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SUPERPOWER GRAPHS OF FINITE ABELIAN GROUPS

AJAY KUMAR, LAVANYA SELVAGANESH, AND T. TAMIZH CHELVAM

Abstract. For a finite group G, the superpower graph S(G) of G is an undi-

rected simple graph with vertex set G and two distinct vertices are adjacent

in S(G) if and only if the order of one divides the order of the other in G. The
aim of this paper is to provide the tight bounds for the vertex connectivity of

S(G) together with some structural properties like maximal domination set,

Hamiltonicity and its variations of superpower graph of finite abelian groups.
We conclude this paper by giving some open problems.

1. Introduction

The investigation of graphs associated with algebraic structures are very im-
portant, as graphs like these enrich both algebra and graph theory. Also, these
graphs have practical applications and are related to automata theory which can
be seen in [11, 12, 13, 14]. The study of graphical representations of semi-groups
and groups has become an energizing research topic over a recent couple of decades,
prompting many intriguing outcomes and questions. In this context, some of the
most studied graphs are the Cayley graph [5, 17, 20], commuting graph [19] and
power graph [1, 15] of finite groups. The power graph P (G) of a group G is an
undirected graph with vertex set G and any two distinct vertices are adjacent in
P (G) if and only if one can be written as the power of the other in G. The notion
of the superpower graph S(G) of finite group G is a very recent development in
the domain of graphs from groups, and it was first introduced by Hamzeh and
Ashrafi [8] (they refer it as the order supergraph S(G) of G) in 2018. In fact, for
a finite group G, the superpower graph S(G) is the simple undirected graph with
the vertex set G and two distinct vertices a, b ∈ G are adjacent in S(G) if and
only if either o(a) | o(b) or o(b) | o(a) in G where o(a) is the order of a ∈ G. The
aim of their work was to exhibit a relationship between P (G) and S(G) together
with some structural properties of the superpower graph. Further, they posed a
question that what is the structure of G when |π(G)| = α(S(G)) where π(G) is
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the set of all orders of elements in G and α(S(G)) is the independence number of
S(G). Following this, Ma and Su [18], studied the independence number α(S(G))
and answered this question. Hamzeh and Ashrafi [10] computed the automorphism
group and the full automorphism group of the superpower graph of certain finite
groups. They also proved that the automorphism group of this graph could be writ-
ten as a combination of Cartesian and wreath products of some symmetric groups.
In [7], the same authors computed the characteristic polynomial of these graphs
for certain finite groups. Consequently, the spectrum and Laplacian spectrum of
these graphs for dihedral, semi-dihedral, cyclic and dicyclic groups were computed.
In [9], the authors investigate the Hamiltonicity, Eulerian and 2-connectedness of
the superpower graph S(G) of G. Recall that PSL(2, p) and PGL(2, p) are central
quotient groups of special linear and general linear groups respectively. Asboei and
Salehi [2] proved that the groups PSL(2, p), PGL(2, p) and central simple groups
uniquely determine their superpower graphs. That is, for any finite group G, if
S(G) ∼= S(PSL(2, p)) or S(PGL(2, p)), then G ∼= PSL(2, p) or PGL(2, p) respec-
tively. They also proved that if M is a central simple group and S(M) ∼= S(G),
then G ∼= M.

2. Preliminaries

In this section, we present some definitions and results from group theory as well
as graph theory. We use standard definitions and results from [6] for group theory
and [3] for graph theory which we restate here along with our notations whenever
necessary. Throughout this paper, by a group G, we mean a finite group of order
n with the identity e. The relation ∼ on G defined as: two elements a, b ∈ G are
related if and only if they are of same order forms an equivalence relation on G.
For each positive divisor d of n, let wd(G) = {x ∈ G : o(x) = d} and for any
subset X ⊆ G, X∗ = X \w1(G) = X \{e}. Let π(G) = {a1, . . . , ak} denote the set
of all orders of elements in G. As usual, Zn = {0, 1, . . . , n− 1} denotes the cyclic
group of order n. For a positive integer n, the Euler’s phi function ϕ(n), denotes
the number of positive integers at most n and are relatively prime to n. We always
take the prime factorization of a positive integer n ≥ 2 as n = pα1

1 pα2
2 · · · pαm

m and
it is assumed that m ≥ 1, p1 < · · · < pm are primes and αi ∈ N, ∀i, 1 ≤ i ≤ m.
For a positive integer n, τ(n) denotes the number of divisors of n.

By a graph Γ, we mean a finite undirected simple graph with non-empty vertex
set V and edge set E. A vertex of Γ is called a dominant vertex if it is adjacent
to every other vertex of Γ. A graph Γ is said to be dominatable if it contains at
least one dominant vertex and dom(Γ) denotes the set of all dominant vertices in
Γ. A connected component of Γ is a maximal connected subgraph of Γ. A subset
T ⊂ V of Γ is called a separating set of Γ if the number of connected components
of the graph Γ \ T is greater than the number of connected components of Γ. A
separating set T is called minimal separating set if any proper subset T † of T
is not a separating set of Γ. A minimal separating set of minimum cardinality is
called a minimum separating set and the cardinality of this minimum separating
set is called the vertex connectivity of a connected graph Γ and is denoted by κ(Γ).
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If a graph Γ has a path P (or a cycle C) which contains all the vertices of Γ,
then P (or C) is called Hamiltonian path (or Hamiltonian cycle) of Γ. A graph
Γ with a Hamiltonian cycle is called as a Hamiltonian graph. A graph Γ is called
1-Hamiltonian if it is Hamiltonian and all of its 1-vertex-deleted subgraphs are
Hamiltonian. A graph Γ is called Hamiltonian connected if any two vertices of Γ
can be joined by a Hamiltonian path. A graph Γ on n vertices is called pancyclic
if, for every ℓ(3 ≤ ℓ ≤ n), there exists a cycle of length ℓ in Γ. If a graph Γ has
the property that, for any two distinct vertices u and v of G, there exists a path
of length ℓ for all possible ℓ for d(u, v) ≤ ℓ ≤ n, then Γ is called pan-connected. A
connected graph Γ is called k-connected if after removing any k−1 vertices from it,
the remaining graph is connected. If a graph Γ has a closed walk W which traverse
every edge of Γ exactly once, then W is called an Euler circuit and Γ is called
an Eulerian graph. If Γ is a p-vertex labeled graph and Γ1, . . . ,Γp are connected
graphs then Γ-join of Γ1,Γ2, . . . ,Γp is denoted by ∆Γ[Γ1,Γ2, . . . ,Γp].

Let us recall certain results for our future use.

Theorem 2.1 ([6], Theorem 8.2). Let G1 and G2 be two finite cyclic groups. Then
their external direct product G1×G2 is cyclic if and only if orders o(G1) and o(G2)
are relatively prime. □

Theorem 2.2 ([6], Theorem 11.1). Every finite abelian group is the direct product
of cyclic groups of prime-power order. Moreover, the number of terms in the direct
product and the orders of the cyclic groups are uniquely determined by the group.

□

The above theorem actually gives for a finite abelian group G, G ∼= Zp
α1
1

×Zp
α2
2

×
· · · ×Zpαm

m
, where the cyclic groups Zp

α1
1
, Zp

α2
2

and Zpαm
m

are uniquely determined

by G. The following is a known characterization of finite abelian groups through
elementary divisors of the same.

Theorem 2.3 ([6], Chapter 11). Let G be a finite abelian group of order n =
pα1
1 .pα2

2 . · · · pαm
m , where each pi is prime and αi ∈ N. Then G ∼= Zn1

× Zn2
×

· · · × Znk
, where n1 ≥ n2 ≥ · · · ≥ nk, nj |ni for each j ≥ i, 1 ≤ j ≤ k and

o(G) = n1n2 · · ·nk. □

In rest of the paper, we use the above characterization for finite abelian groups.

Lemma 2.4 ([6], Chapter 11). Let G be a finite abelian group having an element
x of maximum nontrivial order. Then o(g) divides o(x) ∀ g ∈ G. □

Theorem 2.5 ([8], Theorem 2.3). Let G be a finite group. The superpower graph
S(G) is complete if and only if G is a p-group. □

In view of the above theorem, we consider only finite abelian non p-groups for
the rest of the paper unless stated otherwise.

3. Dominant Set of S(G)

It is a well known fact that dominant vertices play an important role in char-
acterization of graphs. In fact, if a graph contains a dominant vertex, then it is
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connected and diameter is at most two. Thus, it is interesting to find out the set
of all dominant vertices in S(G). In the following theorem, we find the number of
dominant vertices in S(G) for any finite abelian non p-group G.

Theorem 3.1. Let G be a finite abelian non p-group of order n and dom(S(G))
be the set of all dominant vertices in the superpower graph S(G) of G. Then
|dom(S(G))| = tϕ(n1) + 1, where n1 is the largest order of an element in G and t
is the number of cyclic subgroups of G of order n1.

Proof. Let G be a finite abelian group of order n with identity e and let n1 be the

largest order of an element in G. Let n1 = pβ1

1 pβ2

2 · · · pβm
m , βi ∈ N and p1 < · · · < pm

are distinct primes. For a divisor d of n, let wd = {x ∈ G : o(x) = d}. From
Lemma 2.4, vertices in wn1

(G) ∪ {e} are adjacent to every other vertex of S(G)
and hence wn1

(G) ∪ {e} ⊆ dom(S(G)). On the other hand, let x ̸∈ dom(S(G)).
This gives that 1 < o(x) < n1 ≤ o(G). By Lemma 2.4, o(x) | n1. Let y be an

element in G such that o(y) = pβi

i for some 1 ≤ i ≤ m such that pβi

i does not
divides n1. It is trivial that such an element y exists always and x is not adjacent
to y. So x is not an element of wn1

(G)∪{e}. Hence dom(S(G) ⊆ wn1
(G)∪{e} and

so wn1
(G) ∪w1(G) = dom(S(G)). Also, |wn1

(G) ∪w1(G)| = tϕ(n1) + 1, where t is
the number of distinct cyclic subgroups of order n1 in G. Therefore |dom(S(G))| =
tϕ(n1) + 1. □

As mentioned in the proof of Theorem 3.1, S(G) always contains a dominant
vertex other than identity and hence we have the following corollary.

Corollary 3.2. For any finite abelian group G, the superpower graph S(G∗) is
dominatable. □

In view of the above theorem, we take HG as the induced subgraph of S(G)

induced by the subset G = G \ (wn1
∪ {e}) of G.

4. Hamiltonicity of S(G)

In [4], it was proved that the power graph P (G) of any cyclic group G of order
at least three is Hamiltonian[see Theorem 4.13]. In [8], it was proved that S(G) =
P (G) if and only if G is a finite cyclic group. Thus S(G) is Hamiltonian for
any cyclic group of order at least three. Now a natural question arises that can
we extend this result for finite abelian groups? Unfortunately, the same question
has got a negative answer in the case of P (G). For example, P (Z2 × Z2) is not
Hamiltonian. However, we can extend this result to S(G) and the same is proved in
the following theorem. For any divisor d of o(G), the induced subgraph Hd induced
by the vertex subset wd(G) = {x ∈ G : o(x) = d} is a clique in S(G).

Theorem 4.1. For any finite abelian group G of order greater than two, the su-
perpower graph S(G) is Hamiltonian.

Proof. Let G be a finite abelian group of order n and n1 be the largest order of
an element in G. Let {d1, d2, . . . , dℓ, n1} be the divisors of n such that 1 < d1 <
· · · < dℓ < n1 ≤ n. By Lemma 2.4, di|n1 ∀ i(1 ≤ i ≤ ℓ). Note that ℓ < τ(n1).
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For any divisor d of n, the induced subgraph Hd induced by the vertex subset
wd(G) = {x ∈ G : o(x) = d} is a clique in S(G). Now let us trace a Hamiltonian
cycle in S(G) as follows:

Start from the vertex v1 ∈ dom(S(G)). From v1, go to any vertex of the clique
Hd1 and traverse all vertices of Hd1 . Now we have a Hamilton path containing all
the vertices in Hd1 ∪ {v1}. Note that the terminal vertex of this Hamiltonian path
is adjacent to a vertex v2 ∈ dom(S(G)) and v2 ̸= v1. From v2, go to any vertex
of the clique Hd2

and traverse all vertices of Hd2
. Now the terminating vertex of

the resulting Hamiltonian path is adjacent to a vertex vertex v3 ∈ dom(S(G))
and v3 ̸∈ {v1, v2}. Repeat this until all the cliques Hdi

(G), 1 ≤ i ≤ ℓ are covered.
Since ℓ < τ(n1) ≤ ϕ(n1) < |dom(S(G))|, there are sufficient number of vertices in
dom(S(G)) to connect all disjoint cliques. Finally, complete the cycle by joining
all the uncovered vertices of dom(S(G)) by path to v1. The entire process of
identifying a Hamiltonian cycle is given in Figure 1. □

e
vs

v3
v2

v1

f1

fw

b1

by cz

c1

a1

ax

Hdℓ(G)Hd1(G)

Hdℓ−1(G)Hd2(G)

dom(S(G))

Figure 1. Hamiltonian cycle in S(G)

Remark 4.2. In [9], it was conjectured that, for any finite simple non-abelian
group G, S(G) is non Hamiltonian. In view of this, we observe that S(G) may or
may not be Hamiltonian for any non-abelian group G. For instance, we have shown
that the superpower graph S(D2n) of the dihedral group D2n is Hamiltonian if and
only if n is an even integer [16], whereas S(T4n) of dicyclic group is Hamiltonian
for any integer n (one can prove this in similar lines as we proved for S(D2n)).

Recall that a graph Γ is called 1-Hamiltonian if it is Hamiltonian and all of its
1-vertex-deleted subgraphs are Hamiltonian. Now, we prove that the superpower
graph S(G) is 1-Hamiltonian.

Corollary 4.3. For any finite abelian group G with o(G) ≥ 4, the superpower
graph S(G) is 1-Hamiltonian.

Proof. Let n1 be the largest order of an element in G. For g ∈ G, if o(g) = d <
n1(d ̸= 1, 2), then g is a vertex in the clique induced by wd for the divisor d of

https://doi.org/10.33044/revuma.4587
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o(G). Further, Hd \ {g} remains as a clique and so it has a spanning path whose
initial and terminal vertices can be joined by two different vertices of dom(S(G)).
Now, the proof can be completed as proved in Theorem 4.1.

If o(g) = 2, then H2 is a single vertex and removing this vertex does not discon-
nect the graph as the vertices of S(G)) which are joined through this vertex can
also be joined through vertices of dom(S(G)).

If o(g) = n1 or 1, then g ∈ dom(S(G)). As seen in the proof of Theorem 4.1,
there are sufficient number of vertices in dom(S(G))\{g} to connect all the disjoint
cliques corresponding to all proper divisors of o(G). Hence the required Hamiltonian
cycle can be obtained as in Theorem 4.1. Thus S(G) is 1-Hamiltonian. □

Corollary 4.4. For any finite abelian group G of order at least three, the super-
power graph S(G) is pancyclic.

Proof. Let o(G) = n ≥ 3 and n1 be the largest order of an element in G. Let
{d1, d2, . . . , dℓ} be the set of all nontrivial divisors of n1 with d1 < d2 < · · · < dℓ <
n1 ≤ n. By Theorem 3.1, the subgraph induced by dom(S(G)) is a clique of size
tϕ(n1) + 1 and so we have cycles of lengths from 3 to tϕ(n1) + 1 in S(G). Also,
from Theorem 4.1 we know that S(G) contains a cycle of length n.

For any g1 ∈ V (S(G)), by Corollary 4.3, S(G) \ {g1} is Hamiltonian and thus
S(G) contains a cycle of length n − 1. Note that, in the proof of Corollary 4.3,
we see that as long as we keep choosing a vertex g ∈ wd1 ⊂ V (G) \ dom(S(G)),
obtaining a cycle containing remaining vertices is immediate. Choose g2 ∈ wd1

(G)
(if exists), otherwise choose {g2} ∈ wd2

(G) for some non-trivial divisor d2 ̸= d1 of
n and we immediately get that S(G) \ {g1, g2} is Hamiltonian. So S(G) contains a
cycle of length n− 2. Recursively deleting the vertices of wdi

for each i, 1 ≤ i ≤ l,
we can get cycles of length n−2 to tϕ(n1)+2. Thus S(G) contains cycles of length
ℓ for 3 ≤ ℓ ≤ n and hence S(G) is pancyclic. □

It is not always true that there exists a Hamiltonian path between any pair of
distinct vertices in a graph even if it a Hamiltonian. However, this happens in the
case of the superpower graph S(G) of any finite abelian group G and hence we
have the following result.

Corollary 4.5. For any finite abelian group G, the superpower graph S(G) is
Hamiltonian connected.

Proof. Let u, v ∈ V (S(G)) be two distinct vertices in S(G). Without loss of gener-
ality, one can take u = v1 ∈ wd1(G) and v = v2 ∈ wd2(G) where d1 and d2 are two
non-trivial distinct divisors of o(G). Start from the vertex v1 and traverse along
the spanning path in Hd1

(G) and join it with a vertex v3 of dom(S(G)). From v3
go to any vertex of Hd3

(G) and repeat the process until all vertices of the cliques
Hdi(G) ∪ dom(S(G)), 3 ≤ i ≤ ℓ belongs to the path such that vℓ ∈ dom(S(G))
is the last vertex of this path. Now, join vℓ to a vertex x ̸= v2 of Hd2(G). Upon
completing the path from x to v2 in Hd2

(G), we obtain the required Hamiltonian
path between u and v in S(G). □
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Corollary 4.6. For any finite abelian group G, the superpower graph S(G) is
pan-connected.

Proof. Let u, v ∈ V (S(G)) be two distinct vertices in S(G). For every k, d(u, v) ≤
k ≤ n, a path of length k, can be obtained by inserting the required number of
vertices from Hdi

∪ dom(S(G)), 1 ≤ i ≤ ℓ in such a way that any two vertices of
cliques Hdi

, Hdj
can be joined through a vertex of dom(S(G)). This implies that

S(G) is pan-connected. □

Now a natural question arises that what will be the effect on Hamiltonicity of the
graph S(G), if we remove all dominant vertices from it? In the following theorem,
we are giving the answer for this question.

Theorem 4.7. Let G be a finite abelian non p-group and n1 be the largest order
of an element in G. Let wn1

(G) = {x ∈ G : o(x) = n1}. Then the induced subgraph
HG of the superpower graph S(G) induced by G = G\({e}∪wn1

(G)) is Hamiltonian
if and only if n1 is not a product of two distinct primes.

Proof. Assume that HG is Hamiltonian. If n1 = pq for two distinct primes p and
q, then HG = Hp ∪Hq is disconnected as there is no path connecting the vertices
of Hp and Hq, a contradiction.

Conversely, assume that n1 is not a product of two distinct primes. Since G is

not a p-group, we have n1 = pβ1

1 pβ2

2 · · · pβm
m and βi ∈ N,m ≥ 2 and p1 < · · · < pm

are distinct primes. By the assumption on n1, it can be seen that when m = 2
either β1 > 1 or β2 > 1. Now the largest order of an element in the set G =
G \ ({e} ∪ wn1(G)) will be n1

p1
(= n1, say).

Let wn1
(G) = {b1, · · · , bs} be the set of all elements of order n1. Let {d1, . . . , dℓ}

be the set of all non trivial divisors of n1 with 1 < d1 < d2 < · · · < dℓ < n1. Let
wdi

(G) be the set of all elements of order di in G and let Hdi
be the subgraph

induced by wdi
(G). For each i, 1 ≤ i ≤ ℓ, let PHdi

=< vi, ui, · · · , xi > be the

Hamiltonian path in Hdi
. Then the induced subgraph H of HG on the vertices of⋃

1≤i≤ℓ

wdi
∪ wn1 is Hamiltonian, since

C =< b1, PHd1
, b2, PHd2

, b3, · · · , bℓ, PHdℓ
, bℓ+1, · · · , bs >

is a Hamiltonian cycle in H.
It remains for us to include remaining vertices in HG \H into C appropriately

to get Hamiltonian cycle in HG. Based on the condition on n1, we observe that

the only possible subsets of different orders in G \ {
⋃

1≤i≤ℓ

wdi
(G) ∪ wn1

(G)} are of

the form wp1
β1 (G) and w

p
β1
1 r

(G), where r = di for some i, 1 < i ≤ ℓ. If cliques

H
p
β1
1
, Hp1

β1dj
exist in HG \ H, then the spanning paths P (v

′

1, u
′

1) of Hp
α1
1

and

P (v
′

j , u
′

j) for 1 < j ≤ ℓ of Hp1
α1dj

are inserted into the spanning path of Hd1
and

Hdj
respectively, as shown in Figure 2. That is, the required Hamiltonian cycle

CHG
in HG is given by < b1, P1, b2, P2, · · · , bℓ, Pl, bℓ+1, · · · , bs >, where Pj =<

vj , v
′

j , P (v
′

j , u
′

j), uj , P (uj , xj) >(if it exists). □
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bs...
bk+1

b3 · · ·
b2

b1

u
′

ℓ

v
′

ℓ

v2

x2

vk

xk

v1 H
p
β1
1 dℓ

Hd2

H
p
β1
1

x1

Hdk
u2

Hn1

u1

u′
2

v′1

H
p
β1
1 d2

u′
1

v′2

Hd1

Hdℓ

vℓ

uℓ

xℓ

Figure 2. Hamiltonian cycle in HG

Recall that that S(Zn) = P (Zn), for every positive integer n. Since the dom-
inant vertices of both S(Zn) and P (Zn) are the only generators of Zn, we have
dom(S(Zn)) = dom(P (Zn)). Let P (Zn) be the induced power graph of P (Zn) by
removing all the dominant vertices from it. This observation gives us the following
interesting property of P (Zn) from HZn

.

Corollary 4.8. For any positive integer n, HZn
= P (Zn) is Hamiltonian if and

only if n is not a product of two distinct primes.

In [9], it was proved that S(G) is Eulerian if and only if G is a group of odd
order. What will be the effect on order of G if we remove all dominant vertices
from S(G)? Following theorem gives answer for this question.

Theorem 4.9. Let G be a finite abelian non p-group. For any proper divisor d of
n, let wd = {x ∈ G : o(x) = d}. Let n1 be the largest order of an element in the
group G and G = G \ ({e} ∪ wn1(G)). Then the subgraph HG of the superpower

graph S(G) induced by G is Eulerian if and only if n is an even integer.

Proof. Suppose HG is Eulerian and o(G) = n. Let π(G) = {a1, a2, · · · , ar} be the

set of all orders of elements in G. For any x ∈ G with o(x) = ai,

degHG
(x) = wai

(G) +
∑

ai|aj or aj |ai, ai ̸=aj

waj
(G)− 1. (1)

For each i, 1 ≤ i ≤ k, number of elements of order ai = tiϕ(ai), where ti is the
number of cyclic subgroups of order ai in G. Also, it is a well known fact that
ϕ(k) is odd if and only if k ∈ {1, 2}. Clearly, degHG

(x) is even if and only if
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expression in (1) is even which is possible if and only if G must have odd number
of involution elements. Thus, n is even. Conversely, assume that n is even. By
Cauchy theorem, G and hence G must have an odd number of involutions and
these are odd numbers. By expression in (1), degree of any element in HG is even.
Thus HG is Eulerian. □

5. Vertex Connectivity of S(G)

It is well known that any graph containing Hamiltonian cycle is 2-connected
and hence S(G) is 2-connected for any finite abelian group. Hence we have the
following observation from Corollary refcor4.8.

Corollary 5.1. Let G be a finite abelian non p-group such that maximum order of
an element is not a product of two primes. Then HG is 2-connected.

In the following theorem, we provide a lower bound for the vertex connectivity
κ(S(G)) of S(G) for any finite abelian group G which extend Theorem 2.7[9] and
[Theorem 2.11[8].

Theorem 5.2. Let G be a finite abelian group of order n, let n1 be the largest
order of elements in G and t be the number of cyclic subgroups of order n1 in G.
Then κ(S(G)) ≥ tϕ(n1)+1. Further, κ(S(G)) = tϕ(n1)+1 if and only if Zr1

pq ×Zs1
p

or Zr1
pq × Zs2

q where p and q are two distinct primes and r1 ≥ 1 and s1, s2 ≥ 0 are
integers.

Proof. Let G be a finite abelian group n, let n1 be the largest order of elements in
G and t be the number of cyclic subgroups of order n1 in G. Note that, one needs
to remove at least all of the vertices of dom(S(G)) = tϕ(n1)+1 to disconnect S(G).
Thus by Theorem 3.1, we have κ(S(G)) ≥ tϕ(n1) + 1.

Next we prove the second part of the statement. Assume that G = Zr1
pq × Zs1

p

or Zr1
pq × Zs2

q where p and q are two distinct primes and r1 ≥ 1 and s1, s2 ≥
0 are integers. Note that the largest order of elements in G is n1 = pq. Let
G = G \ ({e} ∪ wn1

(G)). Since there is no path between elements of orders p and
q, the subgraph HG induced by G = G \ ({e} ∪ wn1

(G)) is disconnected. Thus
κ(S(G)) = tϕ(n1) + 1.

Conversely, assume that κ(S(G)) = tϕ(n1)+1. Let G be a group such that n1 is
the largest order of elements in G. If n1 ̸= pq, by Theorem 4.7, HG is Hamiltonian
which implies that κ(S(G)) > tϕ(n1) + 1.. Note that, only possible abelian groups
having two prime divisors p and q for o(G) and with largest order as n1 = pq are
Zr1
pq × Zs1

p or Zr1
pq × Zs2

q where p and q are two distinct primes and r1 ≥ 1 and
s1, s2 ≥ 0 are integers. □

Let G be a finite abelian group of order n = pα1
1 pα2

2 · · · pαm
m ,m ≥ 2. Assume that

G ∼= Zn1
×Zn2

×· · ·×Znk
, where ni for 1 ≤ i ≤ k are elementary divisors of G. As

stated in Theorem 2.3, nj |ni for each j ≥ i, ni ∈ N, 1 ≤ i, j ≤ k and n1n2 · · ·nk = n.

Let n1 = pβ1

1 pβ2

2 · · · pβs
s , 1 ≤ s ≤ k, βi ≥ 0, 1 ≤ i ≤ s be the prime decomposition of

the largest order n1. Let a0 = pβs
s , a1 = n1

a0
and π(G) = {a0, a1, a2, · · · , ar} be the

set of all orders of elements in G.
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In the following theorem, we find an upper bound for the vertex connectivity of
S(G) using the notations defined above.

Theorem 5.3. Let G be a finite abelian group of order n = pα1
1 pα2

2 · · · pαm
m ,m ≥ 2.

Let n1 = pβ1

1 pβ2

2 · · · pβs
s be the largest order of elements in G. Let a0 = pβs

s , a1 = n1

a0

and let π(G) = {a0, a1, · · · , ar} be the set of all orders of elements in G. Then there
exists a minimal separating set T of S(G) with

|T | =
∑

(ai|a1 or a1|ai, ai ̸=a1)

tiϕ(ai)

where ti is the number of cyclic subgroups of order ai in G.

Proof. Consider the set

T = {wai
(G) : ai|a1 or a1|ai, for 2 ≤ i ≤ r}.

Since there is no path between vertices of the cliques wa0(G) and wa1(G), T is a
separating set of S(G). Let A and B are two connected components of S(G) \ T
such that wa0

(G) ⊆ V (A) and wa1
(G) ⊆ V (B). Now, we prove that T is a minimal

separating set by showing that, for any proper subset T † of T , there is a path
connecting u ∈ wa0

(G) and v ∈ wa1
(G) in S(G) \ T †. Without loss of generality,

one can take T † = T \ {x} for x ∈ war (G). Since either ar|a1 or a1|ar, there
exists a path P1(u, x) connecting u and x in A ∪ wr(G). Similarly, for y ∈ B
with o(y) = arp

βs
s , there exists a path P2(y, v) connecting y to v in B. Now,

P =:< P1(u, x), x, y, P2(y, v) > is a path connecting u and v in S(G) \ T †. Thus,
T is a minimal separating set of S(G). If ti is the number of cyclic subgroups of
order ai in G for 2 ≤ i ≤ r, then

|T | =
∑

(ai|a1 or a1|ai, ai ̸=a1)

tiϕ(ai).

□

Remark 5.4. The bound obtained in Theorem 5.3 is tight. For three distinct
primes p, q, r with p < q < r, we shall show that the bound is tight for groups
G ∈ {Zpq,Zpqr,Zpqr × Zr × Zr × · · · × Zr}.

When G ∼= Zpq, by Theorem 5.2, we have that κ(S(G)) = ϕ(1) + ϕ(pq) = |T |.
Let G ∼= Zpqr × Zr × · · · × Zr. By Theorem 5.2, HG is connected. If T is a

minimum separating set of HG, then T = T ∪dom(S(G)) is a minimum separating
set of S(G). Hence to get the vertex connectivity of S(G), it is enough to find the
vertex connectivity of HG. Notice that the equivalence classes of G with respect to
∼ are precisely wp(G), wq(G), wr(G), wpq(G), wpr(G), wqr(G) and each of these
equivalence classes is a clique in HG. Thus,

HG = ∆G[Kwp(G),Kwq(G),Kwr(G),Kwpq(G),Kwpr(G),Kwqr(G)],

as given in Figure 3.
It is clear that deletion of any one of the cliques in HG does not discon-

nect HG. However, deletion of any two cliques in HG that are not adjacent can
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wr(G)

wpr(G)

wp(G)

wpq(G)

wq(G)

Figure 3. Connectivity in HG.

disconnect the same. This imply that a minimal separating set of HG is pre-
cisely the union of any two non adjacent cliques. Also, we have the inequality
|wp(G)| < |wq(G)| < |wr(G)| and |wpq(G)| < |wpr(G)| < |wqr(G)|. Heuristically,

we first add the smallest clique namely wp(G) into the minimum separating set T ,
we find that next best possible non adjacent clique having minimum cardinality is
wq(G). Thus, T = wp(G) ∪ wq(G) is a minimum separating set of HG implying
that T = wp(G) ∪ wq(G) ∪ wpqr(G) ∪ w1(G) is a minimum separating set of S(G)
having the cardinality ϕ(pqr) + ϕ(p) + ϕ(q) + ϕ(1).

A similar proof holds when G ∼= Zpqr.

Corollary 5.5. Let G be an finite abelian non p-group of order n. If largest order
n1 of elements in G is not a product of two distinct primes, then

tϕ(n1) + 3 ≤ κ(S(G)) ≤ |T |,

where t denotes the number of cyclic subgroups of order n1 in G and T is the
minimal separating set of S(G) as obtained in Theorem 5.3.

Proof. Note that the required lower bound follows from Corollary 5.1 and Theorem
5.2 while the upper bound follows from Theorem 5.3. □

We conclude this article by giving some open problems.

6. Open Problems

Problem 6.1. Characterize all non-abelian groups G for which S(G) is Hamilton-
ian.

Problem 6.2. Obtain a tight bound for the edge connectivity of S(G) where G is
a finite abelian group.
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