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THE NATURAL OPERATORS LIFTING q-FORMS TO p-FORMS

ON WEIL BUNDLES

W LODZIMIERZ M. MIKULSKI

Abstract. Let q, p, k,m be positive integers with m ≥ k + p + 1 and let A

be a Weil algebra with k generators. The (not necessarily regular) natural

operators lifting q-forms on m-dimensional manifolds M into p-forms on the
Weil bundle TAM are completely described be means of the so called excellent

maps. As a consequence, we derive that any natural operator lifting q-forms

on m-dimensional manifolds M into p-forms on TAM is regular, i.e. it sends
smoothly parametrized families into smoothly ones. We apply our general

results in the case when TA is the r-order tangent bundle T rM = Jr
0 (R,M)

(in particular the tangent bundle).

1. Introduction

All manifolds and maps considered in the paper are assumed to be smooth (of
class C∞).

The theory of Weil functors and the concept of natural operators can be found
in [5].

Let Mf be the category of manifolds and maps, Mfm be the category of m-
dimensional manifolds and their submersions and let FM be the category of fibred
manifolds and their fibred maps. Let A be a Weil algebra and TA : Mf → FM
be its Weil functor.

First, in Section 2, we study all (not necessarily regular) Mfm-natural operators
C : ∧qT ∗ ⇝ ∧0TA transforming q-forms ω on m-manifolds M into maps C(ω) :
TAM → R. Namely, using A we define the finite dimensional real vector bundle
Qq

A and prove that any C in question is of the form C(ω) = ω<hC> for some
map hC : Qq

A → R. Consequently, we obtain that any such C is regular, i.e. it
transforms smoothly parametrized families of q-forms into smoothly parametrized
families of maps.

Next, in Section 3 we study all (not necessarily regular) Mfm-natural operators
D : ∧qT ∗ ⇝ ∧pT ∗TA transforming q-forms ω on m-manifolds M into p-forms D(ω)
on TAM . Using the well-known fact that TTAM ×TAM · · · ×TAM TTAM = TBM
for some new Weil algebra depending on A we can treat such operators D in
question as Mfm-natural operators ∧qT ∗ ⇝ ∧0T ∗TB . By Section 2, they are
regular and of the form D(ω) = ω<hD> for some h : Qq

B → R. But for some h such
obtained D(ω) = ω<h> cannot be fiber skew p-linear, i.e. cannot be p-form on
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TAM . That is why, we define the concept of so called excellent maps h : Qq
B → R.

We deduce that D(ω) = ω<h> is a p-form on TAM if and only if h is excellent.
Next, in Section 4, we try to estimate the space of the excellent maps Qq

B →
R. We introduce the bigger space of the so called semi-excellent maps Qq

B →
R and reduce the description of semi-excellent maps Qq

B → R to solutions of
systems of linear equations with coefficients from {0, 1} with unknown from {0, 1}.
Consequently, we essentially reduce the problem of the description of all Mfm-
natural operators ∧qT ∗ ⇝ ∧pT ∗TA to a rather combinatoric problem.

In the last section we apply practically our general results when TA is the r-th
order tangent bundle T rM = Jr

0 (R,M).
We inform that the linear Mfm-natural operators ∧qT ∗ ⇝ ∧pT ∗TA are de-

scribed by J. Debecki [2, 3]. In the present paper, we describe all (not necessarily
linear) such natural operators.

The present paper is also a generalization of [6], where regular Mfm-natural
operators T ∗ ⇝ T ∗TA are described.

From now on, let k and m and q and p and r be positive integers.
Let x1, . . . , xm be the usual coordinates on Rm.
Let y1, . . . ., yk be the usual coordinates on Rk and let y1, . . . , yk, u1, . . . , up be

the usual coordinates on Rk+p = Rk ×Rp.

2. Lifting q-forms on manifolds to maps on Weil bundles

Let C∞
0 (Rk) be the local algebra of germs at 0 of smooth maps Rk → R and let

m be its maximal ideal. For the simplicity of notations for any map f : Rk → R ,
we will denote the germ at 0 ∈ Rk of f by the same letter f .

Let Ωq
0(R

k) be the C∞
0 (Rk)-module of germs at 0 of q-forms on Rk. Similarly,

for any q-form ω on Rk, we will denote the germ at 0 ∈ Rk of ω by the same letter
ω.

Let A be a ideal in C∞
0 (Rk) such that m2 ⊃ A ⊃ mr+1 and let

A = C∞
0 (Rk)/A (the factor algebra).

This factor algebra A is a Weil algebra (of order r).
Given a manifold M , two maps γ, γ1 : Rk → M have the same A-jet

jAγ = jAγ1 if g ◦ γ − g ◦ γ1 ∈ A for any map g : M → R.

Let
TAM = {jAγ | γ : Rk → M}

be the space of all A-jets of maps Rk → M . Then TAM is a fibred manifold
with the base M and the projection jAγ 7→ γ(0). Any map f : M → M1 of two
manifolds induces a fibred map

TAf : TAM → TAM1 , TAf(v) := jA(f ◦ γ) , v = jAγ.

So, we have the bundle functor TA : Mf → FM, the Weil functor of A-jets, see
[4, 5, 8].

We have the sub-modules

A · Ωq
0(R

k) and dA ∧ Ωq−1
0 (Rk)
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in the C∞
0 (Rk)-module Ωq

0(R
k), the one spanned (over C∞

0 (Rk)) by all ησ for
η ∈ A and σ ∈ Ωq

0(R
k) and the one spanned (over C∞

0 (Rk)) by all dη∧σ for η ∈ A

and σ ∈ Ωq−1
0 (Rk), respectively, where d is the exterior derivative. (Ω0(Rk) :=

C∞
0 (Rk).)
Let

Qq
A := Ωq

0(R
k)/Qq

A
(the factor module) , Qq

A
:= A · Ωq

0(R
k) + dA ∧ Ωq−1

0 (Rk) ,

where Qq

A
is the sub-module in the C∞

0 (Rk)-module Ωq
0(R

k), the one consisting of

all elements σ1 + σ2 for σ1 ∈ A · Ωq
0(R

k) and σ2 ∈ dA ∧ Ωq−1
0 (Rk).

One can easily see that the real vector space Qq
A is finite dimensional. Any

element of w ∈ Qq
A is of the form w = [σ]Qq

A
for a σ ∈ Ωq

0(R
k).

Example 2.1. Let h : Qq
A → R be a map. Given a q-form ω ∈ Ωq(M) on an

m-dimensional manifold M we define a map ω<h> : TAM → R by

ω<h>(v) := h([γ∗ω]Qq
A
) , v ∈ TAM ,

where γ : Rk → M is a map such that v = jAγ and where γ∗ω ∈ Ωq
0(R

k) is the
pull-back of ω with respect to γ.

Lemma 2.2. The value ω<h>(v) is well defined.

Proof. Suppose v = jAγ = jAγ1, where γ, γ1 : Rk → M . We have to prove that

h([γ∗ω]Qq
A
) = h([γ∗

1ω]Qq
A
).

We may assume M = Rm and γ(0) = γ1(0) = 0 and ω =
∑

ωi1,...,iqdx
i1∧· · ·∧dxiq ,

where
∑

is over all integers with 1 ≤ i1 < · · · < iq ≤ m.
Let γ = (γ1, . . . , γm) and γ1 = (γ1

1 , . . . , γ
m
1 ). Since jAγ = jAγ1, then

ωi1,...,iq ◦ γ − ωi1,...,iq ◦ γ1 ∈ A and γi − γi
1 ∈ A

for all integers i1, . . . , iq, i with 1 ≤ i1 < · · · < iq ≤ m and i = 1, . . . ,m. On the
other hand we have

γ∗ω − γ∗
1ω =

∑
ωi1,...,iq ◦ γ · dγi1 ∧ · · · ∧ γiq −

∑
ωi1,...,iq ◦ γ1 · dγi1

1 ∧ · · · ∧ dγ
iq
1

=
∑

(ωi1,...,iq ◦ γ − ωi1,...,iq ◦ γ1) · dγi1 ∧ · · · ∧ dγiq

+

q∑
s=1

∑
(−1)s+1ωi1,...,iq ◦ γ1 · d(γis − γis

1 ) ∧ dγi1 ∧ · · · ∧ d̂γis ∧ · · · ∧ dγiq ,

where d̂γis means that dγis is dropped. Then γ∗ω − γ∗
1ω ∈ Qq

A
. So, [γ∗ω]Qq

A
=

[γ∗
1ω]Qq

A
. Consequently, h([γ∗ω]Qq

A
) = h([γ∗

1ω]Qq
A
). □

Lemma 2.3. The map ω<h> : TAM → R is smooth.

Proof. Let vt ∈ TAM be a smooth curve. Then there exist a smoothly param-
eter family of maps γt : Rk → M such that vt = jAγt for t ∈ R. Then
[γ∗

t ω]mr+1·Ωq
0(Rk) is a smooth curve in the finite dimensional real vector space

Ωq
0(R

k)/mr+1 · Ωq
0(R

k), the factor space of the C∞
0 (Rk)-module Ωq

0(R
k) by its
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sub-module mr+1 · Ωq
0(R

k). Then [γ∗
t ω]Qq

A
is a smooth curve in Qq

A because

[γ∗
t ω]Qq

A
is the image of [γ∗

t ω]mr+1·Ωq
0(Rk) with respect to the obvious projection

Ωq
0(R

k)/mr+1 · Ωq
0(R

k) → Qq
A(R

k). Then ω<h>(vt) depends smoothly on t. So,
ω<h> : TAM → R is smooth because of the Boman theorem ([1]). □

Lemma 2.4. If ωτ is a smoothly parametrized family of q-forms on M then
(ωτ )

<h> is a smoothly parametrized family of maps TAM → R.

Proof. The proof of the lemma is a simple modification of the proof of the previous
one. □

Proposition 2.5. The correspondence (−)<h> : ∧qT ∗ ⇝ ∧0TA given by ω 7→
ω<h> is a regular Mfm-natural operator in the sense of [5].

Remark 2.6. The concept of (not necessarily regular) natural operators can be
found in [5]. In our situation, the Mfm-naturality (invariance) of (−)<h> means
that for any Mfm-map f : M → M1 and q-forms ω ∈ Ω1(M) and ω1 ∈ Ωq(M1)
on M and M1 respectively if ω and ω1 are f -related, then so are ω<h> and ω<h>

1 .
The regularity of (−)<h> means that (−)<h> transforms smoothly parametrized
families of q-forms into smoothly parametrized families of maps.

Proof. The proposition is clear. In particular, because of the canonical character of
the construction of ω<h> it follows the Mfm-invariance of (−)<h>. The regularity
of (−)<h> is exactly Lemma 2.4. □

The main result of this section is

Theorem 2.7. If m ≥ k + 1, then any (not necessarily regular) Mfm-natural
operator C : ∧qT ∗ ⇝ ∧0TA sending q-forms ω on m-manifolds M into maps
C(ω) : TAM → R is of the form C = (−)<h> for a uniquely determined (by C)
map h = hC : Qq

A → R. In particular, any such C is regular.

The proof of Theorem 2.7 will occupy the rest of this section. We need several
lemmas.

Let C : ∧qT ∗ ⇝ ∧0TA be a (not necessarily regular) Mfm-natural operator.
(Of course, the Mfm-naturality and the regularity of C are explained in Remark
2.6 with C instead of (−)<h>.)

Assume m ≥ k + 1. Define ΦC : Ωq
0(R

m) → R by

ΦC(ω) = C(ω)(κA) , ω ∈ Ωq
0(R

m) ,

where κA := jA(ι) ∈ TA
0 Rm, ι : Rk → Rm, ι(y1, . . . , yk) = (y1, . . . , yk, 0, . . . , 0),

y1, . . . , yk ∈ R.

Lemma 2.8. The operator C is determined by ΦC , i.e. if C1 is an another operator
in question such that ΦC1

= ΦC then C1 = C.

Proof. By the rank theorem, κA has dense Mfm-orbit in TARm. So, the lemma
is clear. □

Lemma 2.9. If φ is an Mfm-map preserving κA, then ΦC(φ
∗ω) = ΦC(ω) for any

ω ∈ Ωq
0(R

m).

https://doi.org/10.33044/revuma.4796
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Proof. It is a immediate consequence of the invariance of C with respect to φ. □

Lemma 2.10. For any ω ∈ Ωq
0(R

m), we have

ΦC(ω) = ΦC((x
1, . . . , xk, 0, . . . , 0)∗ω).

(We remember that x1, . . . , xm denote the usual coordinates on Rm and (−)∗ denote
the pullback.)

Proof. Let tn, ϵn be two sentences of real number such that 0 < tn < exp(−n)
and 0 < ϵn < exp(−n) for any n. Let yn = (0, . . . , 0, 1

n ) ∈ Rm. By the Whitney
extension theorem ([9]), there exists a smooth map φ : Rm → Rm such that

φ|D(y2n+1, ϵ2n+1) = (x1, . . . , xk, 0, . . . , 0)

and
φ|D(y2n, ϵ2n) = (x1, . . . , xk, t2nx

k+1, . . . , t2nx
m)

for sufficiently large n, where D(y, ϵ) is the disk {x ∈ Rm : ||x− y|| < ϵ}. Then

C(φ∗ω)(jA(ι+ y2n+1)) = C((x1, . . . , xk, 0, . . . , 0)∗ω)(jA(ι+ y2n+1))

and

C(φ∗ω)(jA(ι+ y2n)) = C((x1, . . . , xk, t2nx
k+1, . . . , t2nx

m)∗ω)(jA(ι+ y2n))

= C(ω)(jA(ι+ t2ny2n))

for sufficiently large n. The last equality follows from the invariance of C with
respect to the Mfm-map (x1, . . . , xk, t2nx

k+1, . . . , t2nx
m). If n → ∞, we derive

C(ω)(jAι) = C((x1, . . . , xk, 0, . . . , 0)∗ω)(jAι) ,

i.e. ΦC(ω) = ΦC((x
1, . . . , xk, 0, . . . , 0)∗ω), as well. □

Lemma 2.11. If σt ∈ Ωq(Rk), t ∈ R is a smoothly parametrized family, i.e. the
resulting map σ : Rk ×R → ∧qT ∗Rk is smooth, then the map

R ∋ t 7→ ΦC((x
1, . . . , xk)∗σt) ∈ R

is smooth.

Proof. Define ω ∈ Ωq(Rm) by

ω(x1, . . . , xm) := ((x1, . . . , xk)∗σxm
)(x1, . . . , xm) ∈ ∧qT ∗

(x1,...,xm)R
m ,

where (x1, . . . , xm) ∈ Rm. Then

(x1, . . . , xk, 0, . . . , 0)∗(τ(0,...,0,t))
∗ω = (x1, . . . , xk)∗σt ,

where τ(0,...,0,t) : R
m → Rm is the translation by (0, . . . , 0, t) ∈ Rm, t ∈ R. Then

using the previous lemma and the invariance of C with respect to τ(0,...,0,t), we get

ΦC((x
1, . . . , xk)∗σt) = ΦC((x

1, . . . , xk, 0, . . . , 0)∗(τ(0,...,0,t))
∗ω)

= ΦC((τ(0,...,0,t))
∗ω) = C((τ(0,...,0,t))

∗ω)(κA)

= C(ω) ◦ TAτ(0,...,0,t)(κ
A).

Since C(ω) ◦ TAτ(0,...,0,t)(κ
A) depends smoothly on t, the proof is complete. □

https://doi.org/10.33044/revuma.4796
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Lemma 2.12. For any ω ∈ Ωq
0(R

m) of the form ω = ω(x1, . . . , xk, dx1, . . . , dxk)

and any σ ∈ Ωq−1
0 (Rm) of the form σ = σ(x1, . . . , xk, dx1, . . . , dxk) and any η ∈ A,

we have

ΦC(ω) = ΦC(ω + dη ∧ σ) ,

where η ◦ (x1, . . . , xk) is (for simplicity) denoted by η.

Proof. Using Lemma 2.10 and next using Lemma 2.9 with φ = (x1, . . . , xm−1, xm+
η(x1, . . . , xk)) and next using again Lemma 2.10, we get

ΦC(ω) = ΦC(ω + dxm ∧ σ) = ΦC(ω + dxm ∧ σ + dη ∧ σ) = ΦC(ω + dη ∧ σ).

The proof of the lemma is complete. □

Lemma 2.13. For any ω ∈ Ωq
0(R

m) of the form ω = ω(x1, . . . , xk, dx1, . . . , dxk)
and any ω1 ∈ Ωq

0(R
m) of the form ω1 = ω1(x

1, . . . , xk, dx1, . . . , dxk) and any η ∈ A,
we have

ΦC(ω) = ΦC(ω + η · ω1) ,

where η denotes η ◦ (x1, . . . , xk).

Proof. By the same arguments as in the proof of Lemma 2.12, we have

ΦC(ω) = ΦC(ω + xm · ω1) = ΦC(ω + xm · ω1 + η · ω1) = ΦC(ω + η · ω1).

The proof of the lemma is complete. □

We are now in position to prove Theorem 2.7.

Proof. We (must) define hC : Qq
A → R by

hC(w) := ΦC(σ) , w = [σ]Qq
A
, σ ∈ Ωq

0(R
k) ⊂ Ωq

0(R
m)

(the inclusion is given by the pull-back with respect to the projection (x1, . . . , xk) :
Rm → Rk). By Lemmas 2.12 and 2.13, hC is well defined. Clearly, hC is smooth
because of Lemma 2.11 and the Boman theorem. Further, by Lemmas 2.8 and 2.10,
C is determined by hC . On the other hand, if C1 := C(−)<hC> then hC1

= hC .
Consequently, C = C1 = (−)<hC>. The proof of Theorem 2.7 is complete. □

Corollary 2.14. Assume additionally q > k. If m ≥ k + 1, then any Mfm-
natural operator C : ∧qT ∗ ⇝ ∧0TA sending q-forms ω on m-manifolds M into
maps C(ω) : TAM → R is a real constant one.

Proof. If q > k, then Ωq
0(R

k) = (0), and then Qq
A = (0). Then any map h : Qq

A →
R is constant. Now, the corollary is clear. □

https://doi.org/10.33044/revuma.4796
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3. Lifting q-forms on manifolds to p-forms on Weil bundles

Let k,m, q, p, r be the positive integers y1, . . . , yk, u1, . . . , up be the usual coor-
dinates on Rk+p = Rk ×Rp.

Let A = C∞
0 (Rk)/A be the Weil algebra as in the previous section.

Using A we can produce new Weil algebra B (depending on A) by

B := C∞
0 (Rk+p)/B , B =< A ◦ (y1, . . . , yk) , uiuj | i, j = 1, . . . , p >,

where B is the ideal in C∞
0 (Rk+p) spanned by the collection consisting of η ◦

(y1, . . . , yk) for all η ∈ A and all uiuj for i, j = 1, . . . , p.
Clearly, B = A ⊗D1

p, where D1
p = D ⊕R · · · ⊕R D (p-times of D), where D is

the algebra of dual numbers. Then (by the theory of Weil functors) given manifold
M we have

TBM = TTAM ×TAM · · · ×TAM TTAM (p-times of TTAM) ,

where TB is the Weil functor corresponding to the Weil algebra B.
We are going to describe all (not necessarily regular) Mfm-natural operators

D : ∧qT ∗ ⇝ ∧pT ∗TA sending q-forms ω on m-manifolds M into p-forms D(ω) on
TAM .

Clearly, any such Mfm-natural operator D : ∧qT ∗ ⇝ ∧pT ∗TAM can be treated
(in obvious way) as an excellent Mfm-natural operator D : ∧qT ∗ ⇝ ∧0T ∗TB in
the sense of Definition 3.1, and vice-versa. So, in particular, any such D is regular
because of the previous section.

Definition 3.1. A Mfm-natural operator D : ∧qT ∗ ⇝ ∧0T ∗TB is excellent if
for any m-manifold M and any point u ∈ TAM and any q-form ω on M the map
D(ω)|TuTAM×···×TuTAM : TuT

AM×· · ·×TuT
AM → R is skew-symmetric p-linear.

So, we are going to describe all excellent Mfm-natural operators D : ∧qT ∗ ⇝
∧0T ∗TB , where B is as above.

For, we consider an excellent Mfm-natural operator D : ∧qT ∗ ⇝ ∧0T ∗TB .
Similarly as in the previous section, let

Qq
B := Ωq

0(R
k+p)/Qq

B
, Qq

B
= B · Ωq

0(R
k+p) + dB ∧ Ωq−1

0 (Rk+p).

By Theorem 2.7 for B instead of A and D instead of C, if m ≥ k + p+ 1, then
D = (−)<hD> for a uniquely determined (by D) smooth map hD : Qq

B → R. By
the proof of Theorem 2.7,

hD(w) := D(σ)(κB) , w = [σ]Qq
B
, σ ∈ Ωq

0(R
k+p) ⊂ Ωq

0(R
m)

(the inclusion is given by the pull-back with respect to the obvious projection
Rm = Rk+p ×Rm−(k+p) → Rk+p), where κB := jB(ι) ∈ TB

0 Rm, ι : Rk+p → Rm,
ι(y1, . . . , yk+p) = (y1, . . . , yk+p, 0, . . . , 0), y1, . . . , yk+p ∈ R.

Let R+ = (R+, ·) be the multiplicative group of positive real numbers. We have
the action of (R+)

p on Qq
B given by

t ⋄ w := [(at)
∗σ]Qq

B
,

https://doi.org/10.33044/revuma.4796
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where t = (t1, . . . , tp) ∈ (R+)
p, w = [σ]Qq

B
∈ Qq

B , σ ∈ Ωq
0(R

k+r) and at :=

(y1, . . . , yk, t1u
1, . . . , tpu

p) : Rk+p → Rk+p, where y1, . . . , yk, u1, . . . , up : Rk+p →
R are the usual coordinates on Rk+p. The action is well defined because Qq

B
is

(at)
∗-invariant.
Let Sp be the group of permutations of p-elements {1, . . . , p}. We have the

action of Sp on Qq
B given by

s□w := [(as−1)∗σ]Qq
B
, s ∈ Sp , w = [σ]Qq

B
∈ Qq

B , σ ∈ Ωq
0(R

k+p) ,

where as := (y1, . . . , yk, us(1), . . . , us(p)). The action is well defined because Qq

B
is

(as−1)∗-invariant.

Definition 3.2. A map h : Qq
B → R is excellent if

h(t ⋄ w) = t1 · · · · · tp · h(w) and h(s□w) = sign(s) · h(w)

for any w ∈ Qq
B , any t = (t1, . . . , tp) ∈ (R+)

p and any s ∈ Sp.

Lemma 3.3. Assume m ≥ k + p + 1. Let D be as above. Then the map hD :
Qq

B → R is excellent.

Proof. The first formula from Definition 3.2 (for hD instead of h) is a consequence
of the invariance of D with respect to

ãt := (x1, . . . , xk, t1x
k+1, . . . , tpx

k+p, xk+p+1, . . . , xm)

for t = (t1, . . . , tp) ∈ (R+)
p and the p-linearity of D(ω)|TκATARm×···×TκATARm for

any q-form ω on Rm. More detailed, we can proceed as follows. Consider w ∈ Qq
B

and t = (t1, . . . , tp) ∈ (R+)
p. We can write κB = (v1, . . . , vp) ∈ TκATARm × · · · ×

TκATARm and w = [σ]Qq
B
, where σ ∈ Ωq

0(R
k+p) ⊂ Ωq

0(R
m). Then TB ãt(κ

B) =

(t1v1, . . . , tpvp). Then

hD(t ⋄ w) = hD([(at)
∗σ]Qq

B
) = D((ãt)

∗σ)(κB) = D(σ)(TB ãt(κ
B))

= D(σ)(t1v1, . . . , tpvp) = t1 · · · · · tp ·D(σ)(v1, . . . , vp) = t1 · · · · · tp · hD(w) ,

i.e. hD(t ⋄ w) = t1 · · · · · tp · hD(w) , as well.
Similarly, the second formula from Definition 3.2 (for hD instead of h) follows

from the invariance of D with respect to

ãs := (x1, . . . , xk, xk+s(1), . . . , xk+s(p), xk+p+1, . . . , xm)

for s ∈ Sp and the skew-symmetry of D(ω)|TκATARm×···×TκATARm for any q-form

ω on Rm. More detailed, we can proceed as follows. Consider w ∈ Qq
B and s ∈ Sp.

We can write κB = (v1, . . . , vp) ∈ TκATARm × · · · × TκATARm and w = [σ]Qq
B
,

where σ ∈ Ωq
0(R

k+p) ⊂ Ωq
0(R

m). Then TB ãs(κ
B) = (vs(1), . . . , vs(p)). Then

hD(s□w) = hD([(as−1)∗σ]Qq
B
) = D((ãs−1)∗σ)(κB) = D(σ)(TB ãs−1(κB))

= D(σ)(vs−1(1), . . . , vs−1(p)) = sign(s) ·D(σ)(v1, . . . , vp) = sign(s) · hD(w) ,

i.e. hD(s□w) = sign(s) · hD(w), as well. □
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Lemma 3.4. Assume m ≥ k + p + 1. Let h : Qq
B → R be excellent. Then

(−)<h> : ∧qT ∗ ⇝ ∧0TB can be treated as a natural operator ∧qT ∗ ⇝ ∧pT ∗TA.

Proof. By the first formula from Definition 3.2 we get that ω<h>(w1, . . . , wp) is
p-linear in w1, . . . , wp ∈ TuT

AM for any q-form ω on M and any u ∈ TAM .
More detailed, we can proceed as follows. Since the Mfm-orbit of κA in TAM is
dense (as m ≥ k) and (−)<h> is Mfm-invariant, we can assume M = Rm and
u = κA ∈ TARm. Let κB = (v1, . . . , vp). Let t = (t1, . . . , tp) ∈ (R+)

p and let at
and ãt be as in the proof of the previous lemma and let ω be a q-form on Rm.
Then

ω<h>(t1v1, . . . , tpvp) = ω<h>(TB ãt(v1, . . . , vp)) = ((ãt)
∗ω)<h>)(v1, . . . , vp)

= h([ι∗(ãt)
∗ω]QqB) = h([(at)

∗ι∗ω]Qq
B
) = h(t ⋄ [ι∗ω]Qq

B
)

= t1 · · · · · tp · h([ι∗ω]Qq
B
) = t1 · · · · · tp · ω<h>(v1, . . . , vp) ,

i.e. ω<h>(t1v1, . . . , tpvp) = t1 · · · · · tp · ω<h>(v1, . . . , vp). Then by the Mfm-
invariance of (−)<h> and the fact that the Mfm-orbit of κB is dense in (TBM)κA

(as m ≥ k + p), we get that

ω<h>(t1w1, . . . , tpwp) = t1 · · · · · tp · ω<h>(w1, . . . , wp)

for any q-form ω on Rm and any w1, . . . , wp ∈ TκATARm and any t1 > 0, . . . , tp >
0. Now, the homogeneous function theorem implies that ω<h>(w1, . . . , wp) is p-
linear in w1, . . . , wp ∈ TκATARm for any q-form ω on Rm, as well.

The second equality implies ω<h>(w1, . . . , wp) is skew-symmetric in w1, . . . , wp ∈
TuT

AM for any q-form ω on M and any u ∈ TAM . More detailed, we can proceed
as follows. We can assume M = Rm and u = κA ∈ TARm. Let κB = (v1, . . . , vp).
Let s ∈ Sp and let ãs be as in the proof of the previous lemma and let ω be a
q-form on Rm. Then

ω<h>(vs(1), . . . , vs(p)) = ω<h>(TB ãs(v1, . . . , vp)) = ((ãs)
∗ω)<h>(v1, . . . , vp)

= h([ι∗(ãs)
∗ω]QqB) = h([(as)

∗ι∗ω]Qq
B
) = h(s−1□[ι∗ω]Qq

B
)

= sign(s) · h([ι∗ω]Qq
B
) = sign(s) · ω<h>(v1, . . . , vp) ,

i.e. ω<h>(vs(1), . . . , vs(p)) = sign(s)·ω<h>(v1, . . . , vp). Then by theMfm-invariance

of (−)<h> and the fact that the Mfm-orbit of κB is dense in (TBM)κA , we get
that

ω<h>(ws(1), . . . , ws(p)) = sign(s) · ω<h>(w1, . . . , wp)

for any q-form ω on Rm and any w1, . . . , wp ∈ TκATARm and any s ∈ Sp, as well.
Then ω<h> is a p-form on TAM for any q-form ω on an m-manifold M . □

Summing up, we have proved

Theorem 3.5. Assume m ≥ k+p+1. The described above correspondence D 7→ hD

between the (not necessarily regular) Mfm-natural operators D : ∧qT ∗ ⇝ ∧pT ∗TA

and the excellent maps hD : Qq
B → R is one to one. The inverse correspondence

is h 7→ (−)<h>. In particular, any (not necessarily regular) Mfm-natural operator
D : ∧qT ∗ ⇝ ∧pT ∗TA is regular.
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Corollary 3.6. Assume additionally q > k+ p. If m ≥ k+ p+1, then any Mfm-
natural operator D : ∧qT ∗ ⇝ ∧pT ∗TA sending q-forms ω on m-manifolds M into
p-forms D(ω) : TAM → R is the 0 one.

Proof. If q > k+ p, then Ωq
0(R

k+p) = (0), and then Qq
B = (0). Then any excellent

map Qq
B → R is 0. Now, the corollary is clear. □

Definition 3.7. A map H : Qq
B → R is semi-excellent if H(t⋄w) = t1 ·· · ··tp ·H(w)

for any w ∈ Qq
B , any t = (t1, . . . , tp) ∈ (R+)

p.

Quite similarly one can prove (in fact we have proved) the following

Theorem 3.8. Assume m ≥ k + p + 1. There exists one-to-one correspondence
between the Mfm-natural operators ∧qT ∗ ⇝ ⊗pT ∗TA and the semi-excellent maps
Qq

B → R.

Corollary 3.9. Assume additionally q > k + p. If m ≥ k + p + 1, then any
Mfm-natural operator ∧qT ∗ ⇝ ⊗pT ∗TA is the 0 one.

Remark 3.10. Theorems 3.5 and 3.8 show that to describe all Mfm-natural
operators ∧qT ∗ ⇝ ⊗pT ∗TA (resp. ∧qT ∗ ⇝ ∧qT ∗TA) it is sufficient to describe all
semi-excellent (resp.excellent) maps Qq

B → R. Such description in question will be
presented in the next section.

4. On semi-excellent maps

We will use the notations as in the previous sections. In particular, let B and
Qq

B be as in the previous section.
We are going to present the full description of all semi-excellent maps Qq

B → R.
Let N be the set of non-negative integers.
Given α = (α1, . . . , αp) ∈ Np and t = (t1, . . . , tp) ∈ (R+)

p, we denote tα :=
(t1)

α1 . . . (tp)
αp .

Definition 4.1. An element w ∈ Qq
B is homogeneous of weight α = (α1, . . . , αp) ∈

Np if

t ⋄ w = tα · w
for any t = (t1, . . . , tp) ∈ (R+)

p, where ⋄ and Qq
B are as in the previous section.

Definition 4.2. An element w ∈ Qq
B is adapted if it is homogeneous of the weight

α(w) satisfying α(w) ∈ {0, 1}p.

Definition 4.3. A basis B = {w1, . . . , wK} of the real vector space Qq
B is called

adapted if w1, . . . , wK are adapted.

The description of all semi-excellent maps Qq
B → R is presented in the following

Theorem 4.4. (i) We can choose the basis B = {w1, . . . , wK} in the real vector
space Qq

B and Ko ≤ K such that w1, . . . , wK are adapted and w1, . . . , wKo
are all

elements from B of weight equal to (0, . . . , 0).
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(ii) Given w ∈ B, let α(w) be the weight of w, where B is the adapted basis as
above (in the part (i)). Let λ1, . . . , λK be the dual basis to B. Then any semi-
excellent map H : Qq

B → R is the linear combination of monomials

(λKo+1)
γKo+1 · · · · · (λK)γK

for all γKo+1, . . . , γK ∈ {0, 1} with
∑K

j=Ko+1 γjα(wj) = (1, . . . , 1) with (uniquely

determined) coefficients being smooth maps depending on λ1, . . . , λKo
. And vice-

versa, any such linear combination (in question) is semi-excellent.

Proof. Clearly, because of the definition of Qq
B we can choose elements v1, . . . , vL ∈

Qq
B such that Qq

B = spanR{v1, . . . , vL} and any of vj for j = 1, . . . , L is of the form

[yαuβdyµ1 ∧ · · · ∧ dyµk̃ ∧ duν1 ∧ · · · ∧ duνp̃ ]Qq
B

for some α ∈ Nk and β = (β1, . . . , βp) ∈ Np and some k̃, p̃, µ1, . . . , µk̃ , ν1 , . . . , νp̃ ∈
N satisfying 1 ≤ µ1 < · · · < µk̃ ≤ k and 1 ≤ ν1 < · · · < νp̃ ≤ p and k̃ + p̃ = q and
|β| = β1 + · · · + βp ≤ 1 and (if βs = 1 then s ∈ {1, . . . , p} \ {ν1, . . . , νp̃}). From
these generators we can choose the basis

B = {w1, . . . , wK}

of the real vector space Qq
B . Then B is adapted. Of course, we may assume that

w1, . . . , wKo are all elements from B with weight equal to (0, . . . , 0).
The proof of part (i) of the theorem is complete.
Let H : Qq

B → R be a semi-excellent map.
Given w ∈ B, let α(w) be the weight of w.
Any element w ∈ Qq

B is of the form

w =

K∑
j=1

λj(w)wj where λj : Q
q
B → R are the functionals dual to w1, . . . , wK .

Then for any w =
∑K

j=1 λj(w)wj ∈ Qq
B and t = (t1, . . . , tp) ∈ (R+)

p we have

t1 · · · · · tp ·H(

K∑
j=1

λj(w)wj) = H(t ⋄
K∑
j=1

λj(w)wj) = H(

K∑
j=1

λj(w)t
α(wj)wj).

Then because of the homogeneous function theorem ([5]), H is the linear combina-
tion of monomials

(λ1)
γKo+1·· · ··(λK)γK for all γKo+1, . . . , γK ∈ N with

K∑
j=Ko+1

γjα(wj) = (1, . . . , 1)

with coefficients being smooth maps depending on λ1,. . . ,λKo
. Then γKo+1, . . . , γK ∈

{0, 1} because α(wj) ̸= (0, . . . , 0) for j = Ko + 1, . . . ,K.
The proof of part (ii) of the theorem is complete. □

Remark 4.5. The condition
∑K

j=Ko+1 γjα(wj) = (1, . . . , 1) from the part (ii)

of the theorem is a system of p linear equations with coefficients from {0, 1} with
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(K −Ko) unknown γj from {0, 1}. So, we have reduced the description of regular
Mfm-natural operators ∧qT ∗ ⇝ ⊗pT ∗TA to a rather combinatoric problem.

5. Applications

For start, applying our obtained (in the previous sections) general results, if
m ≥ q + 2 ≥ 4, we find explicitly all Mfm-natural operators D : ∧qT ∗ ⇝ ∧qT ∗T
lifting q-forms ω on a m-manifold M into q-forms D(ω) on the tangent bundle TM .
We prove

Proposition 5.1. If m ≥ q + 2 ≥ 4 then any Mfm-natural operator D : ∧qT ∗ ⇝
∧qT ∗T is of the form

ω 7→ aωC + bωV + cdiLω
C

for (uniquely determined by D) real numbers a, b, c, where ωC is the complete lift
of ω from M to TM and ωV is the vertical lift of ω from M to TM and iL is the
inner derivative with respect to the Liouville vector field L on TM and d is the
exterior derivative.

Proof. We prove this proposition for m ≥ q + 2 ≥ 5. We are going to apply the
obtained previous general results in the case k = 1, p = q, A = C∞(R)/((u0)2)
and B =< (u0)2, uiuj | i, j = 1, . . . , q >, where u0 := y1. The collection consisting
of K = q + 3 classes

v
(1)
i := [du0 ∧ du1 ∧ · · · ∧ d̂ui ∧ · · · ∧ duq]Qq

B
, v(3) := [u1du0 ∧ du2 ∧ · · · ∧ duq]Qq

B

v(1) := [du1 ∧ · · · ∧ duq]Qq
B
, v(2) := [uodu1 ∧ · · · ∧ duq]Qq

B

for i = 1, . . . , q generate (over R) the real vector space Qq
B . This will be proved in

a more general situation in Lemma 5.4. So, we have the basis w1, . . . , wL1
, . . . , wL

of Qq
B such that wL1+1, . . . , wL ∈ {v(3), v(1), v(2)} and w1, . . . , wL1

∈ {v(1)
i | i =

1, . . . , q}. We can see that this basis is adapted. Namely, v
(1)
i is homogeneous of

weight (1, . . . , 1, 0, 1, . . . , 1) ∈ {0, 1}q (0 in i-th position) for i = 1, . . . , q and the
other elements are of weight (1, . . . , 1, . . . , 1) ∈ {0, 1}q. Let λ1, . . . , λL be the dual
basis. Using Theorem 4.4, we can immediately see that any semi-excellent map
H : Qq

B → R is of the form

H = aL1+1λL1+1 + · · ·+ aLλL ,

where the coefficients are real numbers. Thus the vector space of all excellent maps
H : Qq

B → R is of dimension ≤ L − L1 ≤ 3. Thus the vector space of all Mfm-
natural operators ∧qT ∗ ⇝ ∧qT ∗T is of dimension ≤ 3 because of Theorem 3.5. On
the other hand we have three linearly independent natural operators in question.
Namely, ωC and ωV and diLω

C . So, using the dimension argument we end the
proof of the proposition in this case. That the operators ωC and ωV and diLω

C are
linearly independent it will be proved later in Lemma 5.6 (in some more general
situation).

So, using the dimension argument we end the proof of the proposition.
In the case m ≥ q + 2 = 4, the proof is quite similar. □
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Remark 5.2. In the presented in Proposition 5.1 description of Mfm-natural
operators ∧qT ∗ ⇝ ∧qT ∗T we cannot see

ω 7→ iLdω
C .

Why? Because of ωC = LLω
C = iLdω

C + diLω
C .

In the rest of this section, we generalize Proposition 5.1. Namely, if m ≥ q+2 ≥
4, we find explicitly all Mfm-natural operators D : ∧qT ∗ ⇝ ∧qT ∗T r lifting q-forms
ω on am-manifoldM into q-formsD(ω) on the r-tangent bundle T rM = Jr

0 (R,M).
At first, we consider the case m ≥ q + 2 ≥ 5. We prove

Theorem 5.3. If m ≥ q + 2 ≥ 5 then any Mfm-natural operator D : ∧qT ∗ ⇝
∧qT ∗T r is of the form

ω 7→
r∑

s=0

asω
(s) +

r∑
σ=1

bσdiLω
(σ)

for (uniquely determined by D) real numbers as, bσ, where the ω(s) for s = 0, . . . , r
are the classical (s)-lifts of ω to T rM in the sense of A. Morimoto ([7]) and L is
the canonical vector field on T rM with the flow given by Exp(τL)(v) := jr0(γ ◦aτ ),
τ ∈ R, v = jr0γ ∈ T rM , where aτ : R → R, aτ (t) = exp(τ)t.

To prove Theorem 5.3 we need a preparation. Now, k = 1, p = q, A =
C∞(R)/((u0)r+1) and B =< (u0)r+1, uiuj | i, j = 1, . . . , q >, where u0 := y1.
We prove some lemmas.

Lemma 5.4. The collection consisting of K = qr + 1 + r + r classes

v
(1,s)
i := [d(u0)s∧du1∧· · ·∧d̂ui∧· · ·∧duq]Qq

B
, v(3,s) := [u1d(u0)s∧du2∧· · ·∧duq]Qq

B
,

v(1) := [du1 ∧ · · · ∧ duq]Qq
B
, v(2,s) := [(uo)sdu1 ∧ · · · ∧ duq]Qq

B

for i = 1, . . . , q and s = 1, . . . , r generate (over R) the vector space Qq
B. All

elements of this collection are adapted. Namely v
(1,s)
i is homogeneous of weight

(1, . . . , 1, 0, 1, . . . , 1) ∈ {0, 1}q (0 in i-th position) for i = 1, . . . , q and the other
elements are of weight (1, . . . , 1, . . . , 1) ∈ {0, 1}q.

Proof. Clearly, the classes [uβdu0 ∧ · · · ∧ d̂uj ∧ · · · ∧ duq]Qq
B

for all β ∈ Nq+1 and

j = 0, . . . , q generate the vector space Qq
B . Because of the construction of Qq

B , all
these classes are 0 except (eventually) of [(u0)kdu1 ∧ · · · ∧ duq]Qq

B
and

[(u0)k1du0 ∧ · · · ∧ d̂ui ∧ · · · ∧ duq]Qq
B
and [(u0)k1uidu0 ∧ · · · ∧ d̂ui ∧ · · · ∧ duq]Qq

B

for k = 0, . . . , r and k1 = 0, . . . , r − 1 and i = 1, . . . , q. Moreover,

[(u0)k1du0 ∧ d(u1ui) ∧ du2 ∧ · · · ∧ d̂ui ∧ · · · ∧ duq]Qq
B
= 0 ,

so [(u0)k1u1du0∧du2∧· · ·∧duq]Qq
B
= −[(u0)k1uidu0∧du1∧· · ·∧ d̂ui∧· · ·∧duq]Qq

B
.

Consequently, the classes v
(1,s)
i , v(3,s) , v(1) , v(2,s) for i = 1, . . . , q and s = 1, . . . , r

generate (over R) the vector space Qq
B .

The rest of this lemma is a simple observation. □
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Revista de la Unión Matemática Argentina Accepted article · Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.4796.

Submitted: May 14, 2024
Accepted: April 30, 2025
Published (early view): May 5, 2025

14 W LODZIMIERZ M. MIKULSKI

Lemma 5.5. Let w1, . . . , wL be the adapted basis in Qq
B such that w1, . . . , wL1 ∈

{v(1,s)
i | s = 1, . . . , r , i = 1, . . . , q} and wL1+1, . . . , wL ∈ {v(3,s), v(2,s), v(1) | s =

1, . . . , r}. Let λ1, . . . .λL be the dual basis. Then any semi-excellent map Qq
B → R

is

aL1+1λ1 + · · ·+ aLλL

for any aL1+1, . . . , aL ∈ R. Thus the space of excellent maps Qq
B → R is of

dimension ≤ L− L1 ≤ 2r + 1.

Proof. It follows immediately from Theorem 4.4. □

Lemma 5.6. If m ≥ q + 2 ≥ 4, the collection of Mfm-natural operators ω(s) and
diLω

(σ) for s = 0, 1, . . . , r and σ = 1, . . . , r is linearly independent.

Proof. Suppose we have

η =

r∑
s=0

asω
(s) +

r∑
σ=1

bσdiLω
(σ) = 0

for any ω ∈ Ωq(M). Then

r∑
s=0

as(dω)
(s) =

r∑
s=0

asd(ω
(s)) = dη = 0

for any ω ∈ Ωq(Rm) because of d(ω(s)) = (dω)(s). Putting ω = (x1)λx2dx3 ∧ · · · ∧
dxq+2 we get

0 =

r∑
s=0

as(dω)
(s)(∂2

(r), . . . , ∂
(r)
q+2) =

r∑
s=0

as(dω(∂2, . . . , ∂q+2))
(s) =

r∑
s=0

as((x
1)λ)(s)

for λ = 0, 1, . . . , r, where ∂i =
∂

∂xi for i = 1, . . . ,m. Evaluating at jr0(t, 0 . . . , 0) ∈
T rRm we get

0 =

r∑
s=0

as
1

s!

dstλ

dts |t=0
= aλ

for λ = 0, 1, . . . , r. Then a0 = a1 = · · · = ar *and then

r∑
σ=1

bσdiLω
(σ) = 0

for any ω ∈ Ωq(Rm). Since the flow of L is a natural transformation T r → T r

and the flow of X(r) is {T r(φτ )} if {φτ} is the flow of X, then the Lie derivative
LLX

(r) = 0 for any vector field X on Rm. Then

(LLω
(σ))(X

(r)
1 , . . . , X(r)

q ) = Lω(σ)(X
(r)
1 , . . . , X(r)

q ) = Lω(X1 . . . , Xq)
(σ) ,

and then

(diLω
(σ))(X

(r)
1 , . . . , X(r)

q ) = Lω(X1 . . . , Xq)
(σ)
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for any closed q-form ω on Rm and any vector fields X1, . . . , Xq on Rm (because

iLdω
(σ) = 0 if dω = 0) for σ = 1, . . . , r. Then putting ω = (x1)λdx1 ∧ · · · ∧ dxq (it

is closed) and Xj = ∂j for j = 1, . . . , q and λ = 0, . . . , r we get

r∑
σ=1

bσL((x
1)λ)(σ) = 0

for λ = 1, . . . , r. Evaluating at jr0(t, 0, . . . , 0) ∈ T rM we get

0 =

r∑
σ=1

bσ
1

σ!

d

dτ |τ=0

dσ exp(τλ)tλ

dtσ |t=0
= λbλ

for any λ = 1, . . . , r. Then b1 = · · · = br = 0. That is why the operators ω(s) and
diLω

(σ) for s = 0, . . . , r and σ = 1, . . . , r are linearly independent, as well.
The proof of the lemma is complete. □

We are now in position to prove Theorem 5.3.

Proof. By Lemma 5.5, the vector space of excellent maps Qq
B → R is of dimension

≤ 2r + 1. Then (by Theorem) the vector space of all Mfm-natural operators
∧qT ∗ ⇝ ∧qT ∗T r is of dimension ≤ 2r + 1, too. Then using Lemma 5.6 and the
dimension argument we complete the proof of the theorem. □

Now, we pass to the case m ≥ q + 2 = 4. We prove

Lemma 5.7. If m ≥ q + 2 = 4 then the vector space of Mfm-natural operators

∧2T ∗ ⇝ ∧2T ∗T r is of dimension ≤ (2r + 1 + r(r−1)
2 ).

Proof. Clearly, Lemma 5.4 for m ≥ q + 2 = 4 is true, too. Then we have the
following version of Lemma 5.5. Let w1, . . . , wL be the adapted basis in Qq

B such

that w1, . . . , wL1
∈ {v(1,s)

1 | s = 1, . . . , r} and wL+1, . . . , wL2
∈ {v(1,s)

2 | s = 1, . . . , r}
and wL2+1, . . . , wL ∈ {v(3,s), v(2,s), v(1) | s = 1, . . . , r}. Let λ1, . . . .λL be the dual
basis. Then (because of Theorem 4.4) any semi-excellent map Qq

B → R is of the
form

H =

L1∑
k1=1

L2∑
k2=L1+1

ak1k2
λk1

λk2
+ aL2+1λL2+1 + · · ·+ aLλL

for a (uniquely determined by H) real coefficients. Then there is a linear monomor-
phism sending anyH (in question) into the collection of the sequence (aL1+1, . . . , aL)

(corresponding to H) and the r × r-matrix [bs1s2 ] such that bs1s2 := H(v
(1,s1)
1 +

v
(1,s2)
2 ) for s1, s2 = 1, . . . , r. If H is excellent, then

−bs1s2 = −H(v
(1,s1)
1 + v

(1,s2)
2 ) = H(s□(v(1,s1)

1 + v
(1,s2)
2 ))

= H(v
(1,s2)
1 + v

(1,s1)
2 ) = bs2s1

for any s1, s2 = 1, . . . , r, where s = (1, 2) ∈ S2 is the cycle. Now, the lemma is
clear. □
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Theorem 5.8. If m ≥ q + 2 = 4, then any Mfm-natural operator D : ∧2T ∗ ⇝
∧2T ∗T r is of the form

ω 7→
∑

1≤σ1<σ2≤r

aσ1σ2iLω
(σ1) ∧ iLω

(σ2) +

r∑
s=0

asω
(s) +

r∑
σ=1

bσdiLω
(σ)

for (uniquely determined by D) real numbers aσ1σ2
, as, bσ.

Proof. Suppose we have∑
1≤σ1<σ2≤r

aσ1σ2iLω
(σ1) ∧ iLω

(σ2) +

r∑
s=0

asω
(s) +

r∑
σ=1

bσdiLω
(σ) = 0

for any q-form ω on Rm. Putting tω instead of ω we get

t2
∑

1≤σ1<σ2≤r

aσ1σ2
iLω

(σ1) ∧ iLω
(σ2) + t(

r∑
s=0

asω
(s) +

r∑
σ=1

bσdiLω
(σ)) = 0

for any t ∈ R. Then∑
1≤σ1<σ2≤r

aσ1σ2
iLω

(σ1) ∧ iLω
(σ2) = 0 and

r∑
s=0

asω
(s) +

r∑
σ=1

bσdiLω
(σ) = 0

for any q-form ω on Rm. Then a0 = · · · = ar = 0 and b1 = · · · = br = 0 (because
of Lemma 5.6) and ∑

1≤σ1<σ2≤r

aσ1σ2
iLω

(σ1) ∧ iLω
(σ2) = 0

for any q-form ω on Rm. Put ω = dx1 ∧ dx2. It is L =
∑m

i=1

∑r
µ=1 µ(x

i)(µ)∂
(r−µ)
i

(because of (L((xi)(µ)))|jr0γ = 1
µ!

d
dτ |τ=0

dµ

dtµ |t=0
(xi(γ(exp(τ)t)) = µ(xi)

(µ)
|jr0γ

). Then

(iLω
(σ))(∂

(r)
1 ) =

m∑
i=1

r∑
µ=1

µ(xi)(µ)ω(σ)(∂
(r−µ)
i , ∂

(r)
1 )

=

m∑
i=1

r∑
µ=1

µ(xi)(µ)ω(∂i, ∂1)
(σ−µ) = −σ(x2)(σ).

Similarly,

(iLω
(σ))(∂

(r)
2 ) = σ(x1)(σ).

Then

(iLω
(σ1) ∧ iLω

(σ2))(∂
(r)
1 , ∂

(r)
2 ) = σ1σ2(−(x2)

(σ1)(x1)(σ2) + (x1)(σ1)(x2)(σ2)).

Then ∑
1≤σ1<σ2≤r

aσ1σ2σ1σ2(−(x2)
(σ1)(x1)(σ2) + (x1)(σ1)(x2)(σ2)) = 0.

Evaluating at jr0(t
s1 , ts2 , 0, . . . , 0) ∈ T rRm, we get as1s2 = 0 for 1 ≤ s1 < s2 ≤ r.

Then the dimension argument ends the proof of our theorem.
□
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Remark 5.9. Ifm ≥ q+2 = 3, one can see that any semi-excellent (then excellent)
map H : Q1

B → R is of the form

a1(λ
(1,1)
1 , . . . , λ

(1,s)
1 )λ(1) +

r∑
s=1

a2,s(λ
(1,1)
1 , . . . , λ

(1,s)
1 )λ(2,s)

+

r∑
s=1

a3,s(λ
(1,1)
1 , . . . , λ

(1,s)
1 )λ(3,s),

where λ
(1,1)
1 , . . . is the dual basis to the adapted basis v

(1,1)
1 , . . . (the collection of

Lemma 5.4), where a1, a2,s, a3,s : Rr → R are smooth maps. So, we reobtained
the result of [6] saying that if m ≥ 3, then the space of all Mfm-natural operators
T ∗ ⇝ T ∗T r is the free (2r + 1)-dimensional C∞(Rr)-module. In [6], we presented
the (rather complicated) basis of this module. It seems that any Mfm-natural
operator D : T ∗ ⇝ T ∗T r is of the form

ω 7→
r∑

ν=0

hν(iLω
(1), . . . , iLω

(r))ω(ν) +

r∑
σ=1

gσ(iLω
(1), . . . , iLω

(r))diLω
(σ)

for (uniquely determined by D) smooth maps hν , gσ : Rr → R, where L is the
(mentioned above) canonical vector field on T r. We leave this problem to be open.
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