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ON THE RESTRICTED PARTITION FUNCTION VIA
DETERMINANTS WITH BERNOULLI POLYNOMIALS. II

MIRCEA CIMPOEAS

ABSTRACT. Let r > 1 be an integer, a = (a1,...,ar) a vector of positive
integers, and let D > 1 be a common multiple of ai,...,a,. We prove
that if D = 1 or D is a prime number then the restricted partition function
pa(n) := the number of integer solutions (z1,...,z,) to 25:1 ajxj =n, with
z1 > 0,...,z, > 0, can be computed by solving a system of linear equations
with coefficients that are values of Bernoulli polynomials and Bernoulli-Barnes
numbers.

1. INTRODUCTION

Let a := (a1, as, . ..,a,) be a sequence of positive integers, r > 1. The restricted
partition function associated to a is pa : N = N, pa(n) := the number of integer
solutions (z1,...,z,) of Y.._; a;x; =n with z; > 0. Let D be a common multiple
of a,...,a,. According to [5], pa(n) is a quasi-polynomial of degree r — 1, with
the period D, i.e.

pa(n) =da,—1(n)n" "+ -+ da1(n)n +dapo(n), foralln >0, (1.1)

where dam(n + D) = dam(n), forall 0 <m <r —1,n >0, and da,—1(n) is not
identically zero. The restricted partition function p,(n) was studied extensively in
the literature, starting with the works of Sylvester [15] and Bell [5]. Popoviciu [11]
gave a precise formula for r = 2. Recently, Bayad and Beck [4, Theorem 3.1]
proved an explicit expression of p,(n) in terms of Bernoulli-Barnes polynomials
and the Fourier-Dedekind sums, in the case that ai,...,a, are pairwise coprime.
In [6], we proved that the computation of p,(n) can be reduced to solving the
linear congruency aij; +---+a,jr =n (mod D) in the range 0 < j; < ¢TD17 5,0
ir < GQ In [8], we proved that if a determinant A, p, which depends only on r
and D, with entries consisting in values of Bernoulli polynomials is nonzero, then
pa(n) can be computed in terms of values of Bernoulli polynomials and Bernoulli—
Barnes numbers. The aim of this paper is to tackle the same problem, from another
perspective that relays on the arithmetic properties of Bernoulli polynomials.
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First we recall some definitions. The Barnes zeta function associated to a and
w > 01is

oo

N\ _Pa(®) .
Ca(S,U]) —;m, Res>7’,
see [3] and [I3] for further details. It is well known that (,(s,w) is meromorphic
on C with poles at most in the set {1,...,r}. We consider the function
a(s) =1 a(s,w) —w™?®). 1.2
Ca(s) = lim (Ca(s, w) —w™) (1.2)
In [6l Lemma 2.6], we proved that
1 r—1 D v
Cals) = 52 D D dam () D" (s —m, 5), (1.3)
m=0v=1

where

= 1
,W) 1= E ———, Res>1,
C(S w) o (n+w)€ o

is the Hurwitz zeta function; see also [7]. The Bernoulli numbers B; are defined by
z =
s —1 ;) Bjﬁ7

By=1, B, = f%, By = é, By = f%, and B, = 0 if n is odd and greater than 1.

The Bernoulli polynomials are defined by
P e L
—_— = B, (z)—.
(ex —1) nz::o @)

They are related to the Bernoulli numbers by

By(z) = Zn: (Z) Bp_xa". (1.4)

k=0
It is well known (see for instance [2, Theorem 12.13]) that

By,
C(—n,w):—%(iﬂ), forall n € N, w > 0. (1.5)
The Bernoulli-Barnes polynomials are defined by
oo )
2" e*? 27
= Bi(z;a)—.
(ealz _ 1)"'(60’7'Z _1) ]z::o ](x,a)j!

The Bernoulli-Barnes numbers are defined by
j a1l
14 tin=j
According to [12, Formula (3.10)], the formula

_(=1)n!
Cal=m,w) = (n+r)!

B yn(w;a) (1.6)
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holds for all n € N. From (1.2)) and (1.6)), it follows that

ey = TV e @), foralln> 1 (1.7)
—n)=———B,,,(a), foralln>1. .
a (n4+r) "
From (1.3)), (1.5), and (1.7)), it follows that

r—1 D

Bn m R -1 r—1 !

Z Zdam(v)D"+m +mt1(5) = (=)™ n Brin(a), forallm>1. (1.8)

= n+m+1 (n+m)!
Let a:a; < as < -+ < a,p be a sequence of integers with a; > 2. Substituting

n with a; —1, 1 < j <rD, in (1.8) and multiplying by D, we obtain the system of
linear equations
r—1 D ]
DeitmpB, (% 1) Y(a; —1)!D
S () sim(p) (Do =Dy o) 1< <D,
a;+m (aj +7r—1)! J

m=0v=1

which has the determinant

A pla) =
DalBal(%) DalBal(l) DalBOqurfl(%) DalBa1+rf1(1)
(%1 N (o2 a1 +r—1 a1 +r—1
D2 B, (3) o D*2B,, (1) o D*2Bay1r—1(%) o D*2Bgy4r—1(1)
[e%) Qg az+r—1 ag+r—1
D*rD B, (%) . D¥DpB, (1) DD Ba, p4+r—1(35) DD Ba ,ir-i(1)
arp arp arpt+r—1 arpt+r—1

(1.9)
Note that, with the notation given in [8], (2.10)], we have
Arp=2A,p(0,1,...,7D —1).
Here we omit the condition aq > 2.
Proposition 1.1. With the above notation, if A, p(a) # 0 then
AR (@)
Ay p(a)’

where A"} () is the determinant obtained from A, p(a), as defined in (L.9), by
replacing the (mD + v)-th column with the column

(o)

da,m(v) = foralll<v<D,0<m<r—1,

1<j<rD-1 '
Moreover,
r—1
1
a(n) = ——— A (a)n™,  for allm € N.
p() AT,D( )Z ,D( ) f

m=0

Proof. 1t follows from (1.8)) and (1.9)) by Cramer’s rule. The last assertion follows
from (1.1 O

Our main theorem is the following.
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Theorem 1.2. Letr > 1 andlet D =1 or D > 2 be a prime number. There exists
a sequence of integers ot oy < ag < --- < ayp, 01 > 2, such that A, p(a) # 0. In
particular, we can compute pa(n) in terms of values of Bernoulli polynomials and
Bernoulli-Barnes numbers.

We believe that the result holds for any integer D > 1. Unfortunately, our
method based on p-adic valuations and congruences for Bernoulli numbers and for
the values of Bernoulli polynomials, is not refined enough to prove it.

2. PROPERTIES OF BERNOULLI POLYNOMIALS
We recall several properties of the Bernoulli polynomials. We have that
B,(l—z)=(-1)"B,(z), forallneN. (2.1)
For any integers n > 1 and 1 < v < D, using , we let
n

B, (x) := D"(B,(z) — B,) = z_: (]

)Dj (zD)"9. (2.2)

According to [I, Theorem 1], we have that

B, (%) €Z, foralll <wv<D. (2.3)

According to a result of T. Clausen and C. von Staudt (see [9} [14]), we have that
1

By, = Ao, — —, foralln>1, (2.4)

where A, € Z and the sum is over all the primes p such that p — 1| 2n.

Let p be a prime. For any integer a, the p-adic order of a is v,(a) := max{k :
p* | a}, if a # 0, and v,(0) = co. For ¢ = ¢ € Q, the p-adic order of g is
vp(q) = vp(a) — vp(b). Note that implies

-1, —1|2n;
Up(Ba2n) = { P |

2.5
>0, p—1f2n. (25)

Lemma 2.1. For any integer n > 1, we have that:
(1) B,(3) =0 ifn is odd, and B, (%) =1 (mod 2) if n is even.
(2) If p is a prime, then Bn(%) =" (mod p), foralll <v<p-—1.

Proof. (1) From ({2.1) it follows that Bn(%) =0 if n is odd. Hence, as B,, = 0, we

() =2 (5 (3) -2) =0

Assume that n is even. According to (2.2)), we have
~ 1 n n .
B,(=)= B;27.

(:)-2 ()
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Since 2 | 2nB; = —n and v2(2/B;) > 1 for any j > 2, the conclusion follows
immediately.
(2) According to (2.2)), we have that

~ a n n .
5 (3) =% ()
p)  =\J

From (2.5, we have that v,(p’B;) > 1 for j > 1, hence the conclusion follows
immediately. O

Lemma 2.2. If p is a prime such that p{ D then
Bp(%> =0 (modp), foralll<v<D-1.
Proof. We have that

p
- (v D L
B, (5) = (,)B-vp ipd.
p D j;o j J
Since v, (B;) > 0 for j < p — 2, it follows that

Up ((]]))B]> >1, foralll1<j<p-—2.
On the other hand, it follows from that
vP 4 (p f 1) B, 1vDP ' =P —oDP Tl =P —v =0 (mod p).
Hence, we get the required result. O

3. PRELIMINARY RESULTS

Proposition 3.1 (Case D =1). Let p1 < ps < --- < p, be some primes such that
p1>2and pjp1 —p; >, foralll<j<r—1 Letaj:=p;j—j, 1<j5<r. We
have that A, 1(c) # 0.

Proof. Note that (2.1) implies B, (1) = B,, for any n > 2. It follows that

Ba, Baj41 Baq+r—1
aq a1+1 ar1+r—1
Bay Bayy1 | aptr—1
[ ag+1 as+r—1
Ari(a) =| A R (3.1)
Ba,. Baj41 Ba,4r—1
Qg a,+1 ar+r—1

From it follows that vy, (Ba,4;-1) = —land vy, (Ba, +x-1) > 0, forall 1 <k <
r with k # j. Moreover, if 1 < £ < j < r, then, by hypothesis, Vp, (Bay4k-1) > 0
for any 1 < k < r (we implicitly used the fact that B, = 0 if n > 3 is odd). It
follows that, in the expansion of A, ;(a) written in , the term

T a;j+j—1 .
D*5 ™ Ba; 41

i=1 Olj+j—].

cannot be simplified, hence A, ;(a) # 0. O
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In the following, we assume that D > 2 and we consider the determinant

A7",D(Q) =
Bal(%) Bal(Dp_l) Bal+7‘71(%) BalJrTfl(DL_)l)
_ a1 _ ab71 B a1+r—11 B a1+7‘—D171
Bofz(%) BO’Q( D ) anz-%—r—l(ﬁ) Bag+r—1( D )
g o as+r—1 az+r—1
BaT‘D*T(%) BO‘TD—T(%) Baerer*l(%) B%Dfrﬁ“*l(DEl)
Qrp_r e Qrp—r T arp—rtr—1 T arp_r+r—1
(3.2)
Let p; < ps < --- < p, be some primes such that
P12 Qpp-1) +7 and pj1—p; >, forall1<j3<r—1.
We let
Qrp_ryji=p; —j, foralll<j<r. (3.3)
According to Lemma 2.2 and (3.3)), we have that
R
Up, Lﬂ(f’) >0, foralll1<j ¢<r, 1<v<D-—1. (3.4)
aerr%»j + ]
On the other hand, since p; > a,(p_1) + 7, from Lemma it follows that
Dtip. . B. .. (X
Up, < W) 20, v, (2B 0, (3.5)
o +7 o+

foral 1 <je<r, 1 <t<r(D-1),1<v<D-—1. Also, from (2.5) and (3.3)),
it follows that
B, (2 B, L(x
Up, ( TDT+J+](D.)> > 0, 'Upj ( rDr+]+](D.)> _ _1’ (36)
QrD—r4j +7J QrD—r+4j +J
for1 <j,£<r,j#¢1<wv<D-—1. From (1.9), using the basic properties of
determinants and (2.2)), it follows that

Arp(a) =
Ba, (5) Ba, (B51) DBy, Bajir-i(d) . D®Bajyr
_ag B ozb ) a1 _ai+r—1 a1+r—1
Bay(d) . Buy(’gh)  D¥Bay | Bupoa(y) | D™Bayir
(e s s as+r—1 as+r—1
Ba,p (55 . Ba,p(Ppt)  DOrDBa, . Ba,ptr-1(5)  D*PBy ,iroa
arp arp arp arp+r—1 arp+r—1

Proposition 3.2. With the above assumptions, we have that A, p(a) # 0 if and

only if A,.p(a) 0.

Proof. The conclusion follows from (3.2), (3.4)), (3.5), (3.6), and (3.7)), using an
O

argument similar to that in the proof of Proposition [3.1
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Proposition 3.3 (Case D = 2). With the above assumptions, A, 2(a) # 0.

Proof. By Proposition it is enough to prove that Ang(g) # 0. We have that

Bay(3)  Bay+1(3) . Baytr—1(3)
. ai _aitl _ai+r—1
Bay(3)  Bayt1(3) ., Bagrr—1(3)
X 1 -1
Arpl@)=| %2 w8 e (3.8)
Ba,(3)  Bapt1(3) . Bapir—1(3)
Qg a1+1 ar+r—1

We choose aj := 277t — j 4+ 1, where 2! > r. From (2.3) and Lemma (1) it
follows that

_ 1 ~ 1
(%) <Baj+j—1 (2>) =0, V2 (Baj—i-f—l (2>) Z O7 for all 1 S j,f S r, j # £.

(3.9)
On the other hand,

jHt=wva(aj+j—1) >ve(a; +¢—-1), foralll <jl<r, j#L (3.10)
From (3.8)), (3.9), and (3.10)) it follows that
X T Bayri1(3) r
Vg (Ar,2(g)) = V2 H Fj—l = —rt — 9]
j=1 7
Hence, Ang(g) # 0, as required. O

In the following, we assume that D > 3. Let N := {@J We also assume

that oy is odd for all 1 <t < N, and oy is even for all N +1 <t < r(D —1). Let
k= L%J and k = {%] From (2.1) and (2.2)) it follows that

- D—v - v 0 if s +7 — 1 is odd;
‘BO[t . + Bat . (7) — 7~ )
I 1( D ) 1D 2Batj1 (%), if ay 47— 1is even,
i (3.11)
foral 1<t <r(D—-1),1<wv<k,and 1 <j <r. We consider the determinants
Bal(%) Brn(%) Ba1+1(%) Eal-%—l(%)
oo _an _ait+l _art+l
B Baz(%) Bag(%) Ba2+1(%) Bowerl(%)
AIT,D(Q) = Ot.z . 04‘2 Oz2'+1 ' 062'-‘1-1 . (3.12)
Bapy(3)  Bay(E) Bayy(H)  Bayy(H)
aN anN ON+1 ON+1
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and
BQN+1(%) BO‘NJrl(%) BO‘N+1+1(%) B"‘N+1+1(%)
_ aN+41 _ QN41 _any1+l _anti+l
N B"‘N+2(%) L. BaN+2(%) BaN+2+1(%) L. BO‘N+2+1(%)
A/IT,D(Q) = QN +2 aN42 any2+1 any2+1
BQTD—T(%) BOTD—T(%) B("TD—T+1(%) BOTD—T‘H(%) .
QArD—r Qrp—p arp—r+1 arp—rt1
(3.13)

Proposition 3.4. With the above assumptions, we have that
AT,D(Q) — CA/T,D(Q)A/IT,D(Q)7
where C # 0. In particular, if AN’nD(g) #0 and A~”7~7D(g) # 0 then Anp(g) # 0.

Proof. In (3.2), we add the (j + tr)-th column over the (D — j + ¢r)-th column,
where 1 < j <k and 0 <t <r—1. The conclusion follows from (3.11]), (3.12), and
(3.13)) using the basic properties of determinants. O

4. PROOF OF THEOREM [1.2]

The case D = 1 was proved in Proposition 3] Also, the case D = 2 was
proved in Proposition Assume that D := p > 2 is a prime number. Let
k.= L”%lj According to Proposition it is enough to prove that A/, ,(a) # 0
and A", ,(a) # 0. Let

<ty <--- <ty (4.1)

be a sequence of positive integers, such that ¢; > log,(r — 1) := the logarithm of
r — 1 to base p. We define

) 2gpt = s+ 1, if s is even; 19
Qjp(s—1)k = ot . (4.2)
(25 —1)pt* —s+1, if sisodd,

forall1<s<r,1<j <k From (4.1) and (4.2)) it follows that

Vp(Qjys—yp +5—1)=t;, forall 1 <s<r, 1<5 <k (4.3)
Vp(Qjp(s—1yp +€) <t1, foralll<s<r, 1<j<E, w
and 0 </ <r—1with £#s—1. (4.4)
On the other hand, from Lemma [2.1](2) it follows that
By, (U) =v* (mod p), foralll<j<rp. (4.5)
p

From (4.3)), (4.4), and (4.5)) it follows that
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<Baj+(sl)k+5—1(;;)
Up

=—tg, foralll<s<r 1<jv<k, (4.6)
Qjt(s—1)k +5—1

v (Baj+(sl)k+z(z)

> —t1, foralll <s<r 1<j,0v<k,
g (s—1)k T4

0<l<r—1with¢#s—1.

We consider the determinants

~ v
M, := det (Baj-f—(s—l)k‘i’szl <>> , 1<s<r. (4.8)
P/ /) 1<jo<k

From (4.5)) it follows that

- ,
M, = det <v2”) )1§j7v§k = det (v2j)1gj,vgk (mod p) for s even, (4.9)
— 2(j—1)pts — 25—
M, = det (v G=bp )1§j7v§k = det (v 1)1§j,u§k (mod p) for s odd. (4.10)
On the other hand, using the Vandermonde formula, we have
det (v¥) . o =v* [[ G-0G+##0 (modp), (4.11)
1<i<j<k
det (W) . oo=v [ G-DG+)#0 (modp). (4.12)
1<i<j<k
From (4.9)), (4.10), (4.11), and (4.12) it follows that
vp(Ms) =0, foralll<s<r. (4.13)

Hence, it follows that M, # 0. From (3.12)), (4.6)), (4.7)), (4.8)), and (4.13)) it follows

that }
v (Arp(@)) = —(ti + 2+ + 1)k
Therefore, A/, ,(a) # 0. Similarly, one can prove that A", ,(a) # 0.
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