43].

We will study some fixed point problems of the form

x = H(F (x), G(x)), (1.1)

where F : Z → X, G : Z → Y are nonlinear operators and H(·, ·) is a bilinear
operator H : X × Y → Z, where X,Y, Z are some Banach spaces. H is defined
through its section operators Hx = H(x, ·) : Y → Z and Hy(·, y) : X → Z which
are required to be linear and continuous for all (fixed) x ∈ X, y ∈ Y (cf. [8, 35]). As
X,Y are metrizable complete spaces, H is jointly continuous ([35, Theorem 2.17]).

Our general approach allows us to cover the cases when operators F and G have
values in some “intermediate” spaces (clearly, it is a less restrictive assumption
than X = Y = Z). We will present also some special cases of particular interest in
applications.

First, let us consider the simplest case: X = Y = Z andH(t, s) = s·t the product
(pointwise multiplication) of two, possibly nonlinear, operators A ·B in the Banach
algebra C(I,R). In this case we cover some results by Banaś and Lecko [5] or Dhage
[16]. However, let us mention two different important Banach algebras which are
not covered in these papers, namely the space G(I,R) of regulated functions and
the space BV (I,R) of functions with bounded variation (see [38]). We will collect
many interesting examples in Section 2, but examples of such triples of spaces
(called abstract duality pairs or abstract triples) can also be found in [43, Ch. 1].

This approach will simplify the choice of appropriate (usually different) spaces
(X,Y, Z) for quadratic integral equations as in [13]. Motivated by the study of
such integral equations in the case of discontinuous solutions a basic fixed point
theorem was proved in [15] for the special case of the product of two operators
acting on some triple of regular ideal spaces. Some examples of such triples were
presented by obtaining an extension for the Banaś theorem for Banach algebras
X = Y = Z = C(I,R) (see also [16, 17], for instance). Here we study a general
case of operators H : X × Y → Z satisfying some assumptions and covering the
case of a pointwise product. Many examples of such mappings will be presented
below.

We do not concentrate only on a unification of earlier theorems, but we extend
the existing results and we will try to stress on some new important motivations.
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As corollaries, we will present some new results, we extend the existing ones and
we indicate a new approach for the problems, where the operators considered are
not acting on the same spaces. The possibility of applications of such a fixed
point theorem for integral equations let us pay special attention to specific cases
of operators, i.e. the pointwise product and the convolution of functions.

The paper is complemented by some examples, special cases of main results, and
by a discussion about our assumptions.

2. Special cases. Examples

We start by recalling some interesting cases of bilinear forms and triples of
Banach spaces which are discussed in this paper. We should present some rep-
resentative examples that can be considered as important special cases. In this
paper, we restrict ourselves to presenting as corollaries of the main theorem only
some previously proved theorems. The future extensions are numerous and are
based on the examples presented below.

Recall that a mapping H : X × Y → Z is bilinear if it is linear in each variable.
Let I denote a compact interval in R. Consider the following triples of spaces
(X,Y, Z) with an appropriate operator H. Note here that we will always require
the boundedness of H: ‖H(s, t)‖Z ≤ a · ‖s‖X · ‖t‖Y for some a > 0. As usual, the
norm of the bilinear operator H is defined to be

‖H‖ = inf{a > 0 : ‖H(x, y)‖Z ≤ a · ‖x‖X · ‖y‖Y , for all (x, y) ∈ X × Y },

i.e. ‖H‖ = sup‖x‖X≤1,‖y‖Y ≤1 ‖H(x, y)‖Z .
(1) The choice of X = Y = Z for any Banach algebra (the spaces of continuous

functions C(I), regulated functions G(I), or functions with bounded vari-
ation BV (I) on a compact interval I — or some of their subalgebras, for
instance) is good enough for H(x, y) = x · y (the pointwise multiplication,
i.e. (x · y)(t) = x(t) · y(t)).

Thus a special case of our equation (1.1) is of the form

x(t) = λu(t, x(t)) ·
∫ b

a

K(t, s)f(s, x(s)) ds, (2.1)

considered in [7, 10] with solutions in the space C(I), i.e. in the case X =
Y = Z = C(I).

(2) For discontinuous functions, let us recall the Hölder inequality for Lebesgue
spaces: ‖x · y‖L1 ≤ ‖x‖Lp · ‖y‖Lq whenever 1

p + 1
q = 1. Thus, a triple

(X,Y, Z) = (Lp(I), Lq(I), L1(I))

is a bilinear triple.
Our approach allows us to study the problem (2.1) with solutions in

Lebesgue spaces under a very general set of assumptions (cf. [14], for in-
stance).
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(3) The product of two functions from an Orlicz space x, y ∈ LM (I) needs not
be in LM (I) (it can even be not integrable). However, if x and y belong
to some particular Orlicz spaces, then the product x · y belongs to a third
Orlicz space. However, there exist Orlicz spaces such that if u ∈ LU (I)
and v ∈ LV (I), then the product u ·v belongs to some Orlicz space LW (I),
i.e. such a triple

(X,Y, Z) = (LU (I), LV (I), LW (I))
is good enough with the pointwise product too. For some necessary and
sufficient conditions for functions generating such Orlicz spaces we refer to
[26, Lemma 13.5]. A simple consequence of the Hölder inequality is that
the triple (X,Y, Z) = (LU (I), LŨ (I), L1(I)) is also a bilinear triple for Ũ ,
the Orlicz function conjugated to U . This triple is also considered with the
pointwise product H.

In such a case we are able to study the quadratic integral equation
(2.1) having solutions in Orlicz spaces (i.e. with nonlinear growth of the
operators being considered); see [13, 14], for instance.

(4) Sometimes, we need to consider a special case for Y = L∞ and some Köthe
function spaces (or ideal spaces) X = Z = E, i.e. for which ‖x · y‖E ≤
‖x‖E · ‖y‖L∞ . The class of such spaces is described in [45, p. 66] and in
[46]:

(X,Y, Z) = (E,L∞(I), E).
This special case allows, in particular, to unify the proofs for quadratic

and standard integral equations (put u(t, x(t)) = ρ = const. in (2.1)). See
also [14] for some applications in Lebesgue or Orlicz spaces.

(5) Let us mention that the general study for H(t, s) = t · s in the case when
X and Y are Köthe function spaces (ideal spaces) is presented in [25]. In
particular, some sufficient conditions ensuring that the space Z of pointwise
products z = x · y of elements x ∈ X and y ∈ Y is still a Banach space are
presented.

(6) Let 1/r = 1/p+ 1/q − 1, p, q, r ≥ 1. Then the triple
(X,Y, Z) = (Lp(I), Lq(I), Lr(I))

due to the Young inequality ‖x ∗ y‖Lr ≤ A · ‖x‖Lp‖y‖Lq is a bilinear triple
with the convolution H(x, y) = x ∗ y. For a similar property of Orlicz or
Lorentz spaces see [30] (cf. the Young–O’Neil inequality [32]).

It should also be pointed out that in the case of Lebesgue spaces or C(I)
and X = Y = Z, H(t, s) = t ∗ s and F = G = Id the operator defined
by the right-hand side of (1.1) is the autoconvolution operator on bounded
intervals considered in [22], for instance.

The applicability of such type of results in the theory of convolution
integral equations is presented in the book [39] or (in a context similar to
our approach) in some papers by Blasco [9]. Finally, let us note that some
interesting results of this kind can be found in [18].
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(7) Since the Young inequality holds true also in Orlicz spaces: ‖x ∗ y‖LW
≤

c · ‖x‖LU
‖y‖LV

, an interesting consequence is that the triple

(X,Y, Z) = (LU (I), LV (I), LW (I))

with the convolution H is good enough in our consideration (see [26] for
the details).

Let us note here that we are also partially motivated by O’Neil [33] and
his definition of convolution operators, [33, p. 308], which form also a spe-
cial case of the operators H considered here. Due to the Hardy–Littlewood
theorem ([33, p. 317]) of Hölder type, fractional integral operators consid-
ered in [33] are also good enough for our purposes (see also its generalized
form [33, Theorem 6.1]).

(8) Consider the triple (X,Y,X⊗πY ) with the mapping H : X×Y → X⊗πY ,
where H is the projective tensor product (see [37] for a general theory or
[26] for Orlicz spaces).

Let us recall that the special bilinear map (x, y) → x ⊗ y acts as a
universal bilinear map, in the following sense: every other bilinear map on
X×Y factors through this one via a linear mapping on the tensor product.
Indeed, for every bilinear map H : X×Y → Z, there exists a unique linear
mapping H∗ : X ⊗ Y → Z such that H(x, y) = H∗(x ⊗ y) for all x ∈ X
and y ∈ Y . The projective norm ‖·‖π on X ⊗Y is equal to ‖x‖X · ‖y‖Y , so
our condition is satisfied (but X ⊗ Y is an incomplete space, in general).
However, in our theorems we need to put a completion of X ⊗ Y with this
projective norm, but, on the other hand, such a kind of applications seems
to be far from our original motivations.

(9) (Cf. [38]) If E1 and E2 are Banach spaces, let us denote by L(E1, E2) the
Banach space of all bounded linear operators A : E1 → E2 with the uniform
operator topology. Defining H(A, x) = Ax ∈ E2 for A ∈ L(E1, E2) and
x ∈ E1 we obtain in a natural way the bilinear triple

(X,Y, Z) = (L(E1, E2), E1, E2).

In this case, ‖H(A, x)‖E2 ≤ ‖A‖L(E1,E2)‖x‖E1 , which is related to some
integral equations of Stieltjes type ([38]).

(10) (Cf. [38]) Similarly, if E1, E2, and E3 are Banach spaces then

(X,Y, Z) = (L(E1, E2), L(E2, E3), L(E1, E3))

forms a bilinear triple with the natural bilinear form given by the com-
position H(A,B) = A ◦ B ∈ L(E1, E3) of operators A ∈ L(E1, E2) and
B ∈ L(E2, E3). Clearly ‖h(A,B)‖ ≤ ‖A‖‖B‖, where the norms are taken
in appropriate spaces.

(11) (Cf. [38]) If E′ is the dual to the Banach space E then

(X,Y, Z) = (E,E′,C)
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is a bilinear triple with H(x, x′) = x′(x) for x ∈ E and x′ ∈ E′. Also
(X,Y, Z) = (E,R, E), (X,Y, Z) = (R, E,E), (X,Y, Z) = (E,R, E)

are bilinear triples with the map H(r, x) = rx and H(x, r) = rx, respec-
tively, where r ∈ R and x ∈ E.

(12) (Cf. [8]) Finally, let us recall also some classical bilinear operators acting
on appropriate triples of spaces collected in [8] (see also [35, 43]). Let
X = Y = Z = C(0, T ), but instead of the pointwise product we can
consider a bilinear compact operator of the formH(f, g)(x) =

∫ x
0 f(t)g(t) dt

([8, Example 3]). Then ‖H(f, g)‖∞ ≤ T · ‖f‖∞ · ‖g‖∞. If we consider X
with an L1-norm, then it forms a normed but incomplete space (and Y, Z
with the supremum norm). Then this operator is not compact (however
being separately compact), but bounded: ‖H(f, g)‖∞ ≤ T · ‖f‖1 · ‖g‖∞.
For more examples of interesting bilinear operators and triples of spaces
we refer to [8, Examples 1–7].

Recall that more examples of triples of spaces can be found in [43, Ch. 1].

Example 2.1. Let us list some, considered previously, particular cases of quadratic
or convolution integral equations with their applications:

a) Biology: model of spread of a disease (epidemic model considered by Gripen-
berg [23]):

x(t) = k

(
P −

∫ t

−∞
A(t− s)x(s) ds

)
·
∫ t

−∞
a(t− s)x(s) ds.

b) Physics: kinetic theory of gases (Hu, Khavanin and Zhuang [24]):

x(t) = a(t) +
[
f(t, x(t)) +

∫ ∞
0

g(t, s)x(s) ds
]
·
∫ ∞

0
h(t, s)K(s, x(s)) ds.

c) Physics: convolution-type integral equations in statistical mechanics, the
Percus–Yevick equation (see Nussbaum [31] or Rus [36] for a detailed study):

x(t) = 1 + λ

∫ 1

t

x(s) · x(s− t) ds.

d) Astrophysics: the Chandrasekhar equation (Chandrasekhar, Rus [36], Leonard
and Mullikin [29, 28], Stuart [40], and many others):

x(t) = 1 + x(t)
∫ 1

0

t

t+ s
ψ(s)x(s) ds.

3. Fixed point theorems. Applications

As clarified in the previous section, our equation (1.1) covers, in particular,
quadratic integral equations, convolution equations or some operator equations,
and thus the fixed point theorem applied to this problem will be useful in many
cases.

We will assume in what follows that the operator H is bounded ([8, 35]):
‖H(s, t)‖Z ≤ a · ‖s‖X · ‖t‖Y , (3.1)
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for all s ∈ X, t ∈ Y , and for some positive a ∈ R. Let us recall that all operators
indicated in a previous section satisfy this condition with some constant a.

We are able to use directly the Schauder fixed point theorem in the case when H
is compact. The property of compactness of such bilinear operators was perfectly
described in [8] and we will propose to study more general conditions.

If X is a subset of a Banach space E, then X̄ and convX denote the closure
and convex closure of X, respectively. By B(x, r) we denote a ball centered at x
with radius r. The standard algebraic operations on sets will be denoted by the
symbols k ·X and X + Y (the Minkowski addition). Moreover, by ME we denote
the family of all nonempty and bounded subsets of E and by NE its subfamily
consisting of all relatively compact subsets. We will use an axiomatic approach to
the notion of a measure of noncompactness.

Definition 3.1 ([4]). A mapping µ : ME → [0,∞) is said to be a measure of
noncompactness in E if it satisfies the following conditions:

(i) µ(X) = 0⇒ X ∈ NE .
(ii) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

(iii) µ(X̄) = µ(convX) = µ(X).
(iv) µ(λX) = |λ|µ(X), for λ ∈ R.
(v) µ(X + Y ) ≤ µ(X) + µ(Y ).
(vi) µ(X ∪ Y ) = max{µ(X), µ(Y )}.
(vii) If Xn is a sequence of nonempty, bounded, closed subsets of E such that

Xn+1 ⊂ Xn, n = 1, 2, 3, . . . , and limn→∞ µ(Xn) = 0, then the set X∞ =⋂∞
n=1Xn is nonempty.

The set of all sets for which µ(X) = 0 will be called the kernel of the measure µ
and denoted by kerµ. Clearly kerµ ⊂ NE , but not every relatively compact set
should be in kerµ. For µ(A) = ‖A‖ = supa∈A ‖a‖ we have kerµ = {0}.

Let us recall a classical example: the Hausdorff measure of noncompactness
βH(X) (see [4]) is defined as follows:
βH(X) = inf{r > 0 : there exists a finite subset Y of E such that x ⊂ Y +B(0, r)},
where X is an arbitrary nonempty and bounded subset of E. For more examples
we refer the reader to [4]. To distinguish between measures of noncompactness µ
in different spaces (if necessary) we will indicate an appropriate space as an index,
i.e. µE , µE1 , etc.

We will require that the measures of noncompactness used in the assumptions of
the main theorem have an additional special property which indicates how bilinear
operators transform the measure of noncompactness between the spaces. It is
analogous to that property, which is known for linear operators (cf. [11]) and, in
some sense, to the property (m) considered for the product in [6] or for convolution
in [19, Theorem 5.20]. Let us stress that, at least for the sum, the product, and
the convolution, the property presented below was studied and its importance is
clear. In particular, it is a basis for the study of bilinear operators as contractions
with respect to measures of noncompactness and is a key point of the proof of our
fixed point theorem.
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First, let us prove that the Hausdorff measure of noncompactness possesses this
property.

Lemma 3.2. Assume that the operator H : X × Y → Z is bilinear and bounded.
Then there exist constants b, c > 0 such that

βZ(H(A×B)) ≤ b · βX(A) + c · βY (B)
for all bounded subsets A ⊂ X, B ⊂ Y .

Proof. Consider on X×Y the following norm: ‖(x, y)‖ = ‖x‖+‖y‖. Clearly, being
bounded, the operator H is continuous from (X × Y, ‖(·, ·)‖) to Z (cf. [8]).

Take arbitrary bounded sets A ⊂ X and B ⊂ Y . From the definition of βZ , for
arbitrary ε > 0 there exists a finite set K1 ⊂ X such that

A ⊂ K1 +B(0, r1 + ε)),
where r1 = βX(A), and there exists a finite set K2 ⊂ Y such that

B ⊂ K2 +B(0, r2 + ε)),
where r2 = βY (B). Thus A×B can be covered by (K1 ×K2) +B(0, r1 + r2 + 2ε).
Indeed, let s ∈ K1 and t ∈ K2. Then
H(s,B) ⊂ H(s,K2)+(r2 +ε) ·H(s,B(0, 1)) ⊂ H(K1×K2)+(r2 +ε) ·H(s,B(0, 1))
and
H(A, t) ⊂ H(K1, t)+(r1 +ε) ·H(B(0, 1), t) ⊂ H(K1×K2)+(r1 +ε) ·H(B(0, 1), t).
Finally

H(A×B) ⊂ H(K1 ×K2) + (r1 · ‖B‖ · a+ r2 · ‖A‖ · a+ 2ε) ·B(0, 1)
and then
βZ(H(A×B)) ≤ r1 ·‖B‖·a+r2 ·‖A‖·a+2ε ≤ a ·‖B‖·βX(A)+a ·‖B‖·βY (B)+2ε.
By passing to the limit with ε→ 0+ we get the expected inequality with b = a ·‖B‖
and c = a · ‖A‖, where a is taken from (3.1). �

Denote by α(B) the Kuratowski measure of noncompactness of a set B ([4]). As
β(B) ≤ α(B) ≤ 2 ·β(B), the same property holds true for the Kuratowski measure
of noncompactness with b = c = 2 (for the same norm on X×Y ). Similarly, it holds
true also for measures of noncompactness like diam(·) or ‖·‖. Since the property
is independent of the conditions defining an abstract measure of noncompactness,
it will be assumed separately (cf. [11] for the case of linear operators).

Thus, let us formulate the following condition:
Condition: Given a triple of spaces (X,Y, Z), a bilinear operator H : X×Y → Z,
and measures of noncompactness (µX , µY , µZ), there exist constants b, c > 0 such
that H satisfies

µZ(H(A,B)) ≤ b · µX(A) + c · µY (B) (3.2)
for all bounded subsets A ⊂ X, B ⊂ Y .
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For the case H(t, s) = s · t our condition coincides with the condition (m)
considered in [6] or [19] (with b = ‖B‖ and c = ‖A‖) and where it was proved for
some measures of noncompactness ([6, Theorem 2.3, Theorem 2.4]); cf. also the
case of a convolution H(t, s) = t ∗ s in L1 space in [19].

For the convenience of the reader, let us recall first a fixed point theorem due
to Darbo, which will be useful in the proof of the main theorem.

Theorem 3.3 ([4]). Let Q be a nonempty, bounded, closed, and convex subset of
E and let H : Q → Q be a continuous transformation which is a contraction with
respect to the measure of noncompactness µ in E, i.e. there exists γ ∈ [0, 1) such
that

µ(H(X)) ≤ γ · µ(X),
for any nonempty subset X of E. Then H has at least one fixed point in the set Q
and the set of all fixed points of H belongs to kerµ.

Theorem 3.4. Consider the triple of Banach spaces (X,Y, Z) with a bounded
bilinear operator H : X × Y → Z, i.e. satisfying (3.1) and (3.2). Moreover, let
T be a nonempty, bounded, closed, convex subset of Z, and let F : Z → X and
G : Z → Y . Assume that

(F1) F transforms continuously the set T into T1 ⊂ X and F (T ) is bounded
in X;

(F2) there exists a constant k1 > 0 such that F satisfies µX(F (U)) ≤ k1 ·µZ(U)
for any arbitrary bounded subset U of T ;

(G1) G transforms continuously the set T into T2 ⊂ Y and G(T ) is bounded
in Y ;

(G2) there exists a constant k2 > 0 such that B satisfies µY (G(U)) ≤ k2 ·µZ(U)
for any arbitrary bounded subset U of T ;

(B) for every x ∈ T1 and y ∈ T2 we have H(x, y) ∈ T ;
(S) constants b, c in (3.2) satisfy the condition b · k1 + c · k2 < 1.

Then there exists at least one fixed point for (1.1), i.e. there exists x ∈ T such that

x = H(F (x), G(x)),

the set of all fixed points for this problem is relatively compact in Z, and it belongs
to the kernel kerµZ .

Proof. First, let us note that by (F1) and (G1) the operator S : Z → Z given
by S(z) = H(F (z), G(z)) is well defined. Moreover, since for any z ∈ T we have
F (z) ∈ T1, G(z) ∈ T2, by (B) S maps the set T ⊂ Z into itself. Clearly, S is
bounded.

We need only to prove that the operator S satisfies all conditions of the Darbo
fixed point theorem (see [4], for instance).

Let (xn) be an arbitrary sequence in T converging to x ∈ T . Let ε > 0 be
arbitrary. Despite the fact that H needs not be uniformly continuous, its section
operators are linear and continuous, so they are uniformly continuous. This implies
the existence of N1 ∈ N such that ‖H(F (xn), y) −H(F (x), y)‖Z ≤ ε/2 whenever
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n ≥ N1, y ∈ Y , and of N2 ∈ N such that ‖H(t, G(xn)) − H(t, G(x))‖Z ≤ ε/2
whenever n ≥ N2, t ∈ X. Then

‖S(xn)− S(x)‖Z = ‖H(F (xn), G(xn))−H(F (x), G(x))‖Z
= ‖H(F (xn), G(xn))−H(F (x), G(xn))

+H(F (x), G(xn))−H(F (x), G(x))‖Z
≤ ‖H(F (xn), G(xn))−H(F (x), G(xn))‖Z

+ ‖H(F (x), G(xn))−H(F (x), G(x))‖Z ≤ ε.
Thus S is sequentially continuous, so continuous on T . It remains to prove that it
is a contraction with respect to some measure of noncompactness.

Take an arbitrary bounded set A ⊂ Z. Then F (A) is bounded in X and G(A)
is bounded in Y . Let us estimate µZS(A). As the property (3.2) is assumed, we
get

µZS(A) = µZH(F (A), G(A)) ≤ b · µX(F (A)) + c · µY (G(A))
≤ b · k1 · µZ(A) + c · k2 · µZ(A) = (b · k1 + c · k2) · µZ(A).

Thus we can apply the Darbo fixed point theorem for S : T → T and we get our
thesis. �

Remark 3.5. For completeness, let us present a comment about our assumptions.
The condition (3.2) holds true, in particular, for any compact bilinear operator
(cf. [8, Proposition 1] for a detailed characterization, [35]), but in this case we can
apply the Schauder fixed point theorem on Z, so our theorem is its extension for
noncompact operators H.

Contraction conditions (F2) or (G2) are satisfied when F (or G, respectively)
is the sum of compact and Lipschitz operators. Clearly, it is not the only case,
and sometimes such a type of condition is verified directly (see [12, Lemma 1] for
Z = C(I) and X = L1(I), where F is a solution operator for the m-accretive
problem considered in [12], for instance)

In contrast to the case of Krasnoselskii’s fixed point theorem, i.e. the sum of
two (or more) operators (cf. [47] for the problem of the form Ax+Bx+Cx = x or
[48] for the problem A(x, x) + B(x, x) + C(x, x) = x), the product, as well as the
general case of bilinear operators H, is not sufficiently investigated.

In the particular case H(t, s) = t · s we have some corollaries. If X = Y = Z,
then we have the following fixed point theorem, proved by Banaś and Lecko.

Corollary 3.6 ([5]). Let X be a Banach algebra. Assume that T is a nonempty,
bounded, closed, and convex subset of X, and the operators A : T → X and B :
T → X are continuous with A(T ), B(T ) bounded in X. Moreover, assume that
H = A ·B transforms T into itself. If

(1) there exists a constant k1 > 0 such that A satisfies µX(A(U)) ≤ k1 ·µX(U)
for any bounded subset U of T ,

(2) there exists a constant k2 > 0 such that B satisfies µX(B(U)) ≤ k2 ·µX(U)
for any bounded subset U of T ,
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(3) µX satisfies the condition (m),
(4) ‖A(T )‖X · k2 + ‖B(T )‖X · k1 < 1,

then there exists at least one fixed point for the operator H in the set T .

For a triple of spaces (see [15] for some particular cases), to the best of our
knowledge, only one theorem is known and it can also be obtained as a special case
of our theorem. In this case the condition (3.2) holds true for b = supt∈T ‖F (t)‖X
and c = supt∈T ‖G(t)‖Y .

Corollary 3.7 ([15, Theorem 4.1]). Assume that T is a nonempty, bounded, closed,
convex subset of a Banach space Z, and let F : Z → X and G : Z → Y be operators.
Moreover, assume:

(1) F transforms continuously the set T into T1 ⊂ X and F (T ) is bounded
in X;

(2) there exists a constant k1 > 0 such that F satisfies µX(F (U)) ≤ k1 ·µZ(U)
for any bounded subset U of T ;

(3) G transforms continuously the set T into T2 ⊂ Y and G(T ) is bounded
in Y ;

(4) there exists a constant k2 > 0 such that G satisfies µY (G(U)) ≤ k2 · cZ(U)
for any bounded subset U of T ;

(5) the triple of spaces (X,Y, Z) is such that for any x ∈ X and y ∈ Y , x·y ∈ Z
and ‖x · y‖Z ≤ k · ‖x‖X · ‖y‖Y ;

(6) for every x ∈ T1 and y ∈ T2 we have H(x, y) ∈ T ;
(7) supt∈T ‖F (t)‖X · k2 + supt∈T ‖G(t)‖Y · k1 < 1.

Then there exists at least one fixed point for the equation x = F (x) · G(x) in the
set T and the set of all fixed points FixH belongs to the kernel kerµZ .

Remark 3.8. For instance, if our conditions are fulfilled when the measure of
noncompactness is µZ(A) = ‖A‖, then our results imply the uniqueness of the
fixed point and that only a trivial solution is allowed.

The simplest example: by taking F (x) = 1
2 sin x, G(x) = 1

3 arctan x, and
H(t, s) = t · s for X = Y = Z = R, we obtain that x = H(F (x), G(x)), i.e.
sin x · arctan x = 6x has only the trivial solution (b = c = 1, k1 = 1

2 , k2 = 1
3 ).

Example 3.9. Let us recall that our theorem is applicable in the case of the
convolution. Consider the following convolution equation:

x(t) = λ ·
∫ t

0

1
1 + (x(s))2 · arctan x(t− s) ds,

where λ = k · l, k, l > 0, x ∈ B(0, r) ⊂ C([0, 1]). Here X = Y = Z = C([0, 1])
and F : Z → X is given by F (x)(t) = k

1+(x(t))2 and G : Z → Y by G(x)(t) =
l · arctan x(t). Obviously, H(F,G)(t) = (F ∗G)(t) =

∫ t
0 F (s) ·G(t− s) ds.

By the Titchmarsh theorem this equation has no trivial solution (this convolu-
tion can be the zero function if and only if at least one of the functions considered
is zero, which is not the case), but we will show the existence of a (non-negative)
solution on some ball B(0, r) ⊂ C([0, 1]).
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Both operators F and G are composition operators acting on C([0, 1]). Note
that G is Lipschitz with constant l, so the condition (G2) is satisfied with k2 = l.
Moreover, F is locally Lipschitz and on T = B(0, r) satisfies the Lipschitz condition
with constant 2 ·k ·r. The condition (F2) is satisfied on T with k1 = 2 ·k ·r (cf. [1]).

For the convolution, by the Young inequality we get (3.1) with a = 1, so our
Lemma 3.2 gives us the condition (3.2) of the form: βZ(A × B) ≤ r · µX(A) + r ·
µY (B).

Since we consider the equation on T = B(0, r) we can easily verify the bound-
edness conditions. We have ‖G(x)‖ ≤ l · π2 and ‖F (x)‖ ≤ k · 1 for any x ∈ T . Thus
F (T ) ⊂ B(0, k) and G(T ) ⊂ l · π2 . Our conditions (F1) and (G1) are satisfied.

By the Young inequality (see (3.1)), ‖H(F,G)‖ ≤ ‖F‖ · ‖G‖, so for any x ∈
B(0, r) we have H(F (B(0, r)), G(B(0, r))) = H(B(0, k), B(0, l · π2 )). Thus for any
t ∈ T1 = B(0, k) and s ∈ T2 = B(0, l · π2 ) we have ‖H(t, s)‖ ≤ k · l · π2 .

The condition (B) is satisfied whenever k · l · π2 ≤ r, i.e. for a given r we need
to take sufficiently small constants l and k. It remains to prove that the con-
dition (S) is satisfied for such constants. But this means that we expect that
2kr2 + lr < 1 (for k, l, r > 0). Indeed, for any k, l > 0 this inequality is satisfied
for r ∈

(
0, −l+

√
l2+8k

4k

)
and finally

π

2 · k · l ≤ r ≤
−l +

√
l2 + 8k

4k .

For an appropriate choice of constants (k = 1
4 , l = 1, and r = 1

2 , for instance) we
can verify all the conditions of Theorem 3.4, so our equation has a non-trivial solu-
tion (by the Titchmarsh theorem) and non-negative (as H is a positive operator).
Clearly, this equation has only an illustrative role and we are not restricted to the
case of such simple functions.

Remark 3.10. In fact, the assumptions (F2) and (G2) seem to be the most re-
strictive in our main theorem. They are related to the continuity and compactness
properties of F and G (a sum of compact and Lipschitz operators, for instance)
or, sometimes, they are even equivalent with Lipschitz conditions (as in the case
of superposition operators: see [1], for instance). We will be able to replace them
by some conditions related rather to the growth conditions. This will be discussed
later. In that case, when spaces are ideal (or Köthe function spaces), we are able
to relax our assumptions on F and G provided that the domain T is, additionally,
compact in measure.

A normed space (X, ‖·‖) of (classes of) measurable functions x : I → U (U is a
normed space) is called pre-ideal if for each x ∈ X and each measurable y : I → U
the relation |y(s)| ≤ |x(s)| (for almost all s ∈ I) implies y ∈ X and ‖y‖ ≤ ‖x‖. If X
is also complete, it is called an ideal space (see [46]). We will say that a set T in an
ideal space X is compact in measure if it is compact in the topology of convergence
in measure, i.e. as a subset of the space of all measurable functions L0(I) (see [46]).
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For any ε > 0, let c be the measure of uniform integrability of the set X in an
ideal function space E on the compact interval I (cf. [45, Definition 3.9]):

c(X) = lim sup
ε→0

sup
measD≤ε

sup
x∈X
‖x · χD‖E ,

where χD denotes the characteristic function of a measurable subset D ⊂ I. As
the norm is used in this definition, to distinguish between measures of uniform
integrability c in different spaces we put an appropriate index, e.g. cX or cY .

We will consider some subspaces X,Y, Z of a space of L0(I) of measurable func-
tions and if the spaces are ideal regular spaces, then we obtain the fixed point
theorem under very natural conditions. We are interested in replacing conditions
(F2) and (G2) by less restrictive ones. We extend these contraction conditions by
using the measures of uniform integrability instead of the noncompactness ones.

We need to investigate the property (3.2) for the measure of uniform integrabil-
ity.

Lemma 3.11. Let X,Y, Z be ideal function spaces on I = [0, 1] with the Lebesgue
measure. Assume that the operator H : X × Y → Z is bilinear and the condi-
tion (3.1) is satisfied. Then

cZH(A×B) ≤ a · cX(A) · cY (B)

for all bounded subsets A ⊂ X, B ⊂ Y .

Proof. Consider again on X × Y the norm ‖(x, y)‖ = ‖x‖X + ‖y‖Y . The bounded
bilinear operator H is continuous from (X × Y, ‖(·, ·)‖) to Z (cf. [8]).

Take arbitrary bounded sets A ⊂ X and B ⊂ Y . Take an arbitrary ε > 0. Let
D be an arbitrary measurable subset of I with measD ≤ ε. Denote by χD the
characteristic function of the set D.

Let z ∈ H(A × B) be arbitrary. Then there exist x ∈ A, y ∈ B such that
z = H(x, y). As (H(x, y) · χD)(t) = (H(x · χD, y · χD))(t) for and t ∈ I and Z
is an ideal space, we have ‖H(x, y) · χD‖Z = ‖H(x · χD, y · χD)‖Z . Thus we can
estimate:

‖z · χD‖Z = ‖H(x, y) · χD‖Z = ‖H(x · χD, y · χD)‖Z
≤ a · ‖x · χD‖X · ‖y · χD‖Y .

Since supA×B ‖H(x, y)‖Z = supx∈A supy∈B ‖H(x, y)‖Z , by taking the supremum
over x ∈ A, y ∈ B and sets D with measD ≤ ε, and then by passing to the limit
with ε→ 0+ we obtain:

cZ(H(A×B)) ≤ a · cX(A) · cY (B). �

Before the formulation of the next theorem, let us indicate the difference between
our results. We present some special operators F fulfilling our conditions described
below and used in the next theorem. Usually, they do not satisfy the previous
condition (F2).

Consider the following assumption: for a given bounded subset T ⊂ B(0, r) ⊂ X
there exists a constant k1 > 0 such that the operator F : T → X satisfies the
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condition
cX(F (U)) ≤ k · cZ(U) (3.3)

for any bounded subset U of T . We will call such an operator a cX -cZ contraction
with constant k.

Lemma 3.12 ([21, Lemma 2]). Let Z = Lq(I), X = Lp(I), where I = [0, 1].
Assume that a continuous operator F : Z → X satisfies the condition

|F (x)(s)| ≤ |b(s)|+ d|x(s)|q/p,
where b(s) ∈ Lp(I) is a fixed function, and k is a positive constant, for all x from
some ball B(0, r). Then for any subset U ⊂ B(0, r) the operator F is a cX-cY
contraction on U with constant k = d · rq/p.

Let M and N be complementary N -functions, i.e. N(x) = supy≥0(xy −M(x)),
where N : [0,+∞)→ [0,+∞) is continuous, even and convex with limx→0

N(x)
x =

0, limx→∞
N(x)
x = ∞, and N(x) > 0 if x > 0 (N(u) = 0 ⇐⇒ u = 0). The Orlicz

class, denoted by OM , consists of measurable functions x : I → R for which

ρ(x;M) =
∫
I

M(x(t)) dt <∞.

We shall denote by LM (I) the Orlicz space of all measurable functions x : I → R
for which

‖x‖M = inf
ε>0

{∫
I

M

(
x(s)
ε

)
ds ≤ 1

}
.

Let EM (I) be the closure in LM (I) of the set of all bounded functions. Note that
EM ⊆ LM ⊆ OM . The inclusion LM ⊂ LR holds if and only if there exist positive
constants u0 and a such that R(u) ≤ aM(u) for u ≥ u0 (see [26] for the detailed
theory).

For Orlicz spaces we have the following result.

Lemma 3.13 ([15, Lemma 4.6]). Let Z = LM (I), X = EM1(I), where I = [0, 1].
Assume that F is a superposition operator generated by a Carathéodory function
u : I × Z → X and is continuous. Then an acting condition

|u(t, x)| ≤ b(t) + dM−1
1

[
M
(x
r

)]
, t ∈ I and x ∈ R,

where b ∈ EM1(I) and r, d ≥ 0, implies that F is a cX-cY contraction with constant
k = d

r .

Clearly, compact operators satisfy (3.3) with constant k = 0, but the class of such
contractions is larger. If the operator takes bounded subsets of E into the family
of sets with equiabsolutely continuous norms in E1, it will be called generalized
improving (see [44]).

Lemma 3.14 ([15, Corollary 4.8]). If the operator F is generalized improving, then
it satisfies (3.3) with k = 0.

Since we have already explained the reason, we are able to present a variant of
the fixed point theorem for ideal spaces.
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Theorem 3.15. Consider the triple of regular ideal Banach spaces (X,Y, Z) of
functions on a compact interval I ⊂ R with a bounded bilinear operator H : X ×
Y → Z, i.e. satisfying (3.1). Assume that T is a nonempty, bounded, closed,
convex, and compact in measure subset of a space Z, and let F : Z → X and
G : Z → Y be operators. Moreover, assume:

(F1) D transforms continuously the set T into T1 ⊂ X and F (T ) is bounded
in X;

(F3) there exists a constant k1 > 0 such that F satisfies cX(F (U)) ≤ k1 · cZ(U)
for any bounded subset U of T ;

(G1) G transforms continuously the set T into T2 ⊂ Y and G(T ) is bounded
in Y ;

(G3) there exists a constant k2 > 0 such that G satisfies cY (G(U)) ≤ k2 · cZ(U)
for any bounded subset U of T ;

(B) for every x ∈ T1 and y ∈ T2 we have H(x, y) ∈ T ;
(C2) either a · k1 · ‖G‖ ·meas I < 1 or a · k2 · ‖F‖ ·meas I < 1.

Then there exists at least one fixed point for the operator S(·) = H(F (·), G(·)) in
the set T and the set of all fixed points belongs to the kernel of the measure βZ , i.e.
FixK ∈ kerβZ .

Proof. As in the previous theorem, by (F1), (G1) the operator S : Z → Z given
by S(z) = H(F (z), G(z)) is well defined, and by (B) it maps the set T ⊂ Z into
itself. Clearly, S is also bounded.

The continuity of S can be proved as in Theorem 3.7. Now, we need to investigate
the contraction property with respect to the measure of uniform integrability cZ .

Assume that X is a nonempty subset of T and let the fixed constant ε > 0 be
arbitrary. Then for an arbitrary x ∈ X and for a set D ⊂ I with measD ≤ ε we
obtain

‖S(x) · χD‖Z = ‖H(F (x), G(x)) · χD‖Z = ‖H(F (x) · χD, G(x) · χD)‖Z
≤ a · ‖F (x) · χD‖Z · ‖G(x) · χD‖Z .

For any non-negative real-valued functions f and g we have supI(f · g) ≤ supI f ·
supI g. In view of (C2) either a · k1 · ‖G‖ ·meas I < 1 or a · k2 · ‖F‖ ·meas I < 1. In
the first case, by definition of cZ and by taking the supremum over all x ∈ X and
all measurable subsets D with measD ≤ ε we get

cZ(S(X)) ≤ a · cZ(F (X)) · ‖G‖ ·meas I,

and in the second case,

cZ(S(X)) ≤ a · ‖F‖ ·meas I · cZ(G(X)).

In any case, by assumptions (F3) and (G3) we obtain

cZ(S(X)) ≤ ω · cZ(X),

where ω < 1.
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Because X ⊂ T is a nonempty, bounded, and compact in measure subset of an
ideal regular space Z and S(X) ⊂ T , by [20, Theorem 1] cZ(X) = βZ(X) and then

βZ(S(X)) ≤ ω · βZ(X).
The inequality obtained above, together with the properties of the operator S
and the set T established before, allows us to apply the classical Darbo fixed
point theorem for the Hausdorff measure of noncompactness βZ . If we suppose
that βZ(FixS) 6= 0, then S = FixS implies βZ(FixS) = βZ(S) < βZ(S), a
contradiction. This completes the proof. �

Recall that both fixed point theorems can be applied to the study of quadratic
or convolution integral equations under very natural assumptions, but as claimed
in Section 2, we are not restricted to those cases.
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