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ENDPOINT ESTIMATES FOR HIGHER ORDER GAUSSIAN

RIESZ TRANSFORMS

FABIO BERRA, ESTEFANÍA DALMASSO, AND ROBERTO SCOTTO

Abstract. We will show that, contrary to the behavior of the higher order

Riesz transforms studied so far on the atomic Hardy space H1(Rn, γ), associ-

ated with the Ornstein-Uhlenbeck operator with respect to the n-dimensional
Gaussian measure γ, the new Gaussian Riesz transforms are bounded from

H1(Rn, γ) to L1(Rn, γ), for any order and dimension n. We will also prove

that the classical Gaussian Riesz transforms of higher order are bounded from
an adequate subspace of H1(Rn, γ) into L1(Rn, γ), extending T. Bruno (2019)

for the first order case.

1. Introduction

For x ∈ Rn, let dγ(x) = π−n/2e−|x|2dx be the n-dimensional non-standard
Gaussian measure and let L be the closure on L2(γ) of the Ornstein-Uhlenbeck
differential operator given by

L = −1

2
∆ + x · ∇ =

n∑
i=1

δ∗i δi,

where δi = 1√
2
∂
∂xi

, and δ∗i = − 1√
2
e|x|

2 ∂
∂xi

(
e−|x|2 ·

)
is the formal adjoint of δi

on L2(γ). This operator L is defined on the space C∞
c (Rn) of smooth and com-

pactly supported functions on Rn. It is well known that L is an unbounded positive
self-adjoint operator on L2(γ). Its spectrum is discrete composed by non-negative
integers as eigenvalues whose eigenfunctions are the normalized n-dimensional Her-
mite polynomials {hα}α∈Nn

0
which turn out to be an orthonormal basis on L2(γ).

That is, Lhα = |α|hα with |α| =
∑n
i=1 αi and

Dom(L) =

f ∈ L2(γ) :
∑
α∈Nn

0

|α|2|⟨f, hα⟩|2 <∞

 .

Let us observe also that C∞
c (Rn) ⊆ Dom(L) and L = L on C∞

c (Rn).
We define two types of higher order Gaussian Riesz transforms, known in the

literature as the “old” and the “new” ones. First, let us note that these transforms
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2 F. BERRA, E. DALMASSO, AND R. SCOTTO

can be spectrally defined as follows: for a multi-index α ∈ Nn0 \ {(0, . . . , 0)}, the
“old” Gaussian Riesz transforms of order α are given by

Rα = DαL− |α|
2

being Dα = δα1
1 . . . δαn

n ; and the “new” ones have the form

R∗
α = D∗α(L+ I)−

|α|
2

being D∗α = δ∗α1
1 . . . δ∗αn

n and I the identity operator on L2(γ).
Our main aim is to analyze the continuity of these singular integrals on L1(γ).

It is well known, as it happens in the classical context for the Laplacian operator,
that these transforms are not bounded on L1(γ). And as it is noted in [11] the
“old” Riesz transforms are not bounded neither from the Gaussian atomic Hardy
space H1(γ) (given in [10]) into L1(γ), for n > 1. There was a satisfactory answer of
this matter, provided by T. Bruno in [3], in the case of the first order old Gaussian
Riesz transforms, which are bounded from a certain subspace X1(γ) ⊆ H1(γ)
into L1(γ). Now we shall complete this study for higher order old Gaussian Riesz
transforms by using smaller subspaces as we increase the order of the transform, and
at the same time we prove the boundedness of the new ones from H1(γ) into L1(γ).

To that end, we will first need the concept of atom to introduce the corresponding
atomic Hardy space H1(γ) later. Given r ∈ (1,∞], a Gaussian (1, r)–atom is either
the constant function 1 or a function a ∈ Lr(γ) supported in an admissible ball B
(see its definition in Section 2) such that∫

a dγ = 0 and ∥a∥r ≤ γ(B)
1
r−1.

From now on, the symbol ∥ · ∥r denotes the norm in Lr(γ). In the latter case, we
say that the atom a is associated to the ball B.

The space H1,r(γ) is then the vector space of all functions f ∈ L1(γ) that admit
a decomposition of the form

∑
j λjaj , where the aj are Gaussian (1, r)–atoms

and the series associated to the sequence of complex numbers {λj} is absolutely
convergent. The norm of f in H1,r(γ) is defined as the infimum of

∑
j |λj | over all

these representations of f .
In [10] and [11] the spaces H1,r(γ) were defined and proved to coincide for all

1 < r ≤ ∞, with equivalent norms. So any one of them is called H1(γ). In view of
these facts, we shall refer to the atoms in H1(γ) as H1–atoms.

In Section 2 we will introduce a new Hardy space Xk(γ) for each k ∈ N. The
sequence of these new Hardy spaces form a strictly decreasing chain such that
Xk+1(γ) ⊊ Xk(γ) ⊊ H1(γ). And these spaces will be suitable to the boundedness
of Rα when p = 1, where the parameter k is related to the order α as we can see
below.

We state our two main theorems which take care of the boundedness of these
Gaussian Riesz transforms on L1(γ).

Theorem 1.1. Rα is bounded from Xk(γ) to L1(γ), for any multi-index α with
k = |α|, and any dimension.

https://doi.org/10.33044/revuma.4878
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HIGHER ORDER GAUSSIAN RIESZ TRANSFORMS 3

Theorem 1.2. R∗
α is bounded from H1(γ) to L1(γ), for any multi-index α and

any dimension.

The article is organized as follows. In Section 2 we introduce some notation,
definitions and properties of L, whereas in Section 3 we establish the definitions of
atoms and Hardy type spaces in the Gaussian framework. In order to prove our
main theorems in Section 5, we give previously several auxiliary results in Section 4.

2. Preliminaries

For the operator L introduced before, and for every z ∈ C we define

Lz =
∞∑
j=1

jzPj , Dom(Lz) =

f ∈ L2(γ) :

∞∑
j=1

j2Re z∥Pjf∥22 <∞

 ,

being Pj the orthogonal projection onto the Wiener chaos space of order j, i.e.
Pjf =

∑
|α|=j⟨f, hα⟩hα with hα the normalized Hermite polynomial of degree

|α| = j, where α ∈ Nn0 . Let us remark that L1 = L.
For f ∈ Dom(L), we have

Lf(x) =
∞∑
j=1

j Pjf(x).

Recall that the family of orthonormalized Hermite polynomials {hα}α∈Nn
0
is an

orthonormal basis on L2(γ) (see, for instance, [14]). Thus, we can rephrase

Dom(L) =
{
f ∈ L2(γ) : Lf ∈ L2(γ)

}
.

If Re z < 0, the operator Lz turns out to be bounded on L2(γ) and we have
Dom(Lz) = L2(γ). Meanwhile, if Re z ≥ 0, then C∞

c (Rn) ⊆ Dom(Lz) by the
decomposition Lz = Lz−NLN with N = [Re z] + 1.

Let Π0 be the orthogonal projection

Π0 : L2(γ) → ker(L)⊥ =

{
f ∈ L2(γ) :

∫
Rn

fdγ = 0

}
.

In terms of the spectral resolution {Pj}j≥0, Π0 = I − P0 since

P0 : L2(γ) → ker(L) ≡ C,

with

P0f =

∫
Rn

f dγ.

We shall denote the space Π0(L
2(γ)) as L2

0(γ).

Lemma 2.1. For every positive integer k we have

LkL−kf = Π0f ∀f ∈ L2(γ), L−kLkf = Π0f ∀f ∈ Dom(Lk).

https://doi.org/10.33044/revuma.4878


Revista de la Unión Matemática Argentina Accepted article · Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.4878.

Submitted: July 16, 2024
Accepted: February 15, 2025
Published (early view): February 24, 2025
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Proof. Let us see that for f ∈ L2(γ), L−kf ∈ Dom(Lk). From the definitions of Pj
and L−k, and the orthonormality of {hα}α∈Nn

0
we have

Pj(L−kf) =
1

jk
Pjf

and thus
∞∑
j=1

j2k∥Pj(L−kf)∥22 =

∞∑
j=1

j2k
1

j2k
∥Pjf∥22

=

∞∑
j=1

∥Pjf∥22

≤
∞∑
j=0

∥Pjf∥22

= ∥f∥22 <∞.

Hence, L−kf ∈ Dom(Lk) and from the definition of Lk and L−k we get that, for
f ∈ L2(γ),

LkL−kf =

∞∑
j=1

Pjf = f −
∫
Rn

f dγ = Π0f.

Similarly, for f ∈ Dom(Lk), we get

L−kLkf = Π0f. □

Particularly, from the above result, we have

LkL−kf = f ∀f ∈ L2
0(γ), L−kLkf = f ∀f ∈ Dom(Lk) ∩ L2

0(γ).

Let us introduce several function spaces that will play an important role in the
definition of special atoms and investigate the relationship among them.

Recall that L is an elliptic operator. Thus, for a given bounded open subset Ω
of Rn, a positive integer k and a real constant c, every solution u of the equation

Lku = cXΩ

is smooth in Ω by elliptic regularity. Here, XΩ denotes the characteristic function
of Ω.

We will now introduce some function spaces related with the solutions of the
integer powers of L.

Definition 2.2. Suppose that k is a positive integer and that Ω is a bounded open
subset of Rn.We say that a function u is k–quasi-harmonic on Ω if Lku is constant
on Ω (in the sense of distributions, hence in the classical sense, since u is smooth
by elliptic regularity). We shall denote by q2k(Ω) the space of k–quasi-harmonic
functions on Ω which belong to L2(γ).

The subspace of q2k(Ω) of all functions v such that Lkv = 0 on Ω will be denoted
by h2k(Ω).

https://doi.org/10.33044/revuma.4878
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HIGHER ORDER GAUSSIAN RIESZ TRANSFORMS 5

Definition 2.3. Given a compact subset K ⊆ Rn, we say that a function v is
k–quasi-harmonic on K if v is the restriction to K of a function in q2k(Ω) for some
bounded open set Ω containing K. We shall denote by q2k(K) the space of all k–
quasi-harmonic functions on K. The subspace of all functions which are restrictions
to K of functions in h2k(Ω) will be denoted by h2k(K).

Remark 2.4. Let K be a compact subset of Rn. Then

q2k(K)⊥ =
{
v ∈ L2(γ) : L−kv ∈ L2

0(K, γ)
}

being L2
0(K, γ) the space of functions w ∈ L2(γ) with suppw ⊆ K and

∫
wdγ = 0.

The proof of this remark can be found in [12] for the Laplace–Beltrami operator
and K = B with B a ball. Although it follows the same lines as the ones in [12,
Proposition 3.3(i)], we will state it here for the sake of completeness.

Proof of Remark 2.4. First let us prove q2k(K)⊥ ⊆ {v ∈ L2(γ) : L−kv ∈ L2
0(K, γ)}.

Let v ∈ q2k(K)⊥. In order to prove that the support of L−kv is a subset of K
it suffices to show that ⟨L−kv,XB⟩ = 0 for every ball B ⊆ Rn \ K. Since L is
self-adjoint then

⟨L−kv,XB⟩ = ⟨v,L−kXB⟩.
On the other hand, notice that L−kXB ∈ q2k(K). Indeed, there exists a bounded
open subset Ω of Rn with K ⊆ Ω and LkL−kXB = XB − γ(B) on Ω; in particular,
with XB = 0 on K. Thus the last inner product in the above equality vanishes.

Now we prove that the function L−kv has average 0 with respect to γ. Indeed,
since supp(L−kv) ⊆ K and L is self-adjoint, we have∫

Rn

L−kv dγ = ⟨L−kv,XΩ⟩ = ⟨v,L−kXΩ⟩.

Since v ∈ q2k(K)⊥ and L−kXΩ ∈ q2k(K) then this last integral vanishes, as required.
Next let us prove the other inclusion. We assume that L−kv ∈ L2

0(K, γ), for
v ∈ L2(γ). Then v ∈ Dom(Lk) and v = LkL−kv. If we take w ∈ q2k(K), there
exists Ω a bounded open subset of Rn with K ⊆ Ω such that Lkw is constant on Ω.
Therefore w turns out to be smooth on Ω, and

⟨v, w⟩ = ⟨LkL−kv, w⟩ = ⟨L−kv,Lkw⟩ = 0.

The last equality holds since Lkw is constant on Ω and L−kv ∈ L2
0(K, γ). □

Everything that is said henceforth is understood in the sense of distributions,
unless something else is specified. Let u be a function in Dom(Lk) such that it
vanishes on the complement of B for B a ball in Rn. Then Lku is in L2(γ) and
vanishes on Rn \ B. For every ball B we introduce two operators LkB and LkB,Dir

defined as the restriction of Lk (in the distribution sense) to

Dom(LkB) := {u ∈ Dom(Lk) : suppu ⊆ B},

Dom(LkB,Dir) :=
{
u ∈W 2k−1,2

0 (B) : Lku ∈ L2(γ), supp(Lku) ⊆ B
}
,

https://doi.org/10.33044/revuma.4878
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6 F. BERRA, E. DALMASSO, AND R. SCOTTO

respectively. Here, for j ∈ N, the closure of C∞
c (B) = {u ∈ C∞

c (Rn) : suppu ⊆ B}
will be denoted by W j,2

0 (B) with respect to the norm

∥u∥W j,2
0 (B) =

∑
|α|≤j

∥Dαu∥2L2(B)

1/2

.

Notice that W j,2
0 (B) =W j,2

0 (B, γ) since B is a bounded set.
The following lemma gives an identification of the domain of LkB , for any k ∈ N.

The case k = 1 can be found in [3, Lemma 2.6].

Lemma 2.5. Let B be a ball in Rn. Then Dom(LkB) =W 2k,2
0 (B) with equivalence

of norms.

Proof. As said above, for the case k = 1 we have the result by T. Bruno in [3]. For
the general case we use induction on k since

Dom(LkB) = {u ∈ Dom(LB) : Lu ∈ Dom(Lk−1
B )}.

Indeed, let us assume Dom(LkB) =W 2k,2
0 (B). Then

Dom(Lk+1
B ) = {u ∈ Dom(LB) : Lu ∈ Dom(LkB) =W 2k,2

0 (B)}.

Thus, given u ∈ Dom(Lk+1
B ), we have Lu = f with f ∈W 2k,2

0 (B) and suppu ⊆ B,

so we get u ∈ W 2k+2,2
0 (B) (cf. [4, Theorem 6.5]). Conversely, taking into account

that DαL = LDα − 2|α|Dα and that B is a bounded set, if u ∈ W 2k+2,2
0 (B) then

Lu ∈W 2k,2
0 (B), from this u ∈ Dom(Lk+1

B ). So the case k + 1 is also true. □

In the spirit of [3, Lemma 2.7] we can obtain the following lemma regarding sev-
eral properties for the functions spaces previously defined, as well as the operators
LkB and LkB,Dir.

Lemma 2.6. The following statements hold.

(i) Both spaces q2k(B) and h2k(B) are closed subspaces of L2(B);

(ii) Lk is a Banach space isomorphism between Dom(LkB) and h2k(B)⊥;

(iii) h2k(B)⊥ = h2k(B)⊥;
(iv) Ran(LkB) = h2k(B)⊥;

(v) q2k(B)⊥ = q2k(B)⊥;
(vi) Dom(LkB) ⊆ Dom(LkB,Dir).

Proof. Let us first prove item (i). Clearly h2k(B) is a subspace of q2k(B) of co-
dimension one. Indeed, we have the vector space decomposition

q2k(B) = h2k(B)⊕ C
(
L−kψ|B

)
,

being ψ ∈ L2
0(γ) ∩ C∞

c (Rn) such that ψ = 1 on B, and C(φ) = {cφ : c ∈ C}.
Let u ∈ q2k(B). Then Lku = c = cψ on B. From the definition of ψ we have
LkL−kψ = ψ. If we take v = u−cL−kψ|B we have that Lkv = Lku−cLkL−kψ = 0
on B. Thus v ∈ h2k(B) and u = v + cL−kψ|B . Since ψ ∈ L2

0(γ), we have that the
sum is direct.

https://doi.org/10.33044/revuma.4878
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Let us prove that q2k(B) and h2k(B) are closed subspaces of L2(B). Due to the
above decomposition it is enough to prove that h2k(B) is closed. Indeed, let {vj}j∈N
be a sequence on h2k(B) that converges on L2(B) to v ∈ L2(B). Then Lkvj con-
verges to Lkv in the sense of distributions. Thus Lkv = 0 on B, whence v ∈ h2k(B).

We turn now our attention to item (ii). We first observe that Lk(Dom(LkB)) ⊆
h2k(B)⊥. Let f ∈ Dom(LkB) and fix v ∈ h2k(B). Then there exist an open set

Ω ⊇ B and a function w ∈ h2k(Ω) such that w|B = v. We can construct a function

ṽ ∈ C∞
c (Rn) ∩ h2k(Rn) such that ṽ = w on B and supp ṽ ⊆ Ω. Observe that∫

B

vLkf dγ =

∫
B

wLkf dγ =

∫
Ω

ṽLkf dγ =

∫
Rn

ṽLkf dγ =

∫
Rn

Lkṽ f dγ = 0,

where we have used that∫
Rn

ṽLkf dγ =

∫
Rn

(∑
α

⟨ṽ, hα⟩hα

)∑
β

|β|k⟨f, hβ⟩hβ

 dγ

=
∑
α

∑
β

⟨ṽ, hα⟩|β|k⟨f, hβ⟩⟨hα, hβ⟩

=
∑
α

|α|k⟨ṽ, hα⟩⟨f, hα⟩

=

∫
Rn

Lkṽf dγ.

At this point we shall prove now that LkB is injective on Dom(LkB). Indeed, if
f ∈ Dom(LkB) and Lkf = 0 we have that L(Lk−1f) = 0, so Lk−1f is a constant

L2–function with support contained in B. Therefore Lk−1f = 0. By proceeding
recursively we get that f = 0.

As the next step we will prove that Lk maps Dom(LkB) onto h2k(B)⊥. Fix

v ∈ h2k(B)⊥ and define ṽ = vXB . Then, we have f = L−k(ṽ) ∈ Dom(Lk) since

L−k : L2(γ) → Dom(Lk). We also have∫
Rn

ṽ dγ =

∫
B

v dγ = 0

since 1 ∈ h2k(B). Thus ṽ ∈ L2
0(γ) and consequently

Lkf = Lk
(
L−kṽ

)
= Π0ṽ = ṽ.

We now fix a test function ϕ ∈ C∞
c (B

c
) ∩ L2

0(γ). Then we can write

⟨ϕ, f⟩ =
〈
Lk(L−kϕ),L−kṽ

〉
=
〈
L−kϕ, ṽ

〉
=

∫
B

L−kϕv dγ = 0,

since L−kϕ ∈ h2k(B). By the arbitrariness of ϕ we can conclude that f is constant

on B
c
, that is, f(x) = c for every x ∈ B

c
. The function g = f − c belongs to

Dom(Lk), supp g ⊆ B and

Lkg = Lk(f − c) = Lkf = ṽ = v.

https://doi.org/10.33044/revuma.4878
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Consequently, we have proved that the operator Lk is a bijection between Dom(LkB)
and h2k(B)⊥. We also have that Lk is continuous since Dom(LkB) =W 2k,2

0 (B).

Let T = Lk : Dom(LkB) → h2k(B)⊥. We are going to show that T−1 is continuous

from h2k(B)⊥ to Dom(LkB). In order to prove that, we shall see that its graph is

closed. Let {fj}j∈N be a sequence in h2k(B)⊥ such that fj → f when j → ∞ on

L2(B) and T−1fj → g, where g ∈ W 2k,2
0 (B). By the surjectivity of T−1 we have

that there exists f̃ ∈ h2k(B)⊥ such that g = T−1f̃ . By the continuity of T we get

fj = T
(
T−1fj

)
→ Tg = f̃ ,

then we conclude that f = f̃ . By the closed graph theorem we obtain that T−1 is
continuous.

The proof of items (iii) to (vi) follow similar lines as in [3, Lemma 2.7] and we
shall omit it. □

3. Hardy type spaces and atoms

As mentioned in the introduction, the definition of the suitable atoms for the
old Gaussian Riesz transforms will require to consider a family of balls such that
the Gaussian measure γ is doubling on such a family.

Given an Euclidean ball B = B(cB , rB) where cB is its center, and rB > 0 its
radius, we will say that B is an admissible ball if rB ≤ m(|cB |) where the function
m : R+

0 → R+ is defined as

m(s) =

{
1, 0 ≤ s ≤ 1,
1
s , s > 1.

The collection of these balls will be denoted by B1. For any constant c > 0, by cB
we will denote the ball with same center as B and c times its radius.

As it is well-known (see, for instance, [10, Proposition 2.1 and Remark 2.2]), the
Gaussian measure is doubling on B1, that is, for any ball B ∈ B1,

γ(2B) ≤ Dγγ(B),

with doubling constant Dγ > 0 independent of B.
We are now in position to define, for every k ∈ N, an Xk–atom and its corre-

sponding atomic Hardy type space Xk(γ) in this setting.

Definition 3.1. Given k ∈ N, we say that a function a ∈ L2(γ) is an Xk–atom if
a is supported on an admissible ball B ∈ B1, and verifies

(a) ∥a∥L2(γ) ≤ ωk(rB)γ(B)−1/2, with ω1(rB) = ω2(rB) = 1 and ωk(rB) = rk−2
B

for k ≥ 3;
(b) a ∈ q2k(B)⊥.

Remark 3.2. Since X2B ∈ q2k(B), observe that condition (b) implicitly says that∫
a dγ = 0. On the other hand, since ωk(rB) ≤ 1, for every k, we get from (a) that

∥a∥L2(γ) ≤ γ(B)−1/2. (3.1)
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Remark 3.3. It is easy to see that every Xk–atom is also an Xj–atom for every
1 ≤ j ≤ k.

Remark 3.4. Condition (a) implies that each atom is in L1(wkγ) with

wk(x) =

{
1 k = 1, 2;

1 + |x|k−2 k ≥ 3.

Indeed, for any k ≥ 1,

∥a∥L1(wkγ) ≤ ∥wkXB∥L2(γ)∥a∥L2(γ)

≤ ∥wkXB∥L2(γ)ωk(rB)γ(B)−1/2

≤ 1 + 2k−2. (3.2)

This will allow us to deduce the boundedness of the old Gaussian Riesz trans-
forms just having proved the uniform boundedness of them on the atoms and
taking into account that Rα with |α| = k are bounded from L1(wkγ) into L

1,∞(γ)
(see [5]). Let us also remark that in order to get the uniform boundedness of these
old Gaussian Riesz transforms on atoms we will use the weaker condition (3.1).

Remark 3.5. We shall point out that if a is an Xk–atom, then a
|||L−k|||2

is an

H1–atom supported in B. Here ||| · |||2 stands for the norm on the Banach space of
bounded linear operators defined on L2(γ).

Indeed, since a ∈ q2k(B)⊥, by Remark 2.4, L−ka ∈ L2
0(B, γ). Moreover, by (3.1)

∥L−ka∥L2(γ) ≤
∣∣∣∣∣∣L−k∣∣∣∣∣∣

2
∥a∥L2(γ) ≤

∣∣∣∣∣∣L−k∣∣∣∣∣∣
2
γ(B)−1/2.

Since we are expecting a strong endpoint type result for the old Gaussian Riesz
operator, we shall consider a subset of L1(wkγ), given below.

Definition 3.6. Given k ∈ N, the Hardy space Xk(γ) is defined by

Xk(γ) :=

f ∈ L1(γ) : f =
∑
j∈N

λjaj , aj an X
k–atom ∀j ∈ N, {λj}j∈N ∈ ℓ1

 .

The norm for this space is given by

∥f∥Xk(γ) := inf

∥{λj}∥ℓ1 : f =
∑
j∈N

λjaj , aj an X
k–atom ∀j ∈ N

 .

As claimed, Xk(γ) ⊆ L1(wkγ), since for f ∈ Xk(γ) and from (3.2) we get

∥f∥L1(wkγ) ≤
∞∑
i=1

|λi|∥ai∥L1(wkγ) ≤
(
1 + 2k−2

) ∞∑
i=1

|λi|.
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4. Auxiliary results

We shall see next that the operator L−k preserves the support of Xk–atoms,
which will be one of the key ingredients in the proof of Theorem 1.1 in the following
section. We refer to [3, Proposition 2.5] for the case k = 1.

In the following, by A ≲ B we shall understand that there exists a positive
constant C such that A ≤ CB, where C may change in each occurrence.

Proposition 4.1. Let a be an Xk–atom supported on an admissible ball B. Then,
supp(L−ka) ⊆ B and

∥L−ka∥L2(γ) ≲ r2kB γ(B)−1/2.

Proof. Let a be an Xk–atom. By items (iv) and (v) of Lemma 2.6 we obtain that

a ∈ q2k(B)⊥ = q2k(B)⊥ ⊆ h2k(B)⊥ = Ran(LkB).
Then there exists f ∈ Dom(LkB) ⊆ Dom(LkB,Dir), by virtue of item (vi) of Lemma 2.6,

such that LkB,Dirf = LkBf = a. We have that f = L−k
B,Dir a since LkB,Dir is one-

to-one in Dom(LkB). Consequently, supp L−k
B,Dir a = supp f ⊆ B and further

L−k
B,Dir a = L−ka. Therefore, since LB,Dir has a discrete spectrum (cf. [8, The-

orem 10.13]), so has LkB,Dir and thus∥∥L−ka
∥∥
L2(γ)

=
∥∥∥L−k

B,Dira
∥∥∥
L2(γ)

≤ (λγDir(B))
−k ∥a∥L2(γ) ≤ (λγDir(B))

−k
γ(B)−1/2,

where we have used (3.1) and λγDir(B) denotes the first eigenvalue of LB,Dir. From
this point on, we can proceed as in the proof of [3, Proposition 2.5]. □

In order to prove Theorem 1.1 we will require the following lemma, proved in [10].

Lemma 4.2 ([10, Lemma 7.1]). Let B = B(cB , rB) be a ball in Rn. For y ∈ B set
rB,y = rB

2|y| for y ̸= 0, and rB,y = ∞ for y = 0.

(i) If rB,y ≥ 1, then 4|x − ry| ≥ |x − cB |, for every r ∈ [0, 1] and every
x ∈ (2B)c;

(ii) if rB,y < 1, then 4|x− ry| ≥ |x− cB |, for every r ∈ [1− rB,y, 1] and every
x ∈ (2B)c;

(iii) for every δ > 0 there exist positive constants C1 and C2 such that

1

(1− r2)n/2

∫
(2B)c

e
− δ|x−cB |2

1−r2 dx ≤ C1φδ

(
rB√
1− r2

)
≤ C1e

−C2r2B
1−r2 ,

where φδ(s) = (1 + s)n−2e−δs
2 ≤ cne

−C2s
2

, for s > 0.

The following result will be useful in the proof of Theorem 1.2, as it takes care
of the derivatives of Lk/2 for odd orders k. When k = 1, the proof can be found in
[3, Lemma 2.8].

Lemma 4.3. Let α be a multi-index with |α| = k, being k an odd positive integer.
Then ∥∥∥DαLk/2f

∥∥∥
L1((4B)c,γ)

≲ r−2k
B ∥f∥L1(B,γ),

https://doi.org/10.33044/revuma.4878
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for every ball B ∈ B1 and every f ∈ L1(γ) such that supp f ⊆ B.

Proof. For k odd we have that Lk/2 has the following kernel (see, for instance, [3,
p. 1612])

KLk/2(x, y) =
1

π
n
2 Γ
(
−k

2

) ∫ 1

0

(− log r)−
k
2−1

 e
− |rx−y|2

1−r2

(1− r2)
n
2
− e−|y|2

 dr

r
.

For |α| = k, by using the chain rule and the definition of the n-dimensional Hermite
polynomials, we have

Dα
x

(
e
− |rx−y|2

1−r2

)
=

rk

(1− r2)
k
2

Hα

(
rx− y√
1− r2

)
e
− |rx−y|2

1−r2 ,

and taking into account that −|rx − y|2 = −|x − ry|2 + (1 − r2)
(
|x|2 − |y|2

)
, we

get the following kernel

Dα
xKLk/2(x, y)

=
1

π
n
2 Γ
(
−k

2

) ∫ 1

0

(− log r)−
k
2−1

(1− r2)
n
2

Dα
x

(
e
− |rx−y|2

1−r2

)
dr

r

=
1

π
n
2 Γ
(
−k

2

) ∫ 1

0

(− log r)−
k
2−1rk−1

(1− r2)
n+k

2

Hα

(
rx− y√
1− r2

)
e
− |rx−y|2

1−r2 dr

=
e|x|

2−|y|2

π
n
2 Γ
(
−k

2

) ∫ 1

0

rk−1

(− log r)
k+2
2 (1− r2)

n+k
2

Hα

(
rx− y√
1− r2

)
e
− |x−ry|2

1−r2 dr.

Let ℓ ∈ N0 be a non-negative integer such that k = 2ℓ + 1. By using again the
definition of Hermite polynomials on Rn, it is well-known that

|Hα(u)| ≲
ℓ∑
j=0

|u|2j+1,

for u ∈ Rn. Thus,

|Dα
xKLk/2(x, y)| ≲

ℓ∑
j=0

e|x|
2−|y|2

∫ 1

0

rk−1|rx− y|2j+1

(− log r)
k+2
2 (1− r2)

n+k+1
2 +j

e
− |x−ry|2

1−r2 dr.

Fix f ∈ L1(γ) with supp f ⊆ B for some ball B = B(cB , rB) ∈ B1. Then,

∥Dα
xLk/2f∥L1((4B)c,γ) ≤

∫
(4B)c

∫
B

|Dα
xKLk/2(x, y)||f(y)|dy e−|x|2dx

≲
ℓ∑
j=0

∫
(4B)c

∫
B

∫ 1

0

rk−1|rx− y|2j+1

(− log r)
k+2
2 (1− r2)

n+k+1
2 +j

× e
− |x−ry|2

1−r2 dr|f(y)|dγ(y)dx

:=

ℓ∑
j=0

∫
B

Ij(y)|f(y)|dγ(y),
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where

Ij(y) =

∫ 1

0

rk−1

(− log r)
k+2
2 (1− r2)

n+k+1
2 +j

∫
(4B)c

|rx− y|2j+1e
− |x−ry|2

1−r2 dxdr

:=

∫ 1

0

J(y, r) dr =

∫ 1
2

0

J(y, r) dr +

∫ 1

1
2

J(y, r) dr

:= Ij,1(y) + Ij,2(y),

for each j = 0, 1, . . . , ℓ.
If we prove that

Ij,i(y) ≲ r−2k
B , j = 0, 1, . . . , ℓ, i = 1, 2 (4.1)

we can conclude that

∥Dα
xLk/2f∥L1((4B)c,γ) ≲ ℓr−2k

B ∥f∥L1(B,γ) ≈ r−2k
B ∥f∥L1(B,γ).

In order to estimate (4.1) for Ij,1(y), let us consider v = x − ry so we get
rx − y = rv + (r2 − 1)y and dx = dv. Since y ∈ B ∈ B1, |y| ≤ |cB | + rB ≤ 2

rB
.

Then

|rx− y| ≤ r|v|+ (1− r2)|y| ≤ |v|+ |y| ≤ |v|+ 2

rB
≤ 2

|v|+ 1

rB
.

We apply this and use that 1− r2 ≥ 3
4 and rk−1

(− log r)
k+2
2

≤ 21−k

(log 2)
k+2
2

for 0 < r ≤ 1
2 ,

to get

Ij,1(y) ≲
∫ 1

2

0

rk−1

(− log r)
k+2
2

∫
Rn

(|v|+ 1)2j+1

r2j+1
B

e−|v|2dvdr

≲
1

r2ℓ+1
B

∫
Rn

e−|v|2/2dv ≲
1

rkB
.

Clearly, since rB ≤ 1, we also have Ij,1(y) ≲ r−2k
B , for every j = 0, 1, . . . , ℓ.

When 1
2 < r < 1, we have that − log r ≈ 1− r2. By splitting

|rx− y| = |r(x− ry)− (1− r2)y| ≤ |x− ry|+ (1− r2)|y|,
we have

Ij,2(y)

≲
∫ 1

1
2

1

(1− r2)
k+2
2 (1− r2)

n+k
2

∫
(4B)c

(
|rx− y|√
1− r2

)2j+1

e
− |x−ry|2

1−r2 dxdr

≲
∫ 1

1
2

1

(1− r2)
n
2 +k+1

∫
(4B)c

[(
|x− ry|√
1− r2

)2j+1

+
(√

1− r2|y|
)2j+1

]
e
− |x−ry|2

1−r2 dxdr

≲
∫ 1

1
2

1 +
(√

1− r2|y|
)2j+1

(1− r2)k+1

(
1

(1− r2)
n
2

∫
(4B)c

e
− |x−ry|2

2(1−r2) dx

)
dr. (4.2)

Now, let rB,y be the number defined in Lemma 4.2 and consider the cases rB,y ≥ 1
and rB,y < 1.

https://doi.org/10.33044/revuma.4878
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If rB,y ≥ 1, for any x ∈ (4B)c and r ∈
(
1
2 , 1
)
we have that |x− ry| ≥ 1

4 |x− cB |
by Lemma 4.2 (i). Hence, from Lemma 4.2 (iii)

1

(1− r2)
n
2

∫
(4B)c

e
− |x−ry|2

2(1−r2) dx ≤ 1

(1− r2)
n
2

∫
(4B)c

e
−c |x−cB |2

1−r2 dx

= C1φc

(
rB√
1− r2

)
≤ C1e

−C2
r2B

1−r2 ,

being φc(s) = (1 + s)n−2e−cs
2

.
This leads to

Ij,2(y) ≲
∫ 1

1
2

1 +
(√

1− r2|y|
)2j+1

(1− r2)k+1
e
−C2

r2B
1−r2 dr

≲
∫ 1

1
2

1 +
(√

1− r2|y|
)2j+1

(1− r2)k−
1
2

e
−C2

r2B
1−r2

2r

(1− r2)
3
2

dr.

Setting s = rB/
√
1− r2, ds/rB = rdr/(1− r2)

3
2 , and recalling that rB |y| ≤ 1

2 , we
get

Ij,2(y) ≲
∫ 1

1
2

1 +
(√

1− r2|y|
)2j+1(√

1− r2
)2k−1

e
−C2

r2B
1−r2

r

(1− r2)
3
2

dr

≲
∫ ∞

0

1 +
(
rB
s |y|

)2j+1(
rB
s

)2k−1
e−C2s

2 ds

rB

=
1

r2kB

∫ ∞

0

s2j+1 + (rB |y|)2j+1

s2j+1
s2k−1e−C2s

2

ds

≲
1

r2kB

∫ ∞

0

(
s2k−1 + s2(k−j−1)

)
e−C2s

2

ds

≲
1

r2kB
,

since k − j − 1 ≥ k−1
2 ≥ 0 for every 0 ≤ j ≤ ℓ = k−1

2 . This gives estimate (4.1)
when rB,y ≥ 1.

We now study the case rB,y < 1. We split the integral Ij,2(y) := Ij,2,1(y) +
Ij,2,2(y) on

(
1
2 , 1− rB,y

)
and (1− rB,y, 1), respectively. For the second one, we can

apply Lemma 4.2 (ii) and (iii) and proceed as in the previous case.
On the interval

(
1
2 , 1− rB,y

)
, we can proceed as in (4.2) to get

Ij,2,1(y) ≲
∫ 1−rB,y

1
2

1 + (1− r2)j+
1
2 |y|2j+1

(1− r2)k+1

(
1

(1− r2)
n
2

∫
(4B)c

e
− |x−ry|2

2(1−r2) dx

)
dr.
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We perform the change of variables v = x−ry√
2(1−r2)

, dv = dx

(2(1−r2))
n
2
, in order to

obtain

Ij,2,1(y) ≈
∫ 1−rB,y

1
2

1 + (1− r2)j+
1
2 |y|2j+1

(1− r2)k+1

∫
Rn

e−|v|2dvdr

≈
∫ 1−rB,y

1
2

1 + (1− r)j+
1
2 |y|2j+1

(1− r)k+1
dr

≤ 1

rkB,y
+ |y|2j+1

∫ 1−rB,y

1
2

(1− r)j−k−
1
2 dr

≲
1

rkB,y
+

|y|2j+1

r
k−j− 1

2

B,y

≈ |y|k

rkB
+

|y|k+j+ 1
2

r
k−j− 1

2

B

=

(
|y|
rB

)k (
1 + (|y|rB)j+

1
2

)
.

Since |y| ≤ |cB |+ rB ≤ 2
rB

and |y|rB ≤ 2, we get

Ij,2,2(y) ≲ r−2k
B .

The proof is now concluded. □

5. Proofs of Theorems 1.1 and 1.2

For proving the main results, we may need the integral representations of both
Gaussian Riesz transforms Rα and R∗

α. Given a multi-index α ∈ Nn0 \ {(0, . . . , 0)},
we have

Rαf(x) = p.v.

∫
Rn

kα(x, y)f(y) dy,

and

R∗
αf(x) = p.v.

∫
Rn

k∗α(x, y)f(y) dy,

where

kα(x, y) = cn,α

∫ 1

0

r|α|−1

(
− log r

1− r2

)|α|/2−1

Hα

(
y − rx√
1− r2

)
e
− |y−rx|2

1−r2

(1− r2)n/2+1
dr

and

k∗α(x, y) = cn,αe
|x|2−|y|2

∫ 1

0

(
− log r

1− r2

)|α|/2−1

Hα

(
x− ry√
1− r2

)
e
− |x−ry|2

1−r2

(1− r2)n/2+1
dr,

respectively.
The operator Rα turns out to be bounded on Lp(γ), for 1 < p < ∞, (see,

for instance, [7], [9], [13]). For the first order Gaussian Riesz transforms R∗
ei ,

i = 1, . . . , n, the Lp(γ) boundedness was obtained in [6] for 1 < p <∞. By means
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of Meyer’s multiplier theorem, the “new” higher order Gaussian Riesz transforms
are also bounded on Lp(γ), as can be proved similarly to [14, Corollary 9.14].

Proof of Theorem 1.1. First we are going to prove that the old higher order Gauss-
ian Riesz transforms Rα with |α| = k are uniformly bounded on L1(γ) when ap-
plied to every Xk–atom. Once this is done the boundedness of Rα from Xk(γ)
into L1(γ) would follow from the knowledge that these transforms are bounded
from L1(wkγ) into L1,∞(γ) (see [5]). Indeed, by following steps closely to the
ones done in, for instance, [2] we get for f =

∑
j λjaj with aj an Xk–atom

and
∑
j |λj | < ∞ that the series defining f converges on L1(wkγ) and therefore

Rαf = limℓ→∞Rα

(∑ℓ
j=1 λjaj

)
on L1,∞(γ).

Then there exists an increasing function ψ : N → N such that

Rαf(x) = lim
ℓ→∞

Rα

ψ(ℓ)∑
j=1

λjaj

 (x) a.e. x ∈ Rn.

Thus,

|Rαf(x)| = lim
ℓ→∞

∣∣∣∣∣∣
ψ(ℓ)∑
j=1

λjRαaj(x)

∣∣∣∣∣∣ ≤
∞∑
j=1

|λj ||Rαaj(x)|.

From this

∥Rαf∥L1(γ) ≤
∞∑
j=1

|λj |∥Rαaj∥L1(γ) ≤ C

∞∑
j=1

|λj |,

where C is an absolute constant independent of the atoms on which any f ∈ Xk(γ)
is decomposed as we shall see it in what follows. Then, ∥Rαf∥L1(γ) ≤ C∥f∥Xk(γ).

Let us then prove that
∥Rαa∥L1(γ) ≤ C (5.1)

for every Xk–atom a. For k even, let us call k = 2j. Then the “old” Gaussian
Riesz transforms of even order now become ∇2jL−j with ∇2j =

∑
|α|=2j D

α.

Let a be an Xk–atom. Then, by Remark 3.3, a is also an Xj–atom. Since a is
supported in a critical ball B, by Proposition 4.1 we have that L−ja is supported
in B. By applying Hölder inequality and the boundedness of ∇2jL−j on L2(γ) we
get that

∥∇2jL−ja∥L1(γ) ≤ ∥∇2jL−ja∥L2(γ)γ(B)1/2 ≲ ∥a∥L2(γ)γ(B)1/2 ≲ 1,

where we have also used Remark 3.2. This takes care of the boundedness from
Xk(γ) to L1(γ) of the “old” k-th order Gaussian Riesz transforms for k even.

We now turn to the proof of the boundedness of this operator for k odd. Given
an Xk–atom a, notice that

∥Rαa∥L1(γ) ≤ ∥Rαa∥L1(4B,γ) + ∥Rαa∥L1((4B)c,γ).

For the first term on the right-hand side we apply again Hölder inequality, together
with the L2(γ) boundedness of Rα. This yields

∥Rαa∥L1(4B,γ) ≤ ∥Rαa∥L2(4B,γ)γ(4B)1/2 ≲ ∥a∥L2(γ)γ(4B)1/2 ≲ 1,
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where in the last inequality we have used that a is an Xk–atom and γ is doubling
over admissible balls.

To take care of the term ∥Rαa∥L1((4B)c,γ), we writeD
αL−k/2a = DαLk/2(L−ka).

Since a is an Xk–atom, we get suppL−ka ⊆ B and

γ(B)1/2∥L−ka∥L2(γ) ≲ r2kB ,

by Proposition 4.1. By applying Lemma 4.3 and the inequality above with f = L−ka,
we get

∥DαL−k/2a∥L1((4B)c,γ) =
∥∥∥DαLk/2f

∥∥∥
L1((4B)c,γ)

≲ r−2k
B ∥f∥L1(B,γ)

≲ r−2k
B γ(B)1/2∥L−ka∥L2(γ)

≲ 1.

This proves (5.1) for every k ∈ N. □

Proof of Theorem 1.2. Let us point out here that in order to prove the boundedness
of the new Gaussian Riesz transforms from H1(γ) into L1(γ), we will not be able
to apply [10, Theorem 6.1(ii) and Remark 6.2] for if we consider m(x, y) being the
kernel associated to the old Gaussian Riesz transforms, m∗(x, y) does not represent
the kernel associated to the new higher order ones. So, given an H1–atom a, in
order to prove this result we will proceed as in the proof of the boundedness of the
old higher order Gaussian Riesz transforms of odd order, by splitting the norm in
the following way

∥R∗
αa∥L1(γ) ≤ ∥R∗

αa∥L1(2B,γ) + ∥R∗
αa∥L1((2B)c,γ).

Then, the first term of the sum is bounded by the L2(γ)-norm of R∗
αa times

γ1/2(2B) and we use the continuity of R∗
α on L2(γ) and the fact that γ is a doubling

measure over B1.
Now, for taking care of the second term of the above sum we use the fact that

the atom a has its support contained in B and it has average zero over that ball.
This yields

∥R∗
αa∥L1((2B)c,γ)

≤ C

∫
B

|a(y)|
∫
(2B)c

∣∣∣∣∫ 1

0

λα(r)

(1− r2)n/2+1
(Fα(x, y, r)− Fα(x, cB , r))dr

∣∣∣∣ dxdγ(y),
being λα(r) =

(
− log r
1−r2

) |α|
2 −1

and Fα(x, y, r) = Hα

(
x−ry√
1−r2

)
e
− |x−ry|2

1−r2 .

By applying the mean value theorem to the function Fα in the variable y, we
get that

∥R∗
αa∥L1((2B)c,γ) ≲ νs∥a∥L1(γ) ≤ νs∥a∥L2(γ)γ

1/2(B) ≲ νs

being

νs = sup
B∈B1

sup
y∈B

rB

∫
(2B)c

s(x, y)dx
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and

s(x, y) = cn

∫ 1

0

λα(r)

(1− r2)n/2+1
|∇yFα(x, y, r)|dr.

Now we prove the finiteness of νs. For every i = 1, . . . , n

∂yiFα(x, y, r) = 2r

(
αiHα−ei

(
x− ry√
1− r2

)
− xi − ryi√

1− r2
Hα

(
x− ry√
1− r2

))
e
− |x−ry|2

1−r2

√
1− r2

,

which leads to

|∇yFα(x, y, r)| ≲
∣∣∣∣P ( x− ry√

1− r2

)∣∣∣∣ e−
|x−ry|2

1−r2

√
1− r2

,

where P is a polynomial of degree |α|. Therefore,

|∇yFα(x, y, r)| ≲
e
− |x−ry|2

2(1−r2)

√
1− r2

.

Consequently,

νs ≲ sup
B∈B1

sup
y∈B

rB

∫
(2B)c

∫ 1

0

λα(r)

(1− r2)3/2
e
− |x−ry|2

2(1−r2)

(1− r2)n/2
drdx

= sup
B∈B1

sup
y∈B

rB

∫ 1

0

λα(r)

(1− r2)3/2

∫
(2B)c

e
− |x−ry|2

2(1−r2)

(1− r2)n/2
dxdr

In order to see that νs < ∞ it will be enough to show that for every ball B ∈ B1

and every y ∈ B,

I =

∫ 1

0

λα(r)

(1− r2)3/2

∫
(2B)c

e
− |x−ry|2

2(1−r2)

(1− r2)n/2
dx dr ≲

1

rB
.

Let rB,y be the number defined in Lemma 4.2 and assume that rB,y ≥ 1. By

applying items (i) and (iii) in Lemma 4.2, and the fact that λα(r) ≤ Cα,nr
−1/2 for

any r ∈ (0, 1/2), we get

I ≲
∫ 1

0

λα(r)

(1− r2)3/2
e
−C2

r2B
1−r2 dr

≲
∫ 1/2

0

λα(r) dr +

∫ 1

1/2

e
− C2r2B

2(1−r2)

(1− r2)3/2
dr (5.2)

≤
√
2Cα,n +

2

rB

∫ ∞

0

e−C2u
2

du

≲ 1 +
1

rB

≲
1

rB
.
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We turn now our attention to the case rB,y < 1. We split the integral I into
three parts, I1, I2 and I3, being

I1 =

∫ 1/2

0

λα(r)

(1− r2)3/2

∫
(2B)c

e
− |x−ry|2

2(1−r2)

(1− r2)n/2
dx dr,

I2 =

∫ 1−rB,y

1/2

λα(r)

(1− r2)3/2

∫
(2B)c

e
− |x−ry|2

2(1−r2)

(1− r2)n/2
dx dr,

I3 =

∫ 1

1−rB,y

λα(r)

(1− r2)3/2

∫
(2B)c

e
− |x−ry|2

2(1−r2)

(1− r2)n/2
dx dr.

We shall estimate every term above separately. We apply item (ii) from Lemma 4.2

and the change of variable z = |x− cB |/
√
1− r2 to have

I1 ≲
∫ 1/2

0

λα(r)

∫
Rn

e
− |x−cB |2

2(1−r2)

(1− r2)n/2
dx dr

=

(∫ 1/2

0

λα(r) dr

)(∫
Rn

e−
|z|2
2 dz

)
≲ 1 ≤ 1

rB
,

where we have again used the integrability of λα as in (5.2).
On the other hand, since λα(r) ≤ Cα for r ∈ [1/2, 1], and 1 − r2 ≈ 1 − r on

[1/2, 1− rB,y], by repeating the argument for I1 on the inner integral, we get

I2 ≲
∫ 1−rB,y

1/2

1

(1− r)3/2

∫
Rn

e
− |x−ry|2

2(1−r2)

(1− r2)n/2
dx dr ≲

(∫ 1/2

rB,y

u−3/2 du

)(∫
Rn

e−
|z|2
2 dz

)

≲
1

r
1/2
B,y

=

(
2|y|
rB

)1/2

≲ 1 +
1

rB
≲

1

rB
,

since |y|1/2 ≤ r
1/2
B + r

−1/2
B .

Finally, the bound for I3 follows as in the case rB,y ≥ 1 by using item (ii) in
Lemma 4.2 and proceeding similarly as in the estimate for the second term of (5.2).

Taking into account that these new higher order Gaussian Riesz transforms are
also bounded from L1(γ) into L1,∞(γ) (see [1]) and proceeding as before when
we have other types of continuity, these operators extend boundedly to the whole
atomic space H1(γ). □
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