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AND DANIEL HERNÁNDEZ SERRANO

Abstract. We propose a stochastic simplicial SIS model where two inde-

pendent sources of noise are utilized to perturb the individual and collective
infection rates. After proving that the model has a unique global solution,

two sets of conditions on the parameters that give exponential stability of the
trivial solution are presented. We then found conditions for persistence and

show that the solution of the SDE oscillates infinitely often around a point

under such requirements. We validate the theoretical statements by perform-
ing numerical experiments, as well as simulations on both real and synthetic

simplicial networks, with results that align with the theoretical and numerical

predictions of the model.

1. Introduction

When using higher-order contagion models to understand the spread of dis-
eases in real-world populations, groups of infectious agents interact with suscep-
tible agents and the probability of infection is thus determined by the interrela-
tions between these groups and susceptible individuals. The interaction topol-
ogy of these models is usually described by simplicial complexes or hypergraphs
[7, 43] and their use has produced numerous advances in a variety of domains
([11, 21, 22, 35, 37, 17, 18]. While classical epidemiological studies have tradition-
ally used deterministic compartmental systems [29, 24], recent research has shown
the relevance of studying epidemics spreading over hypergraphs or simplicial com-
plexes [19, 26, 3, 5, 34, 12, 4].

Stochastic models are also important as they capture the inherent randomness
and unknown control measures in real-world networks modelled by graphs [20, 16,
30, 32, 42, 27, 2, 33, 46, 41]. In [40, 23], we have presented a single white noise
stochastic model of social contagion in simplicial networks based on the mean-field
approach of [26]. We used a specific Ito’s stochastic differential equation (SDE)
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to simulate the dynamics of a network and extended a model proposed in [20] to
account for simultaneous contagion scenarios.

The novelty of this work lies in introducing two independent noise sources (each
with its own intensity) to represent stochastic fluctuations in individual and group-
level contagion, which perturb the transmission parameters of the simplicial con-
tagion model. This modeling choice is motivated by real-world situations where
these two mechanisms operate asynchronously, even within the same environment.
For instance, in a closed bus where a large group has just disembarked, the risk of
group-based transmission may remain high due to poor ventilation, but the actual
randomness of group contagion at that moment is low. Meanwhile, individual-
level contagion remains possible, for example, if a passenger sits near an infectious
person. This decoupling between sources of randomness justifies treating them as
independent and allows for a more nuanced representation of epidemic dynamics.
The assumption allows us to separate and analyze their respective contributions
at a first order approximation, and is a common approach in stochastic modeling
when multiple, non-synchronized sources of uncertainty are present. The introduc-
tion of stochasticity on a deterministic model over usual networks and using several
independent white noises can be found in other contributions; many of them as-
sume that the noises are directly proportional to the number of the corresponding
population, see e.g. [38, 39, 45, 47], whereas in [10] the authors use a diffusion
coefficient in square root form. We show here that, under a couple of appropriate
conditions, if the stochastic basic reproductive number is smaller than one, then
the disease dies out with probability one; otherwise the solution of the SDE oscil-
lates infinitely often around a point which can be explicitly computed. Moreover
we define a second threshold whose value less than one leads to the almost sure
extinction of the disease using only one of the former conditions. We illustrate
the theoretical results by performing numerical experiments and we generalise to
the two independent noises case the stochastic simplicial contagion model of [23]
to carry out simulations on a real simplicial network, which provides a high de-
gree of agreement with the theoretical and numerical predictions of the stochastic
differential equation of the model.

2. A stochastic simplicial SIS type model with two independent
noises

Given a simplicial complex of dimension 2, [26] introduces a mean field (MF)
approach for a simplicial SIS model:

dI(t)

dt
= β(1− I(t))I(t) + β∆(1− I(t))I(t)2 − µI(t) , (2.1)

where:

• µ denotes the recovery probability.
• β := β1⟨k1⟩, β∆ := β2⟨k2⟩.
• β1 is the probability that a node belonging to a 1-simplex (edge) is infected
by the remaining vertice assuming that this vertex is infectious. β2 is the

https://doi.org/10.33044/revuma.4994
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probability that a node belonging to a 2-simplex (filled triangle) is infected
by the two remaining vertices assuming that both vertices are infectious.

• k1 denotes the number of 1-simplices (edges) a node belongs to. Similarly,
k2 denotes the number of 2-simplices (filled triangles) a node belongs to.
And ⟨ki⟩ (i = 1, 2) stands for their means.

The introduction of randomness into a compartmental system has been pro-
posed perturbing the variables of the system, see [15] or [45], or, more commonly,
considering the natural unpredictability of the parameters of the model, see e.g.
[20, 27, 30, 31, 41, 42]. Notice, for example, that the stochastic system considered
in [20] was achieved replacing in the deterministic model the parameter β by the
random term β + σξt, with ξt a white Gaussian noise, and σ a coefficient that
controls the degree of the perturbation, leading to the SDE

dI(t) = (β (1− I(t)− µ) I(t)dt+ σ (1− I(t))I(t)dW (t) (2.2)

where W (t) stands for a scalar Wiener process. On the other hand, in [40] the
authors study the SDE obtained from (2.1) perturbing both the disease transmis-
sion coefficients β and β∆ with the same standard Wiener process and different
intensities σ and σ∆, respectively.

In the present work we use two independent white noises ξ1t , ξ
2
t with intensities

σ and σ∆ to perturb, respectively, the parameters β and β∆ in the simplicial model
(2.1). In other words, we are replacing β by the random variable β + σξ1t and β∆

by β∆ + σ∆ξ
2
t . The coefficients σ and σ∆ modulate the intensity of the stochas-

tic fluctuations and are interpreted as context-specific risk factors (for instance,
σ∆ would be higher in crowded or enclosed spaces, reflecting higher exposure to
group-based contagion). The term ξ1t represents random individual-level fluctua-
tions and typically arises from direct unpredicted person-to-person contact (such
as standing next to an infectious individual). The term ξ2t accounts for random
fluctuations in simultaneous group interactions (such as speaking in a group or
shared space) and also can involve indirect exposure through accumulated viral
load in the environment (e.g., airborne particles persisting after an infected group
disembarks from a bus). Although both noise sources may be associated with the
same setting (e.g., a closed bus), the actual stochastic fluctuations in individual
and group contagion can occur asynchronously. For example, after a group of pas-
sengers disembarks, the randomness associated with group-based contagion, ξ2t ,
may be low (even though the structural risk factor σ∆ remains high due to poor
ventilation) while individual-level randomness, ξ1t , may still be significant due to
remaining nearby contacts. This temporal decoupling between contagion mecha-
nisms supports the assumption that the two noise processes are independent.

With this change the equation (2.1) results in the stochastic differential equation
(SDE)

dI(t) =
(
β (1− I(t))I(t)− µ I(t) + β∆ (1− I(t))I(t)2

)
dt

+ σ (1− I(t))I(t)dW 1(t) + σ∆ (1− I(t))I(t)2dW 2(t),
(2.3)
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where W 1(t),W 2(t) are independent one-dimensional Wiener processes. So, this
stochastic equation generalizes the deterministic simplicial model (2.1) (σ = σ∆ =
0) and the stochastic SIS model (2.2) presented in [20] (β∆ = σ∆ = 0). Notice that,
although two independent noises are used as in [10], the rationale of this approach
is different and square root diffusion terms do not appear.

The term σ (1 − I(t))I(t)dW 1(t) captures individual-level stochastic transmis-
sion, where σ quantifies the structural risk of random interpersonal contacts (e.g.,
casual encounters in public transport, markets, or workplaces), and W 1(t) intro-
duces randomness due to the unpredictable nature of such contacts over time.
The term σ∆ (1− I(t))I(t)2dW 2(t) corresponds to group-level or collective conta-
gion, where σ∆ reflects the environmental risk associated with shared spaces (e.g.,
crowded indoor venues, poorly ventilated rooms), andW 2(t) accounts for stochastic
fluctuations in whether or not such group exposure results in transmission.

We start this section proving a theorem of existence and uniqueness for (2.3).
Then we analyze the stability behavior of its trivial solution. And finally we study
its persistence.

Theorem 2.1. The SDE (2.3)with initial condition I(0) = I0 ∈ (0, 1) has a unique
global solution I(t) fulfilling 0 ≤ I(t) ≤ 1 for all t ≥ 0 with probability 1.

Proof. Let us denote by

f(x) = β (1− x)x− µx+ β∆ (1− x)x2,

g1(x) = σ (1− x)x,

g2(x) = σ∆ (1− x)x2

(2.4)

the coefficients of (2.3). Since they satisfy a local Lipschitz condition, for any
I0 ∈ (0, 1) there is a unique maximal local solution I(t) with t ∈ [0, τe), see e.g. [2].
Let k0 ∈ N be such that 1/k0 < I0 < 1− 1/k0 and for each k ∈ N, k ≥ k0, consider
the stopping time

τk = inf{t ∈ [0, τe) : I(t) /∈ (1/k, 1− 1/k)}.
From its definition, τk is monotonically increasing, and if we set τ∞ = limk→∞ τk,
then τ∞ ≤ τe almost sure. If we show that τ∞ = ∞ a.s., then τe = ∞ a.s. and
I(t) ∈ (0, 1) a.s. for all t ≥ 0.

To demonstrate that τ∞ = ∞ a.s. we assume it does not hold. Then there exist
T, ε > 0 such that

P{τ∞ ≤ T} = ε.

As a consequence there exists k1 ∈ N, k1 ≥ k0 such that and for all k ≥ k1

P (Ωk) ≥ ε,

where we have denoted Ωk = {τk ≤ T}. Consider the function V : (0, 1) −→ R
defined by

V (x) = − log(x)− log(1− x)

with derivatives

Vx = − 1

x
+

1

1− x
, Vxx =

1

x2
+

1

(1− x)2
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If we denote the associated operator by

L = f
∂

∂x
+

1

2
(g21 + g22)

∂2

∂x2
,

and use the Itô formula, we obtain

V (I(t ∧ τk)) = V (I0) +

∫ t∧τk

0

LV (I(s)) ds

+

∫ t∧τk

0

(
g1

∂V

∂x

)
(I(s)) dW 1

s +

∫ t∧τk

0

(
g2

∂V

∂x

)
(I(s)) dW 2

s ,

for any t ∈ [0, T ] and k ≥ k1. Then

E[V (I(t ∧ τk)) = V (I0) + E
∫ t∧τk

0

LV (I(s)) ds. (2.5)

If 0 < x < 1,

LV (x) = f(x)Vx +
1

2

(
g21(x) + g22(x)

)
Vxx

= −β(1− x) + µ− β∆(1− x)x+ βx− µ
x

1− x
+ β∆x

2

+
1

2
σ2(1− x)2 +

1

2
σ2x2 +

1

2
σ2
∆(1− x)2x2 +

1

2
σ2
∆x

4

≤ µ+ β + β∆ + σ2 + σ2
∆ = C

and, using (2.5),

E[V (I(t ∧ τk))] ≤ V (I0) + E
∫ t∧τk

0

C ds ≤ V (I0) + C t

for any t ∈ [0, T ] and k ≥ k1. Then

E[V (I(T ∧ τk))] ≤ V (I0) + C T, k ≥ k1 (2.6)

Notice now that if ω ∈ Ωk, k ≥ k1, then I(τk)(ω) is equal to either 1/k or 1− 1/k
and then

V (I(τk)(ω)) = log(k) + log

(
k

k − 1

)
. (2.7)

Then from (2.6) and (2.7), for any k ≥ k1

V (I0) + C T ≥ E[V (I(T ∧ τk))] ≥ E[1Ωk
· V (I(τk))]

= P(Ωk) log

(
k2

k − 1

)
≥ ε log

(
k2

k − 1

)
,

which leads to the contradiction, since the term on the left is constant. □

From (2.4), the system f(x) = 0, g1(x) = 0, g2(x) = 0 has only the solution
x = 0; then I = 0 is the unique equilibrium of (2.3).

https://doi.org/10.33044/revuma.4994
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From (2.3),

d(log(I(t)) =

(
β (1− I(t))− µ+ β∆ (1− I(t))I(t)− 1

2
σ2(1− I(t))2

−1

2
σ2
∆(1− I(t))2I(t)2

)
dt

+ σ(1− I(t))dW 1(t) + σ∆(1− I(t))I(t)dW 2(t),

which can be written

log(I(t)) = log(I(0))+

∫ t

0

H(I(s)) ds+

∫ t

0

G1(I(s)) dW
1(s)+

∫ t

0

G2(I(s)) dW
2(s)

(2.8)
with

H(x) = β − µ− σ2

2
+
(
σ2 − β + β∆

)
x

−
(
σ2

2
+

σ2
∆

2
+ β∆

)
x2 + σ2

∆x
3 − 1

2
σ2
∆x

4

(2.9)

and

G1(x) = σ(1− x), G2(x) = σ∆(1− x)x.

Since −σ2
∆

2 x2 + σ2
∆x

3 ≤ σ2
∆

2 x2,

H(x) ≤ β − µ− σ2

2
+
(
σ2 − β + β∆

)
x

−
(
σ2

2
− σ2

∆

2
+ β∆

)
x2 − 1

2
σ2
∆x

4.

(2.10)

If

σ2 − β + β∆ ≤ 0, σ2
∆ − σ2 − 2β∆ ≤ 0, (2.11)

then H(I(s)) ≤ β − µ− σ2

2 for s ≥ 0 and∫ t

0

H(I(s)) ds ≤
(
β − µ− σ2

2

)
t. (2.12)

On the other hand, From the strong law of larger numbers, see Mao [33],

lim
t→∞

1

t

∫ t

0

Gi(I(s))dW
i(s) = 0 a.s. i = 1, 2. (2.13)

Using (2.12) and (2.13) in (2.8) gives

lim sup
t→∞

log(I(t))

t
≤ β − µ− σ2

2
a.s. (2.14)

and we have demonstrated

Theorem 2.2. If the parameters of the stochastic differential equation (2.3) satisfy
(2.11) and

RS
0 =

β − 1
2σ

2

µ
< 1,
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then the solution I(t) tend to zero exponentially with probability one and the disease
dies out almost sure.

Notice that conditions (2.11) can be written

σ2
∆ − 2β∆ ≤ σ2 ≤ β − β∆

or

σ2
∆ ≤ σ2 + 2β∆ ≤ β + β∆

or
1

2
(σ2

∆ − σ2) ≤ β∆ ≤ β − σ2.

These conditions, in particular, imply that

β ≥ σ2, β∆ ≤ β,
1

2

σ2
∆

µ
≤ RS

0 .

On the other hand, since σ2
∆x

3 ≤ σ2
∆,

H(x) ≤ β − µ− σ2

2
+ σ2

∆ +
(
σ2 − β + β∆

)
x

−
(
σ2

2
− σ2

∆

2
+ β∆

)
x2 − 1

2
σ2
∆x

4

≤ β − µ− σ2

2
+ σ2

∆ +
(
σ2 − β + β∆

)
x,

and with a similar proof of Theorem 2.2 we obtain

Theorem 2.3. If the parameters of the stochastic model (2.3) fulfill the condition

σ2 − β + β∆ ≤ 0 (2.15)

and

RSS
0 =

β − 1
2σ

2 + σ2
∆

µ
< 1,

then the solution I(t) tend to zero exponentially a.s. and the disease dies out with
probability one.

Remark 2.4. Observe that RS
0 = R0−σ2/(2µ) < R0. So, if R

S
0 < 1 < R0 then the

equilibrium of the deterministic problem (2.1) is unstable, see [26], whereas, from
Theorem 2.2, the equilibrium of the stochastic model is asymptotically stable. This
result is a example of how the introduction of noise stabilize the unstable solution
of a deterministic problem, see [1, 20, 41].

When β∆ = σ∆ = 0 the proposed simplicial model (2.3) reduces to the stochastic
SIS model (2.2) presented in [20], both conditions (2.11) and (2.15) reduce to
σ2 − β ≤ 0 and Theorem 2.2 and Theorem 2.3 become:

Corollary 2.5 ([20]). If σ2 ≤ β < 1
2σ

2+µ then the trivial solution of the stochastic
SIS model (2.2) is almost surely exponentially stable.

Let us study now the persistence.

https://doi.org/10.33044/revuma.4994
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Theorem 2.6. If the parameters of the stochastic differential equation (2.3) verify
(2.11) and

RS
0 =

β − 1
2σ

2

µ
> 1,

then for any I(0) ∈ (0, 1), the solution I(t) oscillates infinitely around ξ > 0:

lim inf
t→∞

I(t) ≤ ξ ≤ lim sup
t→∞

I(t) a.s.

where ξ is the unique root in (0, 1) of (2.9).

Proof. We start proving that the equation H(x) = 0, where H(x) is given in (2.9),

has a unique solution ξ in (0, 1). Existence is clear, due to H(0) = β − µ− σ2

2 > 0
and H(1) = −µ < 0. Uniqueness is proved if we show that H ′(x) < 0 for x ∈ (0, 1).
Observe that

H ′(x) = σ2 − β + β∆ − (σ2 + σ2
∆ + 2β∆)x+ 3σ2

∆x
2 − 2σ2

∆x
3.

If σ∆ = σ = β∆ = 0, H ′(x) = −β < 0. If σ∆ = 0 and σ ̸= 0 or β∆ ̸= 0, then
σ2 + 2β∆ > 0 and H ′(x) = σ2 − β + β∆ − (σ2 + 2β∆)x < 0 for x > 0, where we
have used (2.11). If σ∆ ̸= 0 then

H ′′(x) = −(σ2 + σ2
∆ + 2β∆) + 6σ2

∆x− 6σ2
∆x

2

is a downwards opened parabola; since the abscissa of the vertex is x = 1/2,

H ′′(x) ≤ H ′′
(
1

2

)
=

1

2
σ2
∆ − σ2 − 2β∆ < σ2

∆ − σ2 − 2β∆ ≤ 0

for any x ∈ R. From here, H ′ is strictly decreasing in R; sinceH ′(0) = σ2−β+β∆ ≤
0, we conclude that H ′(x) < 0 for x > 0.

We show hereafter that

lim sup
t→∞

I(t) ≥ ξ. (2.16)

If (2.16) does not hold, then there exits ϵ ∈ (0, 1) such that P(Ω1) > ϵ where
Ω1 = {lim supt→∞ I(t) ≤ ξ − 2ϵ}. So, if ω ∈ Ω1 there exits T (ω) > 0 such that

I(t, ω) ≤ ξ − ϵ, for t ≥ T (ω). (2.17)

Since H is a decreasing function in (0, 1), we can select ϵ ∈ (0, ξ) so that H(0) >
F (ξ − ϵ). Then if ω ∈ Ω1 and t ≥ T (ω)

H(I(t, ω)) ≥ H(ξ − ϵ). (2.18)

Moreover, by the large number theorem, there exists Ω2 such that P(Ω2) = 1 and
that for every ω ∈ Ω2,

lim
t→∞

1

t

∫ t

0

G1(I(s, ω))dW
1(s) = 0 = lim

t→∞

1

t

∫ t

0

G2(I(s, ω))dW
2(s). (2.19)

https://doi.org/10.33044/revuma.4994
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If ω ∈ Ω1 ∩ Ω2 and t ≥ T (ω), from (2.8) and (2.18)

log(I(t)) = log(I(0)) +

∫ T (ω)

0

H(I(s, ω)) ds+

∫ t

T (ω)

H(I(s, ω)) ds

+

∫ t

0

G1(I(s, ω)) dW
1(s) +

∫ t

0

G2(I(s, ω)) dW
2(s)

≥ log(I(0)) +

∫ T (ω)

0

H(I(s, ω)) ds+H(ξ − ϵ)(t− T (ω))

+

∫ t

0

G1(I(s, ω)) dW
1(s) +

∫ t

0

G2(I(s, ω)) dW
2(s)

(2.20)

Then, if ω ∈ Ω1 ∩ Ω2

lim inf
t→∞

log(I(t, ω))

t
≥ H(ξ − ϵ) > 0, (2.21)

and

lim
t→∞

I(t, ω) = ∞,

in opposition with (2.17). We deduce that (2.16) is true.
We show now that lim inft→∞ I(t) ≤ ξ. Suppose that it does not hold. Then

there exists δ ∈ (0, 1) such that P(Ω3) > δ where Ω3 = {lim inft→∞ I(t) ≥ ξ + 2δ}.
So, if ω ∈ Ω3 there is a τ(ω) > 0 such that

I(t, ω) ≥ ξ + δ, for t ≥ τ(ω). (2.22)

Since H is a decreasing function in (0, 1), if ω ∈ Ω3 and t ≥ τ(ω) then

H(I(t, ω)) ≤ H(ξ + δ). (2.23)

Taking ω ∈ Ω2 ∩ Ω3, if t ≥ τ(ω), from (2.8) and (2.23)

log(I(t))) = log(I(0)) +

∫ τ(ω)

0

H(I(s, ω)) ds+

∫ t

τ(ω)

H(I(s, ω)) ds

+

∫ t

0

G1(I(s, ω)) dW
1(s) +

∫ t

0

G2(I(s, ω)) dW
2(s)

≤ log(I(0)) +

∫ τ(ω)

0

H(I(s, ω)) ds+H(ξ + δ)(t− τ(ω))

+

∫ t

0

G1(I(s, ω)) dW
1(s) +

∫ t

0

G2(I(s, ω)) dW
2(s).

(2.24)

Then if ω ∈ Ω2 ∩ Ω3

lim sup
t→∞

log(I(t, ω))

t
≤ H(ξ + δ) < 0, (2.25)

and

lim
t→∞

I(t, ω) = 0,

in opposition with (2.22). This completes the proof. □

https://doi.org/10.33044/revuma.4994
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3. Numerical simulations

In this section we conduct numerical experiments to confirm the results presented
in the previous section.

Let us recall that the parameters σ and σ∆ represent the intensity of the noise
affecting individual and group-level infections, respectively. Although the current
article does not use specific empirical data to calibrate these values (e.g., from
real-world contact tracing or Bayesian inference), the selection of parameters in
the experiments is guided by a consistent epidemiological rationale, based on the
following criteria:

• Exploring different epidemiological regimes: we selected combinations of
(β, β∆, σ, σ∆) that produce values of R0, R

S
0 , and RSS

0 below or above 1,
allowing us to observe the transition between extinction and persistence,
and to validate the theoretical results.

• Contextual interpretation of risk: in scenarios with high σ∆ we simulate
settings with high collective infection risk (such as parties, poorly ventilated
indoor spaces, or large events). In cases with high σ but low σ∆, we focus
on uncertainty arising from individual contacts (e.g., essential workers or
public transportation users).

• Comparison with previous work: some values replicate or extend param-
eter settings already used in the single-noise model ([40, 23]), enabling
consistent comparisons.

3.1. Simulations of the SDE. Experiments 1 and 2 are devoted to test the
stability of the equilibrium of the stochastic differential equation (2.3), whereas
experiment 3 is related to the persistence statement of Theorem 2.6. The ordinary
(2.1) and stochastic (2.3) equations were solved numerically using Euler and Euler-
Maruyama methods respectively with step-size ∆ = 1/10 along the interval [0, 50]
in experiment 1 and along [0, 500] in experiments 2 and 3.

Experiment 1. We select two sets of parameters:

µ = 0.7, β = 0.5, β∆ = 0.25, σ = 0.35, σ∆ = 0.25, (3.1)

µ = 0.9, β = 0.3, β∆ = 0.2, σ = 0.3, σ∆ = 0.8. (3.2)

With both sets, R0 < 1; then the disease free equilibrium of the SIS model (2.1)
is asymptotically stable. The set of parameters (3.1) fulfills conditions (2.11) (in
particular (2.15)) and with it, RS

0 < 1 and RSS
0 < 1. Then, both Theorem 2.2

and Theorem 2.3 give exponential stability with probability 1 of the equilibrium of
the stochastic model (2.3). The results of the numerical experiments with param-
eters (3.1) are shown in Figure 1, which shows ten trajectories of the solution of
the stochastic equation (2.3) together with the exact solution of the deterministic
equation (2.1) starting at I(0) = 0.8 (left) and I(0) = 0.2 (right).

On the other hand, the set (3.2) does not satisfy the condition on the right of
(2.11) and, in consequence, Theorem 2.2 is not applicable. In this case we can
apply Theorem 2.3 to obtain almost sure exponential stability of the stochastic
simplicial equation (2.3) because the parameters fulfill condition (2.15) together

https://doi.org/10.33044/revuma.4994


Revista de la Unión Matemática Argentina Accepted article · Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.4994.

Submitted: October 8, 2024
Accepted: August 14, 2025
Published (early view): August 18, 2025

STOCHASTIC SIMPLICIAL SIS WITH TWO NOISES 11

I(t)

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

t

I(t)

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

t

Figure 1. Solution of the deterministic equation (2.1) (colored
thick line) together with 10 trajectories of the solution of the
stochastic equation (2.3) (black thin lines), with initial values
I(0) = 0.8 (left) and I(0) = 0.2 (right) in both cases with the
parameters (3.1).

with RSS
0 < 1. The results of the numerical experiments, shown in Figure 2,

confirm the exponential stability of the equilibrium.
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Figure 2. Solution of the deterministic equation (2.1) (colored
thick line) together with 10 trajectories of the solution of the
stochastic equation (2.3) (black thin lines), with initial values
I(0) = 0.8 (left) and I(0) = 0.2 (right) in both cases with the
parameters (3.2).

Experiment 2. We choose

µ = 0.5, β = 0.6, β∆ = 0.2, σ = 0.5, σ∆ = 0.1, (3.3)

that satisfy conditions (2.11). Observe that in this case RS
0 = 0.95 < 1 and then,

according Theorem 2.2, a.s. exponential stability of the equilibrium of (2.3) is
achieved. Moreover, R0 = 6/5 > 1 and the solution of the deterministic s-SIS
equation, as t tends to infinity, tends to the endemic equilibrium

lim
t→∞

I(t) ≈ 0.22474.
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Figure 3. Solution of the deterministic equation (2.1) (colored
thick line) together with 10 trajectories of the solution of the
stochastic equation (2.3) (black thin lines), with initial values
I(0) = 0.8 (top) and I(0) = 0.2 (bottom) in both cases with the
parameters (3.3).

Figure 3, which shows the computer simulations of this experiment, supports
completely these results. This example illustrates how in some cases the introduc-
tion of noise in a equation can stabilize the unstable trivial solution of a determin-
istic system, see Remark 2.4.

Experiment 3. We choose

µ = 0.7, β = 0.8, β∆ = 0.5, σ = 0.2, σ∆ = 0.3, (3.4)

that satisfy conditions (2.11). Observe that in this case RS
0 = 1.142 and RSS

0 =
1.24286. Although the exact solution of H(x) = 0 is not available, it can be
approximated as

ξ ≈ 0.21251.

The solution I(t) oscillates infinitely often around this value. Moreover, R0 > 1
and the solution of the deterministic s-SIS equation verifies

lim
t→∞

I(t) ≈ 0.238516.

Figure 4 shows that the computer simulations support completely the above
theoretical statements: the solution of the deterministic equation (2.1) (thick red
line) tends to 0.238 whereas the trajectories of the solution oscillates infinitely often
around the value ξ = 0.212, represented by the thick dashed black line.
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Figure 4. Solution of the deterministic equation (2.1) (colored
thick line) together with 10 trajectories of the solution of the
stochastic equation (2.3) (gray thin lines), with initial values
I(0) = 0.8 (top) and I(0) = 0.2 (bottom) and in both cases with
the parameters (3.4).

3.2. Simulations on a real simplicial network. We use a two independent
noises modification of the stochastic simplicial contagion model (SSCM) of [23] to
run simulations in a real-world simplicial network. We model this type of situations
using two independent white Gaussian noises ξ1t and ξ2t to respectively perturb
infection parameters β1 and β2 with different intensities σ1 and σ2 (see Figure
5). All the code used to perform the simulations in this section is available at
the following public repository: https://github.com/juanelas/sscm. Instructions
for running the experiments can be found in the README.md file, under the section
titled “A stochastic simplicial SIS model driven by two independent noises”. We
use the dataset InVS15 of face-to-face interactions collected from a workplace and
obtained from [26] as input for the two independent noises SSCM.

According to equation (2.3), we have β = β1⟨k1⟩, β∆ = β2⟨k2⟩, where βi are
the infection probabilities of equation (2.1), and we denote σ = σ1⟨k1⟩ and σ∆ =
σ2⟨k2⟩.
Experiment 1. Fix the following sets of parameters

µ = 0.7, β1 = 0.014, β2 = 0.019, σ1 = 0.0187, σ2 = 0.0094 (3.5)

µ = 0.7, β1 = 0.014, β2 = 0.01, σ1 = 0.0187, σ2 = 0.867 (3.6)

The set (3.5) fulfill conditions (2.11). With them, R0 = 0.4885 < 1, RS
0 = 0.3394 <

1 and RSS
0 = 0.3455 < 1. Simulation corresponds to Figure 6.

The left figure demonstrates that the disease dies out on this network validating
both Theorem 2.2 and 2.3. The right one confirms that the disease-free equilibrium

https://doi.org/10.33044/revuma.4994
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Figure 5. Channels of infection of the two independent noises SSCM
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Figure 6. 20 trajectories resulting from running the two indepen-
dent noises SSCM (left) and the SCM (right) on the real simplicial
network InVS15 (10 for initial value 0.2 and other 10 for 0.8) and
having R0 < 1, RS

0 < 1 and RSS
0 with the set of parameters (3.5).

of the deterministic SIS equation (2.1) is asymptotically stable, as demonstrated
in [26].

On the other hand, with the set of parameters (3.6) we have R0 = 0.4885 < 1,
RS

0 = 0.3394 < 1 and RSS
0 = 0.8536 < 1 but they do not satisfy (2.11) and thus,

Theorem 2.2 can not be applicable. Nonetheless, this set of parameters satisfy both
(2.15) and RSS

0 < 1. See Figure 7 for the simulation.
The left figure validates both Theorem 2.2 and 2.3 and the right one provides

the same information as Figure 6-right.

Experiment 2. We fix the parameters

µ = 0.6, β1 = 0.0319, β2 = 0.0087, σ1 = 0.0347, σ2 = 0.0174, (3.7)

which fulfill conditions (2.11). With them, R0 = 1.3 > 1 and RS
0 = 0.7 < 1. The

results are shown in Figure 8.
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Figure 7. 20 trajectories (10 for initial value 0.2 and other 10
for 0.8) resulting from running the two independent noises SSCM
(left) and the SCM (right) on the real simplicial network InVS15
with the set of parameters (3.6).
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Figure 8. Trajectories resulting from running the two indepen-
dent noises SSCM (left) and the SCM (right) on the real simplicial
network InVS15 for different initial values and parameters (3.7).

The left figure validates Theorem 2.2 and the right one proves that an endemic
equilibrium is reached in the deterministic SIS equation (2.1) (as demonstrated by
[26]). The red dashed line represents the average of the values of the last 500 time-
steps. This confirms how introducing noise in a contagion process can stabilize the
unstable trivial solution of a deterministic system (as predicted by the simulations
of Section 3.1).

Experiment 3. We fix the parameters

µ = 0.5, β1 = 0.0375, β2 = 0.0578, σ1 = 0.0274, σ2 = 0.0137, (3.8)

which fulfill conditions (2.11). With them, R0 = 1.8318 > 1, RS
0 = 1.3844 > 1 and

RSS
0 = 1.4024 > 1. The results are shown in Figure 9.
The left figure demonstrates that an endemic equilibrium point is reached, which

is consistent with Theorem 2.6, and the right one confirms that an endemic equi-
librium is achieved in the deterministic SIS equation (2.1) (as shown in [26]).
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Figure 9. Trajectories resulting from running the two indepen-
dent noises SSCM (left) and the SCM (right) on the real simplicial
network InVS15 for different initial values and parameters (3.8).

We have also obtained similar results by running the SSCM with two inde-
pendent noises on a synthetically generated network using the random simplicial
complex (RSC) model of dimension 2 proposed by [26]. The simulations have been
carried out with parameters complying with the three previous experiments and
taking ⟨k1⟩ = 20 and ⟨k2⟩ = 6 as the input parameters for the RSC model (they
consist of a generalization of the simulations of [40] to the case of two independent
noises, and are available on demand).

4. Limitations and future work

While the present model offers a refined approach to stochastic epidemic dy-
namics by incorporating two independent sources of noise, several limitations and
avenues for future research remain.

Independence of noise sources. We have modified the stochastic simplicial SIS
model proposed in [40] where the same noise was used to perturb both individ-
ual and collective infection rates. Since there are contexts where individual and
group noise independence is epidemiologically reasonable, in this work we have
proposed a stochastic model driven by two independent noises, one for each infec-
tion rate. For example, as we mentioned early, after a group disembarks from a
closed bus, the randomness associated with group-level transmission may decrease
sharply while the randomness in individual-level contagion may persist if a pas-
senger is seated next to an infectious individual. This is why we assume that the
random fluctuations affecting individual and group-level contagion are independent.
This assumption not only simplifies the mathematical analysis but also enables us
to isolate and better understand the distinct roles played by these two contagion
mechanisms. However, it may not fully capture possible couplings observed in
real-world settings. For instance, in a crowded indoor event such as a concert or
a nightclub, both the likelihood of close interpersonal contact (individual conta-
gion) and the accumulation of airborne viral particles (group-level contagion) are
simultaneously elevated due to shared environmental and behavioral factors—such
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as crowd density, poor ventilation, or loud talking and singing. In such cases, fluc-
tuations in one contagion mode may be statistically linked to fluctuations in the
other. Future extensions of the model could consider correlated noise processes to
account for environments or scenarios where contagion pathways are more tightly

coupled. For example, Z1 = W 1, Z2 = ρW 1 +
√
1− ρ2W 2 where 0 ≤ ρ ≤ 1 and

W = (W 1,W 2) is a 2-dimensional Wiener process could be used as correlated
noise sources to perturb the parameters β and β∆ obtaining a generalization of the
models presented here and in [40], that correspond to the cases ρ = 0 and ρ = 1
respectively.

Mean-field approximation. The model relies on a mean-field framework, which
assumes a homogeneous mixing of individuals and uniform interaction patterns
across the network. That is, it essentially assumes that the contact network topol-
ogy follows a degree distribution of Poisson or exponential type. This assump-
tion facilitates analytical tractability and provides general insights into the global
behavior of the system. However, it may not adequately reflect the structural
heterogeneity found in many real-world networks, particularly those with scale-
free degree distributions, where a few nodes or simplices (so-called hubs) have
disproportionately high connectivity. Such heterogeneity can give rise to phenom-
ena like community clustering, local outbreaks and super-spreader events, features
that are not captured by the mean-field approach. To address these limitations,
future studies could incorporate more realistic network topologies, including mod-
ular, small-world, or scale-free structures on higher order networks, and assess how
these influence the effect of stochastic perturbations. Alternatively, agent-based
simulations could be employed to evaluate how individual-level interactions and
network variability impact the thresholds and dynamical regimes described in this
work.

Disease-specific applicability. The proposed framework is particularly suited
for modeling infectious diseases characterized by continuous transmission, short
infectious periods, and no long-term immunity—such as certain respiratory or en-
demic viral infections (e.g., common cold, influenza, or early phases of COVID-
19). These conditions align well with the SIS (Susceptible-Infected-Susceptible)
structure of the model, where individuals can become reinfected repeatedly after
recovery. However, for diseases with more complex progression patterns, such as
those involving latent periods, long-lasting immunity, or structured interventions,
the current model would need to be extended to include additional compartments
(e.g., exposed, recovered, vaccinated, quarantined). For instance, incorporating an
SEIR compartimental structure (Susceptible–Exposed–Infected–Recovered) would
be necessary to model incubation delays, while adding a vaccinated or quarantined
class would allow for the study of public health interventions and control strategies.
Moreover, these extensions would likely require more elaborate stochastic dynam-
ics, potentially involving non-Markovian effects, time-dependent parameters, or
correlated noise terms. Exploring such generalizations would provide a more com-
prehensive framework applicable to a wider range of infectious diseases and policy
scenarios.
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These limitations suggest several directions for future research, which would con-
tribute to a more realistic and comprehensive understanding of epidemic dynamics
under uncertainty.

5. Conclusions

In this study, we have modified the stochastic simplicial SIS model proposed
in [40] to include two independent sources of noise that affect the individual and
collective infection rates, respectively. Our analysis shows that when the stochas-
tic basic reproductive number RS

0 < 1 and the additional conditions (2.11) are
satisfied, the disease will die out with probability one. On the other hand, when
RS

0 > 1, the solution of the SDE will oscillate infinitely around a point that can be
explicitly calculated. We have also introduced a new stochastic basic reproductive
number RSS

0 and have shown that if RSS
0 < 1, the disease will still die out with

probability one, even if one of the conditions in (2.11) is not met. To validate our
theoretical results, we have conducted numerical experiments using various meth-
ods of analysis. We have also proposed a generalization of the stochastic simplicial
contagion model [23] to include two independent sources of noise and applied it
to simulations on a real and synthetic simplicial network. Our empirical results
confirm the theoretical findings presented in this study.
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[16] I. Dzhalladova, M. Růžičková, and V. Růžičková, Stability of the zero solution of non-
linear differential equations under the influence of white noise, Advances in Difference Equa-

tions, 143 (2015).
[17] E. Estrada and G.J. Ross, Centralities in simplicial complexes. Applications to protein

interaction networks, J. Theoret. Biol. 438 (2018) 46–60.

[18] C. Giusti, R. Ghrist and S. Bassett, Two’s company, three (or more) is a simplex, Journal

of Computational Neuroscience 41 (1) (2015) 1–14.
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