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MINIMAL SOLUTIONS OF THE RATIONAL
INTERPOLATION PROBLEM

TERESA CORTADELLAS BENÍTEZ, CARLOS D’ANDREA, AND EULÀLIA MONTORO

Abstract. We explore connections between the approach of solving the ra-
tional interpolation problem via resolutions of ideals and syzygies, and the
standard method provided by the Extended Euclidean Algorithm (EEA). As
a consequence, we obtain explicit descriptions for solutions of minimal de-
grees in terms of the degrees of elements appearing in the EEA. This result
allows us to describe the minimal degree in a µ-basis of a polynomial planar
parametrization in terms of a critical degree arising in the EEA.

1. Introduction

Let K be a field, l, n1, . . . , nl positive integers, n := n1 + · · ·+ nl, and
(xi, yi,j) ∈ K2, for i = 1, . . . , l, j = 0, . . . , ni − 1, (1.1)

with xi 6= xj if i 6= j. An interpolating rational function associated to this data is
a function y(x) ∈ K(x) satisfying

y(j)(xi) = yi,j , for i = 1, . . . , l, j = 0, . . . , ni − 1. (1.2)
In particular, we are requiring that the rational function y(x) is defined on all the
points xi, i = 1, . . . , l.

The rational interpolation problem is to describe all the rational functions satisfy-
ing (1.2). Note that in principle the well-known interpolating polynomial associated
to the data (1.1) is always a solution of (1.2), so this problem is always solvable.
Are there more solutions? How many? Can we parametrize them? Is there a
minimal or compact solution?

Rational interpolation has been well studied in the last centuries, with references
going back to the mid 1800’s ([5, 14, 12]). In the last decades, the interest in this
problem focused on the more algorithmic and computational aspects, due to the
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significant growth of these areas of research and applications: see, for instance,
[15, 10, 18, 4, 16] and the references therein. A unified framework, which relates
the rational interpolation problem with the Euclidean Algorithm, is presented in [2],
and also in the book [17, Section 5.7], where this problem is called rational function
reconstruction. There are also explicit closed formulae in terms of the input data
that can be derived by applying symmetric operators or subresultants; see [11, 8].

In this paper, we focus on the possible degrees that a solution of (1.2) can have,
and detect the minimum of these degrees in optimal time. To be more precise, a
degree for a rational function y(x) = a(x)

b(x) , with coprime a(x), b(x) ∈ K[x], can be
defined as

δ(y(x)) = max{deg a(x),deg b(x)}

or

κ(y(x)) = deg a(x) + deg b(x).

Fixing one of these degrees, we say that γ ∈ N is an admissible degree if there
exists an interpolating function of degree γ. A natural question to ask is which
numbers are admissible degrees, and in particular to characterize the smallest ad-
missible degree. A minimal solution of the rational interpolation problem is a
solution of minimal degree. Also, it is of interest to parametrize all the admissible
rational functions. For instance, for the data

x1 = 0, y1,0 = −2,
x2 = 2, y2,0 = 6,
x3 = −1, y3,0 = −3,
x3 = −1, y3,1 = 3,

it turns out that its δ-minimal degree is 2 and the fractions −2−3λx2

−x2
3 +1−λx

define the

minimal interpolating functions for any λ ∈ K, λ 6= − 1
6 ,−

2
3 . Moreover, the inter-

polating functions y(x) = a(x)
b(x) with δ(y(x)) = δ > 2 can be parametrized as

y(x) =
(λ0 + · · ·+ λδ−2x

δ−2)r2(x) + (λ′0 + · · ·+ λ′δ−3x
δ−3 + xδ−2)r3(x)

(λ0 + · · ·+ λδ−2xδ−2)s2(x) + (λ′0 + · · ·+ λ′δ−3x
δ−3 + xδ−2)s3(x)

for suitable polynomials r2(x), r3(x), s2(x), s3(x) ∈ K[x] provided that the denom-
inator does not vanish. This example appears in [2, Example 3.8a]; see also Exam-
ple 3.11 for details on these calculations.

The problem of describing the admissible degrees for the interpolation problem
is tackled in [1] for δ, and in [2] for κ. The main tool in the former paper is
a divided-differences matrix, whereas the latter uses the Euclidean Algorithm to
solve this problem. Later, in [3] the solutions of the classical (i.e., when ni = 1 for
all i = 1, . . . , l) rational interpolation problem are given as the kernel of a matrix
encoding the data of the problem. In [13] this matrix is homogenized, and the
numerical invariants of a minimal free resolution of its cokernel used to tackle the
problem.
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In this paper, we connect the results obtained in [13] via resolutions of ideals
and syzygies with the now standard and fast approach given by the Extended
Euclidean Algorithm (EEA). As a consequence, we give explicit descriptions for
both δ and κ minimal degrees in terms of the degrees of elements appearing in
the EEA. Of course, if one is interested in a fast method to solve any instance of
the interpolation problem, the EEA is the most efficient tool available, and any
improvement in dealing with this problem will also get translated into a faster
algorithm to solve the EEA. In this sense, the two situations (solving the rational
interpolation problem and computing the EEA of two polynomials) are equivalent
from an algorithmic and complexity point of view. But this is not our focus. We
are interested in exploring connections with syzygies and free resolutions because
in the last decades these tools have been used to deal with other kinds of geometric
problems like implicitization of rational parametrizations, or the description of
some invariants associated to them. Hence, any dictionary between these methods
brings the potential of shedding some light on situations different from the rational
interpolation problem per se. As an example of this phenomenon, in Section 4 we
obtain a simple description of the value of µ for a µ-basis of a polynomial plane
parametrization. This also shows that one can compute both µ and the µ-basis
considerably faster. It would be interesting to explore whether this result can be
generalized for any rational parametrization, as it would considerably reduce the
complexity of computing µ and µ-bases. For the state of the art in this area, see [9]
and the references therein.

We also treat with our methods the Hermite rational interpolation problem: for
a given d ∈ N, 0 ≤ d < n, decide if there exist, and if so compute, polynomials a(x),
b(x) of degrees bounded by d and n−d−1 respectively, such that a(x)

b(x) interpolates
the data (see [6] for more on this problem). This problem is investigated at the
end of Section 5.

This paper is organized as follows. In Section 2 we review some basics on the
Hermite interpolating polynomial and the Euclidean Algorithm. In Section 3, we
introduce the language of syzygies, which helps us obtain a minimal basis associ-
ated to the rational interpolation problem. We show in Theorem 3.7—which is a
generalization of [3, Theorem 2.11] to the case of interpolation with multiplicities—
that these minimal bases allow us to make the δ-minimal degree explicit. Then we
turn to make even more explicit this invariant by means of the EEA. This result is
the content of Theorem 3.10, where we extract a minimal basis from some critical
value in the sequence of degrees in the EEA.

In Section 4 we apply these results to make explicit the value of µ for a µ-basis
of a plane polynomial parametrization. In Theorem 4.1 this µ is expressed as a
critical value in the sequence of degrees in a suitable EEA. We conclude this paper
by applying our tools to study the κ-degree in Section 5, where we recover the
results of Antoulas in [2] with our methods.
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2. Hermite interpolating polynomial and Euclidean algorithm

Throughout this paper K is an infinite field of characteristic either zero or larger
than max{n1, . . . , nl}. This assumption ensures the existence of the Hermite in-
terpolating polynomial associated to (1.1), which is the unique polynomial inter-
polating this data having degree smaller than n. We denote this interpolating
polynomial by g(x).

It is straightforward to check that any rational interpolating function y(x) = a(x)
b(x)

satisfies

(a(x)− b(x)g(x))(j)(xi) = 0, i = 1, . . . , l, j = 0, . . . , ni − 1, (2.1)

and so (x − xi)ni divides a(x) − b(x)g(x) for i = 1, . . . , l. Thus, if we set f(x) :=
(x− x1)n1 · · · (x− xl)nl , there exists c(x) ∈ K[x] such that

a(x) = b(x)g(x) + c(x)f(x). (2.2)

In fact, (2.1) and (2.2) are equivalent, and we refer to any of these conditions as
the weak interpolation conditions. Then y(x) = a(x)

b(x) is an interpolating function
if and only if the pair (a(x), b(x)) satisfies the weak interpolation conditions and
b(xi) 6= 0, for i = 1, . . . , l.

The next result follows easily.

Proposition 2.1. If the pair (a(x), b(x)) defines an interpolating function, then,
for any polynomial c(x) without roots in the set {x1, . . . , xl}, the pair (a(x)c(x),
b(x)c(x)) also defines an interpolating function. Conversely, if (a(x)c(x), b(x)c(x))
defines an interpolating function, then (a(x), b(x)) defines an interpolating func-
tion.

Another way of stating Proposition 2.1 is that there exists an interpolating
function of the data in a given class of K(x) if and only if the irreducible fraction
of the class is an interpolating fraction. In particular, if y(x) is an interpolating
function, then there exist coprime polynomials a(x), b(x) such that y(x) = a(x)

b(x) in
K(x).

Consider now two polynomials r0(x), r1(x) ∈ K[x] with deg r0(x) ≥ deg r1(x) ≥
0. By the Euclidean Algorithm, there exist a positive integer N and unique nonzero
polynomials r2(x), . . . , rN (x), q1(x), . . . , qN (x) with deg ri(x) > deg ri+1(x), i =
1, . . . , N , such that

ri(x) = qi+1(x)ri+1(x) + ri+2(x), i = 0, . . . , N − 1, (2.3)

where N is such that rN (x) 6= 0 and rN+1(x) = 0.
Note that deg qi(x) > 0 for all i > 1 and that deg qi(x) > 0 for all i ≥ 1 if

deg r0(x) > deg r1(x).
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Using the quotients qi(x), we define recursively two sequences of polynomials
si(x), ti(x), for i = 0, . . . , N + 1, as follows:(

s0(x)
t0(x)

)
=
(

0
1

)
,

(
s1(x)
t1(x)

)
=
(

1
0

)
,(

si(x)
ti(x)

)
=
(
si−2(x)
ti−2(x)

)
− qi−1(x)

(
si−1(x)
ti−1(x)

)
,

(2.4)

with deg si(x) > deg si−1(x) and deg ti(x) > deg ti−1(x) for i > 2. We deduce from
(2.3) and (2.4) that

ri(x) = r1(x)si(x) + r0(x)ti(x), i = 0, . . . , N + 1.
Remark 2.2. An easy inductive argument on (2.3) and (2.4) yields

(a) deg ri(x) = deg r0(x)− (deg q1(x) + · · ·+ deg qi(x)), for i = 1, . . . , N .
(b) deg si(x) = deg q1(x) + · · ·+ deg qi−1(x), for i = 2, . . . , N .

Lemma 2.3 ([2, Lemma 2.5]). Assume that deg r0(x) > deg r1(x). For every
a(x), b(x), c(x) ∈ K[x] satisfying a(x) = r1(x)b(x) + r0(x)c(x), there exist unique
polynomials m0(x),m1(x), . . . ,mN+1(x) such thata(x)

b(x)
c(x)

 =
N+1∑
i=0

mi(x)

ri(x)
si(x)
ti(x)


with degmi(x) < deg qi(x), i = 1, . . . , N .

Note that there are no bounds on the degrees of either m0(x) or mN+1(x) in
Lemma 2.3.

3. Syzygies and the δ-degree

For an interpolating function y(x) = a(x)
b(x) of (1.1) there exists, by using (2.2),

c(x) ∈ K[x] such that a(x) = g(x)b(x) + c(x)f(x). So, (a(x), b(x), c(x)) ∈ K[x]3 is
in the kernel of the following morphism of K[x]-modules:

ϕ : K[x]3 (1−g(x)−f(x))−−−−−−−−−→ K[x].
The following result is a straightforward consequence of applying the Euclidean
Algorithm to a solution of an equation of the form

a(x) = g(x)b(x) + c(x)f(x).
Proposition 3.1. The kernel of ϕ is a free module of rank 2, and has {(f(x), 0, 1),
(g(x), 1, 0)} as a basis.

Note that, in particular, we have

(a(x), b(x)) = a(x)− b(x)g(x)
f(x) (f(x), 0) + b(x)(g(x), 1),

and that from here we deduce easily that (f(x), 0) and (g(x), 1) is also a basis of
the K[x]-submodule of K[x]2 defined by

Y := {(a(x), b(x)) ∈ K[x]2 such that a(x)− b(x)g(x) ∈ f(x)K[x]}.
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From its definition, it is clear that Y is the set of the pairs of polynomials satisfying
the weak interpolating conditions (2.1) or (2.2).

Homogenizing the above situation with a second variable z, we obtain a homo-
geneous morphism φ : K[x, z](−n)3 −→ K[x, z] given by the matrix(

zn −g(x, z) −f(x, z)
)
,

and, by the Hilbert Syzygy Theorem, a minimal free resolution of K[x, z]/Coker(φ)

0 −→ K[x, z](−n− µ1)⊕K[x, z](−n− µ2) −→ K[x, z](−n)3 φ−→ K[x, z], (3.1)

with µ1 + µ2 = n and µ1 ≤ µ2. Our goal is to make explicit µ1 and µ2 by means
of syzygies and the Euclidean Algorithm.

Let {(a1(x, z), b1(x, z), c1(x, z)), (a2(x, z), b2(x, z), c2(x, z))} be a basis of the ker-
nel of φ such that deg(ai(x, z), bi(x, z), ci(x, z)) = µi, i = 1, 2. Any relation or
syzygy among zn, −g(x, z), and −f(x, z) can be written uniquely as a polyno-
mial combination of these two triplets. In particular, for any homogeneous syzygy
(a(x, z), b(x, z), c(x, z)) of degree δ there exist unique homogeneous polynomials
p(x, z), q(x, z), of degrees δ−µ1 and δ−µ2 respectively, or zero polynomials, such
that

(a(x, z), b(x, z), c(x, z)) = p(x, z) · (a1(x, z), b1(x, z), c1(x, z))
+ q(x, z) · (a2(x, z), b2(x, z), c2(x, z)).

(3.2)

Now set ai(x) = ai(x, 1), bi(x) = bi(x, 1), ci(x) = ci(x, 1), for i = 1, 2.

Lemma 3.2. For any (a(x), b(x), c(x)) in the kernel of ϕ,

δ := max{deg a(x),deg b(x),deg c(x)} = max{deg a(x),deg b(x)},

and there exist unique polynomials p(x), q(x) such that

(a(x), b(x)) = p(x)(a1(x), b1(x)) + q(x)(a2(x), b2(x)). (3.3)

Moreover, deg p(x) ≤ δ − µ1 and deg q(x) ≤ δ − µ2.

Proof. Let k = deg g(x). Note that k ≤ n − 1 < n. Suppose that deg c(x) >
max{deg a(x),
deg b(x)}. Then we would have that

deg(c(x)f(x)) = deg c(x)+n > max{deg a(x),deg b(x)+k} ≥ deg(a(x)−b(x)g(x)),

a contradiction with (2.2), so the first part of the claim holds. For the second part,
we homogenize a(x), b(x), c(x) to degree δ and get (3.2) with p(x, z), q(x, z) ∈
K[x, z] of respective degrees δ − µ1 and δ − µ2. To get (3.3) we set z = 1, and the
claim follows straightforwardly. �

Definition 3.3. We say that a basis {(a1(x), b1(x)), (a2(x), b2(x))} of Y is minimal
(or of minimal degree) if max{deg ai(x),deg bi(x)} = µi, i = 1, 2.

Note that, in general, {(f(x), 0), (g(x), 1)} is not a minimal basis.
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Remark 3.4. Let {(a1(x), b1(x)), (a2(x), b2(x))} be a minimal basis of Y . From
Definition 3.3, we deduce that for any (a(x), b(x)) ∈ Y , there exist unique p(x),
q(x) ∈ K[x] such that

(a(x), b(x)) = p(x)(a1(x), b1(x)) + q(x)(a2(x), b2(x))
= (p(x)a1(x) + q(x)a2(x), p(x)b1(x) + q(x)b2(x)).

Let c(x) ∈ K[x] be the polynomial such that (2.2) holds, and set δ := max{deg a(x),
deg b(x)}. Homogenizing this situation, thanks to Lemma 3.2 we have

δ = max{deg(p(x, z)a1(x, z)+q(x, z)a2(x, z)),deg(p(x, z)b1(x, z)+q(x, z)b2(x, z))},

and from here we deduce that deg p(x) ≤ δ−µ1 and deg q(x) ≤ δ−µ2. In particular,
δ
(a(x)
b(x)

)
≥ µ1, and if q(x) 6= 0, then δ

(a(x)
b(x)

)
≥ µ2.

Remark 3.5. Any basis of Y with δ-degrees δ1, δ2 with δ1 + δ2 = n is a minimal
basis of Y . In this case, {δ1, δ2} = {µ1, µ2}.

Remark 3.6. Let {(a1(x), b1(x)), (a2(x), b2(x))} be a minimal basis of Y . From
Proposition 2.1 we deduce that the unique possible irreducible common factors of
ai(x) and bi(x) are of the form x−xj for some j = 1, . . . , l; i = 1, 2. Otherwise, by
removing such a factor, we would obtain a pair satisfying the weak interpolating
conditions with degree strictly smaller than µ1 or than µ2.

Also, since there exist interpolating functions for any data (for instance, the
interpolating polynomial g(x)), b1(x) and b2(x) cannot both vanish at xi for any
i = 1, . . . , l.

The following is the main result of this section, which generalizes [3, Theorem
2.11] to the case of interpolation with multiplicities.

Theorem 3.7. Let {(a1(x), b1(x)), (a2(x), b2(x))} be a minimal basis of Y . The
rational function y(x) is an interpolating function if and only if there exist polyno-
mials p(x) and q(x) such that

y(x) = p(x)a1(x) + q(x)a2(x)
p(x)b1(x) + q(x)b2(x)

with p(xi)b1(xi) + q(xi)b2(xi) 6= 0 for i = 1, . . . , l.
If a1(x) and b1(x) are coprime and µ1 < µ2, then there is a unique interpolating

function ymin(x) of minimal degree µ1 given by

ymin(x) = a1(x)
b1(x) .

Otherwise (i.e., if either a1(x) and b1(x) are not coprime, or µ1 = µ2), there is a
family of interpolating functions of minimal degree µ2 which can be parametrized
as

ymin(x) = a2(x) + p(x)a1(x)
b2(x) + p(x)b1(x) ,

where deg p(x) = µ2 − µ1, and b2(xi) + p(xi)b1(xi) 6= 0, i = 1, . . . , l.
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Proof. The rational function y(x) = a(x)
b(x) interpolates (1.1) if and only if b(xi) 6=

0 for all i = 1, . . . , l, and it satisfies the weak interpolation conditions of (2.2).
Equivalently we must have (a(x), b(x)) ∈ Y , and b(xi) 6= 0 for i = 1, . . . , l. From
here we deduce the first part of the claim thanks to Remark 3.4.

Assume now that µ1 < µ2 and a1(x) and b1(x) are coprime. If b1(xi) = 0 for
some i, then also a1(xi) = 0, since a1(x)− b1(x)g(x) ∈ f(x)K[x], which contradicts
the assumption that a1(x), b1(x) are coprime. The rational function y(x) = a1(x)

b1(x)
interpolates the data in this case. Moreover, by Remark 3.4, y(x) is the unique
rational function with minimum degree that interpolates the data.

If µ1 < µ2 and a1(x) and b1(x) are not coprime then, by using Remark 3.6,
b1(xi) = 0 for some i = 1, . . . , l and a1(x)

b1(x) does not interpolate the data. In this
case, any pair (p(x)a1(x) + q(x)a2(x), p(x)b1(x) + q(x)b2(x)) defining an interpo-
lating function must have q(x) 6= 0 and degree at least µ2. So, the interpolating
functions of minimal degree are parametrized by a2(x)+p(x)a1(x)

b2(x)+p(x)b1(x) , where p(x) is a
polynomial of degree µ2 − µ1 provided that b2(xi) + p(xi)b1(xi) 6= 0, i = 1, . . . , l.
It is straightforward to verify that there is at least one such polynomial. Indeed,
by choosing λ ∈ K \ {− b2(xi)

b1(xi) , i = 1, . . . , l, b1(xi) 6= 0}, which can be done thanks
to Remark 3.6, and by using the fact that K has infinitely many elements, the
polynomial b2(x) + λb1(x) satisfies the claim. Note that for these values of λ
it cannot happen that δ

(a2(x)+λa1(x)
b2(x)+λb1(x)

)
< µ2, as this would imply that the pair

(a2(x) +λa1(x), b2(x) +λb1(x)) is a polynomial multiple of (a1(x), b1(x)), which is
impossible since b1(x) vanishes at some of the xi’s and λ has been chosen in such
a way that b2(x) + λb1(x) does not vanish at any of these points.

If µ1 = µ2, the family of interpolating rational functions of minimal degree can
be written as a2(x)+λ a1(x)

b2(x)+λ b1(x) , with λ ∈ K \ {− b2(xi)
b1(xi) , i = 1, . . . , l, b1(xi) 6= 0}, as

before. This concludes the proof of the theorem. �

Corollary 3.8. The minimal δ-admissible degree is either µ1 or µ2. The set of
δ-admissible degrees is either {µ1} ∪ {δ ≥ µ2} or {δ ≥ µ2}.

Proof. By Theorem 3.7, the minimal admissible δ-degree of y(x) is either µ1 or
µ2. Moreover, any y(x) = a(x)

b(x) interpolating function with δ-degree ≥ µ2 can be
written as

a(x)
b(x) = p(x)a1(x) + q(x)a2(x)

p(x)b1(x) + q(x)b2(x) , (3.4)

for some p(x), q(x) ∈ K[x], q(x) 6= 0.
We have already seen in Theorem 3.7 that µ1 may be admissible, and also that

µ2 is admissible if µ1 is not. Moreover, as in the proof of Theorem 3.7, it is easy
to check that there cannot be any rational function as in (3.4) of δ-degree strictly
larger than µ1 and smaller than µ2, since this would imply that (p(x)a1(x) +
q(x)a2(x), p(x)b1(x) + q(x)b2(x)) is a polynomial multiple of (a1(x), b1(x)), and
hence it would have δ-degree equal to µ1, a contradiction.
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To see that any δ ≥ µ2 is admissible, pick ã(x)
b̃(x) a minimal solution of δ-degree

either µ1 or µ2. Note that this implies gcd(ã(x), b̃(x)) = 1. Now set

(a(x), b(x)) :=
(
ã(x) + λxδ−µ2a2(x), b̃(x) + λxδ−µ2b2(x)

)
,

for a suitable λ ∈ K \ {0} such that

gcd
(
ã(x) + λxδ−µ2a2(x), b̃(x) + λxδ−µ2b2(x)

)
= 1. (3.5)

This can be done because (3.5) is equivalent to the fact that the resultant of the
polynomials ã(x) + λxδ−µ2a2(x) and b̃(x) + λxδ−µ2b2(x) does not vanish identi-
cally. This resultant is a polynomial in λ whose constant coefficient is equal to
Res(ã(x), b̃(x)) 6= 0 as these polynomials do not share any common factor. So,

Res
(
ã(x) + λxδ−µ2a2(x), b̃(x) + λxδ−µ2b2(x)

)
∈ K[λ]

is not the zero polynomial, and by choosing a λ ∈ K which is not a zero of this
polynomial (this can be done because K is infinite), the claim follows for δ ≥ µ2. �

In what follows, we are going to make explicit the µi’s by means of the Extended
Euclidean Algorithm.

3.1. Minimal basis and the Euclidean algorithm. Following the notation in
Section 2 for r0(x) = f(x) and r1(x) = g(x), we can proceed as in [3]. In that paper,
the authors deal with the rational interpolation problem without multiplicities, to
obtain a minimal basis from the Euclidean algorithm. We show here that the same
approach works for the general case.

The vector relationsri+2(x)
si+2(x)
ti+2(x)

 =

ri(x)
si(x)
ti(x)

− qi+1(x)

ri+1(x)
si+1(x)
ti+i(x)

 (3.6)

with the initial conditionsr0(x)
s0(x)
t0(x)

 =

f(x)
0
1

 ,

r1(x)
s1(x)
t1(x)

 =

g(x)
1
0

 (3.7)

produce a sequence of elements in the kernel of
(
1 −g(x) −f(x)

)
.

Proposition 3.9. For 0 ≤ i ≤ N − 1, the set

{(ri(x), si(x), ti(x)), (ri+1(x), si+1(x), ti+1(x))} ⊂ K[x]3

is a basis of the kernel of ϕ. Also, {(ri(x), si(x)), (ri+1(x), si+1(x))} is a basis of Y .

Proof. We will use induction on i. The case i = 0 is given by (3.7). For the general
case, we just have to show that one can replace the triplet (ri(x), si(x), ti(x)) in the
basis {(ri(x), si(x), ti(x)), (ri+1(x), si+1(x), ti+1(x))} with (ri+2(x), si+2(x), ti+2(x))
and still generate the same kernel. But this follows straightforwardly thanks to
(3.6), which proves the first part of the claim. The rest holds by projecting onto
the first two coordinates the previous result, and using Remark 3.4. �
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From (3.6) we deduce that, for i = 1, . . . , N ,(
deg ri(x) deg ri+1(x)
deg si(x) deg si+1(x)

)
=
(
n− (deg q1(x) + · · ·+ deg qi(x)) n− (deg q1(x) + · · ·+ deg qi+1(x))

deg q1(x) + · · ·+ deg qi−1(x) deg q1(x) + · · ·+ deg qi(x)

)
.

(3.8)

Theorem 3.10. Let i ∈ {1, . . . , N} be such that

n−
i∑

j=1
deg qj(x) ≥

i−1∑
j=1

deg qj(x) and
i∑

j=1
deg qj(x) ≥ n−

i+1∑
j=1

deg qj(x) (3.9)

or, equivalently,

2

i−1∑
j=1

deg qj(x)

+ deg qi(x) ≤ n ≤ 2

 i∑
j=1

deg qj(x)

+ deg qi+1(x).

Then {(ri(x), si(x)), (ri+1(x), si+1(x))} is a minimal basis of Y .

Proof. From Proposition 3.9 we know that {(ri(x), si(x)), (ri+1(x), si+1(x))} is a
basis of Y . For j = 0, 1, let δj = max{deg ri+1−j(x),deg si+1−j(x)}.

From (3.8) and (3.9), we deduce that

δ1 + δ2 =

n− i∑
j=1

deg qj(x)

+

 i∑
j=1

deg qj(x)

 = n.

The claim now follows thanks to Remark 3.5. �

Example 3.11. Consider
x1 = 0, y1,0 = −2
x2 = 2, y2,0 = 6
x3 = −1, y3,0 = −3
x3 = −1, y3,1 = 3.

In this case, we have N = 3 and the sequences of polynomials produced by the
Euclidean Algorithm are

i 0 1 2 3
ri(x) x4 − 3x2 − 2x x3 − 2 −3x2 −2
si(x) 0 1 −x −x2

3 + 1

with q1(x) = x, q2(x) = −x3 , q3(x) = 3x2

2 .
So, µ1 = µ2 = 2, {(r2(x), s2(x)), (r3(x), s3(x))} is a minimal basis, the δ-minimal

degree is 2, and the fractions −2−3λx2

−x2
3 +1−λx

define the minimal interpolating functions

for all λ ∈ K, λ 6= − 1
6 ,−

2
3 .
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The interpolating functions y(x) = a(x)
b(x) with δ(y(x)) = δ > 2 can be parametrized

as

y(x) =
(λ0 + · · ·+ λδ−2x

δ−2)r2(x) + (λ′0 + · · ·+ λ′δ−3x
δ−3 + xδ−2)r3(x)

(λ0 + · · ·+ λδ−2xδ−2)s2(x) + (λ′0 + · · ·+ λ′δ−3x
δ−3 + xδ−2)s3(x) ,

provided that (λ0 + · · ·+λδ−2x
δ−2
i )s2(xi)+(λ′0 + · · ·+λ′δ−3x

δ−3
i +xδ−2

i )s3(xi) 6= 0,
for i = 1, 2, 3.

The index i in Theorem 3.10 is not unique, although there are at most two
possible choices for this index, as the following cautionary example shows.

Example 3.12. Take the interpolating data (1, 1), (−1, 1), (2,−14), (−2,−14),
(3, 1), (−3, 1). In this case, N = 3, and the Euclidean Algorithm gives

i 0 1 2 3
ri(x) x6 − 14x4 + 49x2 − 36 x4 − 10x2 + 10 −x2 + 4 −4
si(x) 0 1 −x2 + 4 −x4 + 2x2 − 3

with q1(x) = x2 − 4, q2(x) = −x2 + 6, q3(x) = x2−4
14 . So, µ1 = 2, µ2 = 4, and

{(r1(x), s1(x)), (r2(x), s2(x))} is a minimal basis. The δ-minimal degree is 4, and
x4 − 10x2 + 10 + (λ0 + λ1x+ λ2x

2)(−x2 + 4)
1 + (λ0 + λ1x+ λ2x2)(−x2 + 4)

parametrizes the minimal rational interpolating functions, provided that the de-
nominators do not vanish at the xi’s.

Note that another minimal basis is given by {(r2(x), s2(x)), (r3(x), s3(x))}.

Example 3.13. In the generic case, that is, if all the quotients in the Euclidean
Algorithm have degree one, we have N = n, deg ri(x) = n− i, and deg si(x) = i−1
for i = 1, . . . N . From Theorem 3.10 we deduce straightforwardly that

(a) If n = 2k then {(rk(x), sk(x)), (rk+1(x), sk+1(x))} is a minimal basis and
the δ-minimal degree is k.

(b) If n = 2k + 1 then both {(rk(x), sk(x)), (rk+1(x), sk+1(x))} and {(rk+1(x),
sk+1(x)), (rk+2(x), sk+2(x))} are minimal bases, and the δ-minimal degree
is either k or k + 1.

Example 3.14. Consider the data (−1,−3), (0,−2), (1,−1), and (2, 6). This is a
generic case with an even number of pairs for r0(x) = f(x) = x4 − 2x3 − x2 + 2x
and r1(x) = g(x) = x3 − 2.

i 0 1 2 3 4

ri(x) x4 − 2x3 − x2 + 2x x3 − 2 −x2 + 4x− 4 12x− 18 −1
4

si(x) 0 1 −x+ 2 −x2 − 2x+ 9 −8x2+4x+3
24
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The family of functions 12x−18+λ(−x2+4x−4)
−x2−2x+9+λ(−x+2) with λ 6= −10

3 , −9
2 ,−6 interpolate

with δ-minimal degree equal to 2.

4. µ-basis for polynomial parametrizations of plane curves

The approach used to find a minimal basis for the δ-degree actually allows us
to compute a µ-basis for the parametrization of a polynomial planar curve, and
also characterize the value of µ in terms of the critical degree (3.9) arising in the
Extended Euclidean Algorithm. Definitions and basic properties and applications
of µ-bases in the general setting of rational curves can be found in [7] (see also [9]).
We briefly recall them here for polynomial parametrizations.

Let r0(x), r1(x) ∈ K[x], and consider the polynomial parametrization of an affine
plane curve given by

K → K2

t 7→ (r0(t), r1(t)). (4.1)

Denote by I the ideal in the polynomial ring K[x, T0, T1] defined by T0 − r0(x)
and T1 − r1(x).

Let Ii,j be the set of elements of I with degree at most i in x and total degree
at most j in T0, T1. It is easy to see that a polynomial a(x)T0 + b(x)T1 + c(x) with
a(x), b(x), c(x) ∈ K[x] is in I∗,1 if, and only if, a(x)r0(x) + b(x)r1(x) + c(x) = 0,
i.e., (a(x), b(x), c(x)) is a syzygy of (r0(x), r1(x), 1). This implies that there exists
an isomorphism of K[x]-modules

I∗,1 −→ Syz(r0(x), r1(x), 1)
a(x)T0 + b(x)T1 + c(x) 7→ (a(x), b(x), c(x))

Assume that n = deg r0(x) ≥ deg r1(x). Let µ be the smallest integer such that
Iµ,1 6= 0. By homogenizing and applying the Hilbert Syzygy Theorem as in (3.1),
there exist polynomials p(x, T0, T1) ∈ Iµ,1 and q(x, T0, T1) ∈ In−µ,1 such that every
polynomial a(x)T0 + b(x)T1 + c(x) ∈ I∗,1 can be written uniquely in the form

a(x)T0 + b(x)T1 + c(x) = h1(x)p(x, T0, T1) + h2(x)q(x, T0, T1),
with h1(x), h2(x) ∈ K[x]. The polynomials p(x, T0, T1), q(x, T0, T1) are called a
µ-basis of the parametrization (4.1).

Homogenizing (4.1), we have a map
P1 → P2

(t0 : t1) 7→ (r0(t0 : t1) : r1(t0 : t1) : tn1 ) (4.2)

whose image is a projective plane curve. We denote by

I∗,1 = {a(x, z)T0 + b(x, z)T1 + c(x, z)T2 ∈ K[x, z, T0, T1, T2]
: a(x, z)r0(x, z) + b(x, z)r1(x, z) + c(x, z)zn = 0}

the K[x, z]-submodule of moving lines following the parametrization (4.2). It is
easy to verify that there is an isomorphism of graded K[x, z]-modules

I∗,1 −→ Syz(r0(x, z), r1(x, z), zn)
a(x, z)T0 + b(x, z)T1 + c(x, z)T2 7→ (a(x, z), b(x, z), c(x, z)).
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Again by the Hilbert Syzygy Theorem we deduce that Syz(r0(x, z), r1(x, z), zn) is
a free module of rank 2, with a homogeneous basis

p = (p1(x, z), p2(x, z), p3(x, z)), q = (q1(x, z), q2(x, z), q3(x, z))
of degrees µ and n−µ respectively, where we assume µ ≤ n−µ. By dehomogenizing
this situation, we deduce that

{p1(x, 1)T0 + p2(x, 1)T1 + p3(x, 1), q1(x, 1)T0 + q2(x, 1)T1 + q3(x, 1)}
is a µ-basis of (4.1).

As in Section 2, let ri(x), si(x), ti(x), for i = 0, . . . , N + 1, be the sequences of
polynomials from the Extended Euclidean Algorithm starting with r0(x) of degree
n and r1(x) of lower degree. From §3.1, we deduce that (ti(x), si(x),−ri(x)) is a
syzygy of (r0(x), r1(x), 1) for all i = 0, . . . , N . The following result states the value
of µ in terms of the degrees appearing in the Extended Euclidean Algorithm, and
also extracts a µ-basis of (4.1) from the sequence of remainders.

Theorem 4.1. There exists iµ ∈ {0, 1, . . . , N − 1} such that
max{deg riµ(x),deg siµ(x)}+ max{deg riµ+1(x),deg siµ+1(x)} = n.

For this index, we have
µ = min{max{deg riµ(x),deg siµ(x)},max{deg riµ+1(x),deg siµ+1(x)}},

and moreover {(tiµ(x), siµ(x),−riµ(x)), (tiµ+1(x), siµ+1(x),−riµ+1(x))} is a µ-basis
of (4.1).

Proof. Choose as iµ the one satisfying (3.9); then the first part of the claim follows
directly from Theorem 3.10. For the rest, suppose without loss of generality that
µ = max{deg riµ(x),deg siµ(x)}. From Lemma 3.2 we deduce that

µ = max{deg tiµ(x),deg riµ(x),deg siµ(x)},
and also that n−µ = max{deg tiµ+1(x),deg riµ+1(x),deg siµ+1(x)}. The fact that
{(tiµ(x), siµ(x),−riµ(x)), (tiµ+1(x), siµ+1(x),−riµ+1(x))} is a µ-basis of (4.1) fol-
lows then straightforwardly from Proposition 3.9. �

Example 4.2. For the planar affine curve parametrized by (6x2 − 4x4, 4x− 4x3)
we have

i 0 1 2 3
ri(x) −4x4 + 6x2 −4x3 + x 2x2 4x
si(x) 0 1 −x 1− 2x2

ti(x) 1 0 1 2x

We deduce then that µ = 2 and that {T0 − xT1 − 2x2, 2xT0 + (1− 2x2)T1 − 4x}
is a µ-basis of the parametrization.

From the above, we have that for the projective planar curve parametrized by
(6x2z2 − 4x4, 4xz2 − 4x3, z4), the free K[x, z]-module of moving lines following the
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426 T. CORTADELLAS BENÍTEZ, C. D’ANDREA, AND E. MONTORO

parametrization is generated by z2T0 − xzT1 − 2x2T2 and 2xzT0 + (z2 − 2x2)T1 −
4xzT2.

Example 4.3. For the planar affine curve parametrized by (xn, xm) with m ≤ n,
we have

i 0 1 2
ri(x) xn xm 0
si(x) 0 1 −xn−m

ti(x) 1 0 1

From this table we deduce that µ = min(m,n−m), and {T1−xm, T0−xn−mT1}
is a µ-basis of the parametrization.

For the corresponding projective plane curve parametrized by (xn, xmzn−m, zn),
the module of moving lines following the parametrization is generated by zmT1 −
xmT2 and zn−mT0 − xn−mT1.

5. The κ-degree

Here we use again the notation of Section 2, and set r0(x) = f(x) and r1(x) =
g(x). The following result is obtained straightforwardly from the characterization
given in (2.2) of the interpolating functions, and Lemma 2.3.

Theorem 5.1. For every rational function y(x) satisfying (1.2), there exists a
unique set of polynomials m0(x), . . . ,mN+1(x) such that

y(x) =
∑N+1
i=0 mi(x)ri(x)∑N+1
i=0 mi(x)si(x)

, with degmi(x) < deg qi(x) for i = 1, . . . , N,

and
∑N+1
i=0 mi(xj)si(xj) 6= 0, for j = 1, . . . l.

Now we are ready to present the main result of this section, which recovers [2,
Corollary 3.5].

Theorem 5.2. The set of admissible κ’s is

{n− deg qk(x), sk(xi) 6= 0, ∀i = 1, . . . , l} ∪ {j ≥ n}.

The minimum admissible degree is

min
k
{n− deg qk(x), sk(xi) 6= 0, ∀i = 1, . . . , l}. (5.1)

Proof. Given an interpolating rational function we write it, by using Theorem 5.1,
as

y(x) =
∑N+1
i=0 mi(x)ri(x)∑N+1
i=0 mi(x)si(x)

,

with degmi(x) < deg qi(x) for i = 1, . . . , N .
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The sequence of degrees {deg(mi(x)ri(x)), mi(x) 6= 0}i=0,...,N+1 is decreasing,
while {deg(mi(x)si(x)), mi(x) 6= 0}i=0,...,N+1 is increasing. So, if we consider the
indexes k = min{i : mi(x) 6= 0} and k′ = max{i : mi(x) 6= 0}, then

κ(y(x)) = (deg rk(x) + degmk(x)) + (deg sk′(x) + degmk′(x)). (5.2)
In particular, if we want to minimize this quantity, we may assume that both mk(x)
and mk′(x) are nonzero elements of K. From (5.2) and Remark 2.2 we deduce that

deg rk(x) + deg sk′(x)
= (n− deg q1(x)− · · · − deg qk(x)) + (deg q1(x) + · · ·+ deg qk′−1(x)).

This quantity is equal to
n+ (deg qk+1(x) + · · ·+ deg qk′−1(x)), if k′ > k + 1;
n, if k′ = k + 1;
n− deg qk(x), if k′ = k.

(5.3)

From here we deduce in a straightforward manner that the minimum gets reached
when k′ = k.

The set defining (5.1) is never empty since r1(x)
s1(x) = g(x)

1 , the Hermite interpola-
tion polynomial, is always an element of this set. Let k0 ≤ N be the minimum of
(5.1). In particular, k0 ≤ deg g(x) < n.

To prove that any degree j ≥ n is feasible, we proceed as follows: choose any
two consecutive indexes 1 ≤ k < k + 1 ≤ N , and let λ ∈ K \ {0} be such that

rk(x) + λrk+1(x)
sk(x) + λsk+1(x)

is irreducible (i.e., the numerator and the denominator do not share any common
factor) and the denominator does not vanish at xi, i = 1, . . . , l. This can be done
as in the proof of Theorem 3.7. Then, due to (5.3), we actually have that the
κ-degree of this function is n. For j > n, we choose m0(x) a general polynomial of
degree j − (n− deg(sk(x) + λsk+1(x))) such that the fraction

m0(x)r0(x) + rk(x) + λrk+1(x)
m0(x)s0(x) + sk(x) + λsk+1(x) = m0(x)f(x) + rk(x) + λrk+1(x)

sk(x) + λsk+1(x)
is irreducible. Then, it is easy to check that the κ-degree of this function is equal
to j, which concludes the proof of the Theorem. �

As another application of Theorem 5.2, we obtain a description of the solutions of
the rational Hermite interpolation problem (see [6, Theorem 2.6] and [17, Exercise
5.42]). Recall the statement of this problem: For a given d ∈ N, 0 ≤ d < n, decide
if there exist, and if so compute, polynomials a(x), b(x) of degrees bounded by d

and n− d− 1 respectively, such that a(x)
b(x) interpolates the data. Observe also that

the rational Hermite interpolation problem can be phrased as: Decide if there exist,
and if so compute, polynomials a(x), b(x) such that a(x)

b(x) interpolates the data with
deg a(x) ≤ d and κ

(a(x)
b(x)

)
≤ n− 1. Note that this is equivalent, by Proposition 2.1,

to deciding if there exist such a coprime pair of polynomials (a(x), b(x)).
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Corollary 5.3. For 0 ≤ d ≤ n− 1, let 1 ≤ k ≤ N be such that

deg rk(x) = n− (deg q1(x) + · · ·+ deg qk(x)) ≤ d
< deg rk−1(x) = n− (deg q1(x) + · · ·+ deg qk−1(x)).

If there is a solution of the Hermite interpolation problem for the integer d, then
this solution is of the form p(x)rk(x)

p(x)sk(x) for some p(x) ∈ K[x]. The problem is solvable
if and only if rk(x) and sk(x) are coprime.

Example 5.4. For the data in Example 3.11, n = 4, N = 3, deg q1(x) =
deg q2(x) = 1, deg q3(x) = 2. The minimal κ-degree is 2 and the minimal so-
lution is 6

x2−3 . The Hermite polynomial is the other interpolating rational function
of degree less than 4 and has degree 3. The Hermite interpolation problem has no
solution for d = 2.

Example 5.5. For the data in Example 3.12, n = 6, the minimal κ-degree is 4,
and the minimal solutions are x4 − 10x2 + 10 and 4

x4−2x2+3 . There are no other
solutions of degree less than 6. The Hermite interpolation problem has no solution
for d = 2 and d = 3.

Example 5.6. In the generic case with a data of n pairs the minimal κ-degree is
n−1 and g(x) is a minimal solution. The fractions ri

si
, for i = 1, . . . , n, have degree

n− 1 and are minimal solutions if ri and si are coprime.
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