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A PROPERTY OF HOMOGENEOUS ISOPARAMETRIC

SUBMANIFOLDS

CRISTIÁN U. SÁNCHEZ

Abstract. The present paper contains a new result concerning the second

fundamental form of a compact, connected, homogeneous, isoparametric sub-

manifold M of codimension h ≥ 2 in a Euclidean space.

1. Introduction

The objective of the present paper is to indicate a property of every compact,
connected, homogeneous, irreducible, isoparametric submanifold M of Rn+h (n =
dim (M)) which, to the best of our knowledge, has not been previously noticed in
the literature on the subject.

Let us consider such an isoparametric submanifold M ⊂ Rn+h. It is a Riemann-
ian submanifold with the induced Riemannian metric from Rn+h so we have the
associated Levi-Civita connection ∇ and the corresponding second fundamental
form α : Tp (M)× Tp (M) −→ T⊥

p (M).

The definition of isoparametric submanifold of a Euclidean space M ⊂ Rn+h

has a rich and very interesting history going far back to Levi-Civita, Cartan (and
beyond) and has a notorious highlight in the celebrated paper by G. Thorbergsson
[16]1. A detailed account of the development of the different definitions of these
submanifolds can be find in chapter 10 (by G. Thorbergsson) of the Handbook of
Differential Geometry Vol. I [4]. For a recent addition to this account, the reader
may consult also (by the same author) the paper [17].

The definition used in the present paper is the following. Let S be a compact (or
non compact) irreducible symmetric space and let (n+ h) be its dimension. Fix a
point p in S and let K be the isotropy subgroup of the point p. The homogeneous
isoparametric submanifolds associated to S are the principal orbits of the tangential
representation of K on Tp (S). They are considered submanifolds of the Euclidean
space Tp (S) ∼= Rn+h and are, of course, associated to the symmetric space S.2

In the papers [13] and [14] it is shown that in the tangent bundle T (M) of the
isoparametric submanifold M there is a canonical, smooth, completely non-
integrable, step 2 distribution D (Ω) ⊂ T (M).
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1It is a well known and celebrated result of G. Thorbergsson that for codimension h ≥ 3, all

isoparametric submanifolds are homogeneous.
2It is a frequent phenomenon in mathematics that an important theorem becomes a definition.
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Recall that a distribution D of r-planes (n > r ≥ 2) in a connected manifold M
is smooth [15, p. 41] if for any p ∈ M there is an open set A = A (p) containing
p and r smooth vector fields {X1, ..., Xr} defined on A such that, ∀q ∈ A and
1 ≤ j ≤ r, Xj (q) ∈ D (q) ⊂ Tq (M) and D (q) = spanR {Xj (q) : 1 ≤ j ≤ r}. The
distribution D is said to be completely non-integrable of step 2 if, for each
p ∈ M , the vector fields defined in A (p) satisfy:

SpanR {Xj (q) , [Xk, Xj ] (q) : 1 ≤ k, j ≤ r} = Tq (M) , ∀q ∈ A (1)

i.e. for D (q) = spanR {Xj (q)} we have D2 (q) = (D+ [D,D]) (q) = Tq (M), ∀q ∈
A ⊂ M .

We consider, on eachD (p), the restriction of the inner product ⟨∗, ∗⟩p on Tp (M).

The triple (M,D, ⟨∗, ∗⟩) is called a sub-Riemannian manifold. The mentioned prop-
erty of the isoparametric submanifold M is the content of the following:

Theorem 1.1. Let M be a compact, connected, homogeneous, irreducible, isopara-
metric submanifold M of Rn+h with codimension h ≥ 2 and let α (X,Y ) be its sec-
ond fundamental form in Rn+h. Then for any point p ∈ M and any X ∈ D (p) ⊂
Tp (M) we have (

∇Xα
)
(X,X) = 0

where
(
∇Xα

)
(Y, Z) = ∇⊥

X (α (Y,Z)) − α (∇XY,Z) − α (Y,∇XZ) is the usual co-
variant derivative of α. □

Then, since
(
∇Xα

)
(Y, Z) is symmetric by Codazzi’s equation, as a consequence

we have

Corollary 1.2. The restriction of the second fundamental form α from Tp (M)×
Tp (M) to D (Ω) × D (Ω) is parallel i.e.

(
∇Xα

)
(Y, Z) = 0 for X,Y, Z ∈ D (p) ⊂

Tp (M), ∀p ∈ M . □

This corollary may be rephrased by saying:

The sub-Riemannian manifold (M,D, ⟨∗, ∗⟩) is parallel.

Furthermore we also have:

Theorem 1.3. Under the hypothesis of Theorem 1.1, given any pair of points p
and q in M , there exists a C∞ horizontal curve γ : [0, b] −→ M such that:

(i) γ (0) = p, γ (b) = q and γ′ (t) ̸= 0 ∀t ∈ [0, b] (i.e. γ is regular).
(ii) the curve γ is a geodesic of the sub-Riemannian metric defined on M .
(iii) α is parallel along the curve γ that is:

(
∇γ′(t)α

)
(γ′ (t) , γ′ (t)) = 0,

∀t ∈ [0, b]. □
The organization of the paper is the following. In the next section we mention

the essential facts concerning the isoparametric submanifolds under consideration
while in Section 3 we recall the definition of the distribution D (Ω). That section
also contains Lemma 3.1, which is a consequence of the existence of D (Ω) and an
essential property of the distribution. Lemma 3.1 is indicated in [13] as well known
however, because of its importance for Theorem 1.3, we include a proof in Section 5.
The proof of Theorem 1.1 is contained in Section 4. In the proof we make essential
use of formula (24) which, for completeness, is proven in the Appendix.
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2. The submanifolds considered

The mentioned homogeneous isoparametric submanifolds M of codimension h ≥
2 in Euclidean spaces are the principal orbits of the tangential representation, at a
basic point, of a compact (or non compact dual) symmetric space. To obtain one
of these submanifolds, we consider a real simple noncompact Lie algebra g0 with
Cartan decomposition g0 = k0 ⊕ p0 and Cartan involution θ. Then k0 is a maximal
compactly embedded subalgebra of g0 [7, Pr.7.4 p.184]. Let K be the analytic
subgroup of Int (g0) corresponding to the subalgebra adg0 (k0) of adg0 (g0) which is
compact and let Bθ be the positive definite, symmetric bilinear form on g0 defined
by

Bθ (x, y) := ⟨x, y⟩θ = −B (x, θy) . (2)

where B is the Killing form of g0.
The principal orbits of the representation of K on p0 are the isoparametric

submanifolds M of Rn+h = (p0, ⟨∗, ∗⟩θ).
This is a consequence of our definition of isoparametric submanifold and the

connection between irreducible symmetric spaces and the Cartan decomposition of
simple Lie algebras. This fact seems to have been indicated for the first time in
[12].3

Let a0 be a maximal abelian subspace of p0 and consider the set Φ (g0, a0) of
roots restricted to a0 (see [13] for details and notation). Let ∆ (g0, a0) be a system
of simple roots in Φ (g0, a0). For λ ∈ Φ (g0, a0), it is usual to define the subspaces
associated to the Cartan decomposition:

k0,λ =
{
x ∈ k0 : (ad (h))

2
x = λ2 (h)x, ∀h ∈ a0

}
p0,λ =

{
x ∈ p0 : (ad (h))

2
x = λ2 (h)x, ∀h ∈ a0

} (3)

for which obviously k0,λ = k0,(−λ), p0,λ = p0,(−λ). With them, respect to Bθ (2),
we have orthogonal decompositions,

k0 = m0 ⊕
∑

λ∈Φ+(g0,a0)

k0,λ, p0 = a0 ⊕
∑

λ∈Φ+(g0,a0)

p0,λ (4)

where Φ+ (g0, a0) is the set of roots written with non-negative coefficients in terms
of ∆ (g0, a0) and m0 is the centralizer of a0 in k0.

Recall that , for any pair λ, µ ∈ Φ (g0, a0), we have the formulae:

[k0,λ, p0,µ] ⊂ p0,(λ+µ) + p0,(λ−µ)

[k0,λ, p0,λ] ⊂ p0,(2λ) + a0,
[k0,λ, a0] = p0,λ

(5)

where p0,δ = {0} and k0,δ = {0} if δ is not a root.
Let us fix a regular element E ∈ a0 ⊂ p0, call M = Ad (K)E ⊂ p0 its orbit and

let KE be the isotropy subgroup of K at E. The regularity of E implies that the

3We thank the anonymous referee for this observation.

https://doi.org/10.33044/revuma.4941
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isotropy subalgebra (corresponding to) KE is k0,E = m0. Furthermore the tangent
and normal spaces of M at E are:

TE (M) =
∑

λ∈Φ+(g0,a0)

[k0,λ, E] =
∑

λ∈Φ+(g0,a0)

p0,λ and T⊥
E (M) = a0 (6)

2.1. The manifolds of complete flags M = K/Tn. An important special case
of the above isoparametric submanifolds are the submanifolds of the form M =
K/Tn where Tn is a maximal torus of the compact, connected, simple, adjoint (i.e.
centerless) Lie group K. Let u0 be the compact simple Lie algebra corresponding
to K and let uC0 = u0 ⊕ iu0 be the complexification uC0 of u0 considered as a real

Lie algebra. Then g0 =
(
uC0
)R

= u0⊕ iu0 ≃ k0⊕ p0 is a Cartan decomposition of g0
[7, p. 185, (7.5)] and we may consider, as in the previous case, the principal orbits
of the adjoint action of K which are isoparametric submanifolds of p0 = iu0. They
are manifolds of complete flags of the form M = K/Tn for a maximal torus of the
group K.

Let us take a Cartan subalgebra t0 ⊂ u0 so it0 ⊂ iu0 is a maximal abelian
subspace of iu0 and h =(t0 ⊕ it0) ⊂ u0⊕ iu0 = g0 is a Cartan subalgebra of g0. We
have the roots in Φ (g0, h) and the restricted roots are those in Φ (g0, it0). They
are just the roots of u0 with respect to t0. Also in this case we shall use the general
notation indicated above.

3. Distribution

The roots of Φ+ (g0, a0) are written in terms of ∆ (g0, a0) as a Z linear combi-
nation with non-negative coefficients. It is usual to define the height of a root as
the sum of these coefficients and we may consider in Φ+ (g0, a0) the subsets Ω and
Γ of roots of odd and even height respectively. Then Φ+ (g0, a0) = Ω ∪ Γ and we
may consider, associated to the set Ω, a subspace DE (Ω) ⊂ TE (M) (6) defined
by DE (Ω) =

∑
λ∈Ω p0,λ. This subspace is invariant by the action of the isotropy

subgroup at E. Hence DE (Ω) defines a distribution D (Ω) on the manifold M by
translation with the action of the group K. Then at each point q = Ad (g)E ∈ M
we have: Dq = Dq (Ω) = Ad (g)DE (Ω) ⊂ Tq (M). It is clear that the distribu-
tion D (Ω) is well defined. As we indicated above in [13] it is shown that D (Ω) is
smooth and completely non-integrable of step 2 distribution in M .

The presence in M of the completely non-integrable step 2 distribution Dq (Ω)
has the following consequence. Recall that, given the distribution D, a curve
γ : [0, b] −→ M is said to be horizontal for D if γ′ (t) ∈ D (γ (t)) ∀t ∈ [0, b] and
regular if γ′ (t) ̸= 0 ∀t.

Lemma 3.1. Let M be a compact, connected, homogeneous isoparametric sub-
manifold of Rn+h = (p0, ⟨∗, ∗⟩θ) and consider in M the smooth distribution D (Ω),
defined above, which is completely non-integrable of step 2. Then for any two
points p, q in M there exists a horizontal, C∞, regular curve γ : [0, b] −→ M
such that γ (0) = p, γ (b) = q.

A proof of Lemma 3.1 is included in Section 5.
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4. Proof of Theorem 1.1

Let us consider our isoparametric submanifold M = Ad (K)E ⊂ p0 and take
two points a and c in M . Let us take the C∞ regular curve γ : [0, b] −→ M
(i.e. γ′ (t) ̸= 0, ∀t) such that γ (0) = a, γ (b) = c given by Lemma 3.1. As usual,
to say that the curve γ is C∞ in [0, b] means that it is defined and is C∞ in an
open interval containing [0, b]. Let t ∈ [0, b] we need to show that the second
fundamental form α of M in p0 satisfies:(

∇γ′(t)α
)
(γ′ (t) , γ′ (t)) = 0 (7)

Since γ (t) ∈ M there exists w ∈ K such that

γ (t) = Ad (w)E =: w (E) , γ′ (t) ∈ Dγ(t) = Ad (w)DE (Ω) ⊂ Tγ(t) (M)

Since K acts on the ambient space (p0, ⟨x, y⟩θ) by isometries then, for each
Y ∈ TE (M), the derivative: w∗|E : TE (p0) −→ Tγ(t) (p0) satisfies:(

∇w∗|EY α
)
(w∗|E Y, w∗|E Y ) = w∗|E

(
∇Y α

)
(Y, Y ) , Y ∈ TE (M)

and since
w∗|E Z = Ad (w)Z, ∀Z ∈ TE (p0)

in order to prove (7) we just need to show that(
∇γ′(0)α

)
(γ′ (0) , γ′ (0)) = 0, γ′ (0) ∈ DE (Ω) ⊂ TE (M) (8)

and so, in turn, to prove (8), it is enough to show that:(
∇Y α

)
(Y, Y ) = 0 ∀Y ∈ DE (Ω) ⊂ TE (M) (9)

To initiate the proof of (9), we need to introduce some general notation. Recall
that Φ+ (g0, a0) = Ω ∪ Γ and let us set:

u0 =
∑

λ∈Φ+(g0,a0)
k0,λ k0 = m0 ⊕ u0,

q0 =
∑

λ∈Φ+(g0,a0)
p0,λ p0 = a0 ⊕ q0,

(10)

u0 (Ω) =
∑

λ∈Ω k0,λ q0 (Ω) =
∑

λ∈Ω p0,λ
u0 (Γ) =

∑
λ∈Γ k0,λ u0 = u0 (Ω)⊕ u0 (Γ)

q0 (Γ) =
∑

λ∈Γ p0,λ q0 = q0 (Ω)⊕ q0 (Γ)
(11)

d0 (Γ) = a0 ⊕ q0 (Γ) (12)

To compute the covariant derivative of the second fundamental form
(
∇Y α

)
(Y, Y )

we use the formula (24) (which is proven in the Appendix). That is:(
∇[X,E]α

)
([X,E] , [X,E]) = −2

([
X, ([X, [X,E]])q0

]
a0

)
, for X ∈ u0 ⊂ k0

Let us take any non-zero Y ∈ q0 (Ω) = DE (Ω) ⊂ TE (M) ⊂ p0. Since, by (5)
and (11), q0 (Ω) = [u0 (Ω) , a0] we may take X ∈ u0 (Ω) such that Y = [X,E].

Then,for that X, we have to evaluate:
([

X, ([X, [X,E]])q0

])
a0

. Let us start by

noticing that:

[X, [X,E]] ∈ [u0 (Ω) , q0 (Ω)]

https://doi.org/10.33044/revuma.4941
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Then we have to study the product [u0 (Ω) , q0 (Ω)] and to that end compute:

[u0 (Ω) , q0 (Ω)] =
∑

λ,γ∈Ω

[k0,λ, p0,γ ]

so we need to compute the brackets [k0,λ, p0,γ ] (for λ, γ ∈ Ω). By (5), for any pair
λ, γ ∈ Ω, we have :

[k0,λ, p0,γ ] ⊂
{

p0,(2λ) + a0, if γ = λ
p0,(λ+µ) + p0,(λ−µ) if γ ̸= λ

Clearly, if (λ+ γ) is a root,(or 2λ is a root) it is positive and belongs to Γ. On the
other hand if (γ − λ) is a root then |γ − λ| is a root and and since p0,(γ−λ) =
p0,|γ−λ| it also belongs to Γ. Therefore, for any pair λ, γ ∈ Ω, we have:

[k0,λ, p0,γ ] ⊂ a0 ⊕
∑
µ∈Γ

p0,µ = d0 (Γ)

Then we have the inclusion:

[u0 (Ω) , q0 (Ω)] ⊂ d0 (Γ)

and in turn

[X, [X,E]] ∈ d0 (Γ) = a0 ⊕ q0 (Γ)

This clearly yields:

([X, [X,E]])q0
= ([X, [X,E]])(d0(Γ)∩q0)

∈ d0 (Γ)

Now, multiplying again by X, we have:[
X, ([X, [X,E]])q0

]
∈ [u0 (Ω) , d0 (Γ)] (13)

then we need to compute the product [u0 (Ω) , d0 (Γ)]. Recalling (10) we observe
that, by the definitions of u0 (Ω) and d0 (Γ), we have:

[u0 (Ω) , d0 (Γ)] =

(∑
λ∈Ω

k0,λ

)
,

a0 ⊕
∑
µ∈Γ

p0,µ


=

∑
λ∈Ω

[k0,λ, a0] +
∑
λ∈Ω

∑
µ∈Γ

[k0,λ, p0,µ]

so we study each of the last two terms separately. By (5), for the first term it holds:∑
λ∈Ω

[k0,λ, a0] =
∑
λ∈Ω

p0,λ ⊂ q0

https://doi.org/10.33044/revuma.4941
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while, again by (5), for the second one we similarly have:∑
λ∈Ω

∑
µ∈Γ

[k0,λ, p0,µ]

⊂
∑
λ∈Ω

∑
µ∈Γ

(
p0,(λ+µ) + p0,|λ−µ|

)
=
∑
λ∈Ω

∑
µ∈Γ

p0,(λ+µ) +
∑
λ∈Ω

∑
µ∈Γ

p0,|λ−µ|

⊂
∑

δ∈Φ+(g0,a0)

p0,δ = q0

Then we obtained

[q0 (Ω) , d0 (Γ)] ⊂ q0

and in turn, by (13), we have:[
X, ([X, [X,E]])q0

]
∈ q0

Then we clearly get: ([
X, ([X, [X,E]])q0

])
a0

= 0

because q0 and a0 are orthogonal to each other. So our Y = [X,E] ∈ q0 (Ω)
satisfies: (

∇[X,E]α
)
([X,E] , [X,E]) =

(
∇Y α

)
(Y, Y ) = 0

Then we have proven (9) and Theorem 1.1.

5. Proof of Lemma 3.1

Let ⟨∗, ∗⟩p (p ∈ M) be an inner product defined on D (p) varying smoothly

with p ∈ M . The triple (M,D, ⟨∗, ∗⟩) is called a sub-Riemannian manifold. A
particular case is when (as it is the situation here) we start with a Riemannian
manifold M and take the restriction, of the inner product in each tangent space,
to D. A Lipschitz curve γ : [0, b] −→ M is called horizontal if γ′ (t) ∈ D (γ (t))
for almost every t ∈ [0, b]. The length of γ is defined in the usual way as: L (γ) =∫ b

0
⟨γ′ (t) , γ′ (t)⟩γ(t) dt and for two points x, y ∈ M it is usual to define

d (x, y) = inf {L (γ) : γ is horizontal, γ (0) = x and γ (b) = y} (14)

If the set of horizontal Lipschitz curves joining x with y is not empty for any
(x, y) then d is a distance on M called the Carnot-Carathéodory distance [5]. Since
M is connected,and the distribution satisfies (1) (the Hormander condition) the
Chow-Rashevski Theorem [9, 2.1.2 p.44] [5, p.95] indicates that the set of Lipschitz
curves joining x and y is not empty for every pair (x, y). Furthermore, by the
topological theorem [9, 2.13 p.44] the topology of the Carnot-Carathéodory distance
coincides with the manifold topology. Since M is compact every sequence in M
has a convergent subsequence hence every Cauchy sequence converges. Therefore
M with the Carnot-Carathéodory distance d is complete. If (M,d) is complete,
the closed balls are compact and the argument in [1, Cor 3.49, p. 91] shows that
the infimum in (14) is attained. That is, there is at least one horizontal curve γ
joining x with y such that L (γ) = d (x, y) (in general γ is not unique). This γ

https://doi.org/10.33044/revuma.4941
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is called a length minimizing curve (or length minimizer). This curve is Lipschitz
(differentiable almost everywhere on [0, b]).

In our situation, we have on the manifold M a distribution D which is a bracket
generating of step 2 which means that for every point p ∈ M and some local set
of fields {X1, ..., Xr} (defined in an open set A containing p) generating D (p),
∀p ∈ A ⊂ M we have: D2 (p) = (D+ [D,D]) (p) = Tp (M). That is (1) is satisfied.

The point to be mentioned here is that length-minimizers can be of two types
which are respectively called normal and abnormal (see [8, p.329]). But it is well
known that distributions of step 2 have not abnormal length-minimizers
(see for instance [10, p. 318, Th.4] also [6, Section 1.4 p.6] and [2, Th. 3.7, 3.8
p.390]) so we are left with the normal ones. The normal length-minimizers are
those which satisfy the geodesic equation [1, p. 121, Th.4.25]. Then given two
points x, y in M there is a normal minimizer joining them. This curve in M is C∞

and parametrized by constant non-zero speed, hence, it is regular in M [1, p. 122,
Cor. 4.27]. Then, it can be parametrized by arc length. Compare also [10, p. 318,
Th.4].

This yields the proof of Lemma 3.1.

6. Appendix

Computation of ∇α.
In the present Appendix we give a proof of formula (24) used, in an essential

way, in the proof of theorem 1.1 (contained in Section 4).It is important to make
here the following:

Remark 6.1. The isoparametric submanifolds under consideration are R-spaces
( orbits of s-representations) since, in fact, they are all principal orbits of the tan-
gential representations of symmetric spaces.

We have the Euclidean covariant derivative ∇E in (p, ⟨∗, ∗⟩) and the Levi-Civita
connection ∇ associated to the induced metric on M . Also on M we are going to
consider the canonical connection determined by the decomposition k0 = m0 ⊕ u0,
(10) which we shall denote by ∇C [3, p. 200]. We have the second fundamental
form of M on p and Gauss formula:

∇E
UW = ∇UW + α (U,W ) .

We need to compute ∇E
UW . Let us take, for some X ∈ u0, the curve in M of the

form
γ (t) = (Ad (exp (tX))E) . (15)

Its tangent vector at E is γ′ (0) = [X,E] and if we take t1 > 0 then we may
compute the derivative γ′ (t1) by

γ′ (t1) = d
dt

∣∣
t=0

(Ad (exp ((t1 + t)X))E)

= d
dt

∣∣
t=0

(Ad (exp ((t1)X))Ad (exp ((t)X))E)

= Ad (exp ((t1)X)) d
dt

∣∣
t=0

Ad (exp ((t)X))E
= Ad (exp ((t1)X)) [X,E]

(16)

and so this gives the tangent field along γ (t).
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It is well known that curves like γ in (15) are ∇C-geodesics and that the ∇C-
parallel translation along these geodesics is precisely given by (16) [3, p. 200].

Let us take a tangent vector at E

[Y,E] ∈ TE (M) = [k0, E] = [u0, E]

and extend it to a field along γ by

[Y,E]
∗
= Ad (exp (tX)) [Y,E] . (17)

Let us compute now, for X,Y ∈ u0, in (10)

∇E
[X,E] [Y,E]

∗
=

d

dt

∣∣∣∣
t=0

(Ad (exp (tX)) [Y,E]) = [X, [Y,E]] ∈ p0.

and writing the Gauss formula for [X,E] and [Y,E]
∗
, we have:

∇E
[X,E] [Y,E]

∗
= ∇[X,E] [Y,E]

∗
+ α ([X,E] , [Y,E])

then, since p0 = a0⊕q0, we may take the component in each one of these subspaces.
That is:

∇[X,E] [Y,E]
∗
= ([X, [Y,E]])q0

α ([X,E] , [Y,E]) = ([X, [Y,E]])a0

(18)

Now, we need to compute the covariant derivative of α, which, by definition is:(
∇[X,E]α

)
([Y,E] , [Z,E]) (19)

= ∇⊥
[X,E]α ([Y,E] , [Z,E])− α

(
∇[X,E] [Y,E] , [Z,E]

)
− α

(
[Y,E] ,∇[X,E] [Z,E]

)
Now in [11] (see also [3, p. 212]) it was introduced the canonical covariant

derivative of the second fundamental form α as follows:(
∇C

[X,E]α
)
([Y,E] , [Z,E]) (20)

= ∇⊥
[X,E]α ([Y,E] , [Z,E])− α

(
∇C

[X,E] [Y,E] , [Z,E]
)
− α

(
[Y,E] ,∇C

[X,E] [Z,E]
)

Recall now that a central result of the paper [11] is that the condition(
∇C

[X,E]α
)
([Y,E] , [Z,E]) = 0

characterizes R-spaces and, since M , as indicated in Remark 6.1, is an R-space
, we have:

0 = ∇⊥
[X,E]α ([Y,E] , [Z,E])− α

(
∇C

[X,E] [Y,E] , [Z,E]
)
− α

(
[Y,E] ,∇C

[X,E] [Z,E]
)

(21)
Subtracting now (21) from (19) we get:(

∇[X,E]α
)
([Y,E] , [Z,E]) (22)

= −α (D ([X,E] , [Y,E]) , [Z,E])− α ([Y,E] , D ([X,E] , [Z,E]))

where

D = ∇−∇C
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is the difference tensor of the two connections ∇ and ∇C. Now, if we take X =
Y = Z we obtain, for X ∈ u0 ⊂ k0:(

∇[X,E]α
)
([X,E] , [X,E]) = −2α (D ([X,E] , [X,E]) , [X,E]) (23)

Now, to complete our computation of ∇α, we need to study the difference tensor
D ([X,E] , [Y,E]). To that end we use the fact that the tangent field [Y,E]

∗
in (17),

is parallel respect to the canonical connection ∇C along γ. Then we have:

D ([X,E] , [Y,E]) = ∇[X,E] [Y,E]
∗ −∇C

[X,E] [Y,E]
∗
= ∇[X,E] [Y,E]

∗

and going back to (18) we obtain

D ([X,E] , [Y,E]) = ∇[X,E] [Y,E]
∗
= Ta ([X, [Y,E]]) = ([X, [Y,E]])q0

Therefore the equality (23) becomes(
∇[X,E]α

)
([X,E] , [X,E]) = −2

([
X, ([X, [X,E]])q0

]
a0

)
(24)

and we have the sought formula 24.
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