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THE ZERO FORCING NUMBER OF EXPANDED PATHS

AND CYCLES

YIPENG LIAO, CHAOHUI CHEN, JIA WEI, AND ZORAN STANIĆ

Abstract. The zero forcing number is defined as the minimum size of a zero

forcing set, and features as an upper bound for the graph nullity. An expanded

path Pm1,m2,...,mk (resp. expanded cycle Cm1,m2,...,mk ) is obtained from
the k-vertex path (cycle) by replacing the ith vertex with an independent

set of mi vertices. We prove that the zero forcing number of Pm1,m2,...,mk

(resp. Cm1,m2,...,mk ) belongs to {n−k, n−k+1} ({n−k+1, n−k+2}), where
n is the number of vertices. It is also decided for which expanded paths and

expanded cycles the zero forcing number is n − k + 1. As an application, we

offer a new proof of the result of Liang, Li and Xu that gives a characterization
of triangle-free graphs with zero forcing number n− 3. We also show that the

zero forcing number of a cycle-spliced graph (i.e., a connected graph whose

every block is a cycle) is c+ 1, where c is the cyclomatic number. This result
induces an upper bound for the nullity of a cycle-spliced graph and extends

the result of Wong, Zhou and Tian concerning the bipartite case.

1. Introduction

We consider finite, undirected graphs G = G(V,E) without loops or multiple
edges. The number of vertices n is called the order. Dynamic colourings of vertices
in a graph have been well investigated in many branches. A particular colouring
based on the concept of a zero forcing procedure, together with the related zero
forcing number, was introduced in [1] to study the problem of the maximum nul-
lity in the family of prescribed symmetric graph matrices. Independently, the zero
forcing number was abbreviated the infection number in the framework of control-
lability of quantum systems [6]. As highlighted in [9, 12], the zero forcing routine
exemplifies propagation processes on graphs and finds numerous applications across
various fields including mathematics, computer science and physics. In particular,
this invariant appears in the domain of logic circuits [4], dynamic systems [5] and
power domination [16].
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The zero forcing is a deterministic iterative graph colouring procedure in which
vertices are initially coloured either black or white. From the initial colouring,
vertices change colour according to the following rule: If a black vertex u has a
unique white neighbour v, then v switches the colour to black. We say that u
forces v, and designate this by writing u → v. The initial set of black vertices is
denoted by S, and the derived set F(S) is the set of vertices coloured black after
the colour-change rule is applied until no more changes are possible. The vertices
of F(S) \ S are arranged as u1, u2, . . . , uk, in such a way that for every i there is a
vertex vi in S ∪ {uj : 1 ≤ j ≤ i − 1} for which ui is the unique neighbour of vi in
V (G) \ (S ∪ {uj : 1 ≤ j ≤ i− 1}). The sequence v1 → u1, v2 → u2, . . . , vk → uk is
called a forcing sequence for S. The set S itself is a zero forcing set in G provided
F(S) = V (G). The zero forcing number Z(G) is the minimum size of a zero forcing
set in G.

The inequality

η(G) ≤ Z(G) (1)

relates the zero forcing number to a spectral invariant known as the graph nullity,
that is the multiplicity of zero in the spectrum of the standard {0, 1}-adjacency
matrix.

The zero forcing number has been computed for many particular classes of
graphs. For example, it is easily verified that Z(Pn) = 1 holds for every path
Pn, with an endvertex in the role of S. Similarly, for every cycle Cn, we have
Z(Cn) = 2, where the corresponding zero forcing set is comprised of any pair
of adjacent vertices. Moreover, it follows from definition that Z(G) = 1 (resp.
Z(G) = n− 1) holds if and only if G is a path (complete graph with at least 2 ver-
tices). The graphs with forcing number 2 or n− 2 are also known, see [14]. In the
same reference, Row proposed a problem of characterizing graphs with zero forcing
number n− 3. A partial answer is reported in [13] where the authors characterized
all connected subcubic or triangle-free graphs with the desired forcing number.

To formulate our main results, we need to introduce certain graphs; the ter-
minology is consistent with [10]. Let Pk := v1v2 · · · vk be a path with vertices
v1, v2, . . . , vk and edges vivi+1 for 1 ≤ i ≤ k − 1. By replacing each vertex vi
with an edgeless graph of order mi (mi ≥ 1), denoted by Omi , and adding edges
between every vertex of Omi and every vertex of Omi+1 , we obtain an expanded
path denoted by Pm1,m2,...,mk

. In a similar way, from a cycle Ck we obtain an
expanded cycle denoted by Cm1,m2,...,mk

. The expanded path and the expanded

cycle have
∑k

i=1 mi vertices, each. In both cases, k is referred to as the length of
the corresponding expanded graph.

In this paper we prove the following.

Theorem 1.1. Let G ∼= Pm1,m2,...,mk
be an expanded path with n vertices and

k ≥ 3. Then

n− k ≤ Z(G) ≤ n− k + 1,

where the first equality holds if and only if k is even and G has one of the following
properties:

https://doi.org/10.33044/revuma.5022
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(i) mi ≥ 2 for all odd integers 1 ≤ i ≤ k;
(ii) mi ≥ 2 for all even integers 1 ≤ i ≤ k;
(iii) m1,m3, . . . ,ms,ms+3,ms+5, . . . ,mk ≥ 2, for some odd integer s (1 ≤ s ≤

k − 3).

The case k = 2 is excluded since there G reduces to a complete bipartite graph
Km1,m2

with zero forcing number m1 + m2 − 2, unless m1 = m2 = 1 when it is
1 [1, 11].

Theorem 1.2. Let G ∼= Cm1,m2,...,mk
be an expanded cycle with n vertices and

k ≥ 3. Then

n− k + 1 ≤ Z(G) ≤ n− k + 2,

where the first equality holds if and only if k is odd and mi ≥ 2 for all i with the
same parity.

On the basis of these results we offer an alternative proof of the result of [13]
that gives a characterization of triangle-free graphs with zero forcing number n−3.

Corollary 1.3. [13] Let G be a connected triangle-free graph with n (n ≥ 4) ver-
tices. Then Z(G) = n−3 holds if and only if G ∈ {P1,m1,m2,1, P1,1,m1,m2

, C1,1,1,m1,m2
:

m1,m2 ≥ 1}.

A block in a connected graph is a maximal connected subgraph with no cut-
vertex. Accordingly, a cycle-spliced graph is a connected graph whose every block
is a cycle. It can also be seen as a cactus in which every block is a cycle. We write
c(G) = |E(G)| − n+ 1 for the cyclomatic number of a connected graph G.

Theorem 1.4. For a cycle-spliced graph G with cyclomatic number c(G), Z(G) =
c(G) + 1 holds.

Taking into account that the nullity of G is never larger that Z(G), we immedi-
ately arrive at the following consequence.

Corollary 1.5. For a cycle-spliced graph G with nullity η(G) and cyclomatic num-
ber c(G), η(G) ≤ c(G) + 1 holds.

This corollary extends a result of [15] where the same inequality is proved for
bipartite cycle-spliced graphs.

For undefined notions, we refer the reader to [2, 3]. Section 2 can be seen
as a preparatory containing a mixture of known results and several simple but
useful lemmas. The proofs of Theorems 1.1, 1.2, 1.4 and Corollary 1.3 are given in
Section 3.

2. Preliminaries

We start with a lemma concerning the zero forcing number of a graph containing
a fixed path as an induced subgraph.

Lemma 2.1. Let G be a graph of order n containing an induced path of length k.
Then Z(G) ≤ n− k.

https://doi.org/10.33044/revuma.5022
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Proof. Suppose that P = v0v1 · · · vk is an induced path of G, and let S = (V (G) \
V (P )) ∪ {v0}. Then v0 → v1, v1 → v2, . . . , vk−1 → vk is a forcing sequence for S.
Thus, we have F(S) = V (G), which implies that S is a zero forcing set of G. From
|S| = n− k, we get Z(G) ≤ |S| = n− k. □

We proceed with an induced cycle.

Lemma 2.2. Let G be a graph of order n containing an induced cycle of length k.
Then Z(G) ≤ n− k + 2.

Proof. If C = v1v2 · · · vkv1 is an induced cycle of G, we set S = (V (G) \ V (C)) ∪
{v1, v2}. As in the previous proof, v2 → v3, v3 → v4, . . . , vk−1 → vk is a forcing
sequence for S, and the desired result follows. □

We now quote the two known results.

Lemma 2.3. [10] Let G be an expanded path of order n and length k (k ≥ 2). For
the nullity η(G), we have

η(G) =

{
n− k if k is even,

n− k + 1 if k is odd.

Lemma 2.4. [10] Let G be an expanded cycle C of order n and length k (k ≥ 3).
For the nullity η(G), we have

η(G) =

{
n− k + 2 if k ≡ 0 (mod 4),

n− k otherwise.

Henceforth, NG(u) denotes the neighbourhood of a vertex u in a graph G.

Lemma 2.5. Let S be a zero forcing set of a graph G. If |V (G) \ S| ≥ 2, then
NG(u) ̸= NG(v) holds for every pair u, v ∈ V (G) \ S.

Proof. Suppose that there is a pair of vertices u, v ∈ V (G) \ S, such that NG(u) =
NG(v). Then for w ∈ V (G) \ {u, v}, we have either {u, v} ⊆ NG(w) or {u, v} ∩
NG(w) = ∅. This implies that there is no vertex that would force u or v. Conse-
quently, F(S) ̸= V (G), which means that S is not a zero forcing set. □

Remark 2.6. On the basis of the previous lemmas, one may deduce several known
results on the zero forcing number of connected graphs.

(a) Lemma 2.1 implies Z(G) ≤ n− diam(G), where diam stands for the diam-
eter. (This result originates from [14].)

(b) Lemma 2.2 implies Z(G) ≤ n − gr(G) + 2, where gr is the girth and G is
not a tree. (See [8].)

(c) From (a), (b) and the inequality (1), we deduce η(G) ≤ n− diam(G) and
η(G) ≤ n− gr(G) + 2. (See [7].)
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3. Proofs

We go straight to the proof of the first result.

Proof of Theorem 1.1. It follows from definition that G ∼= Pm1,m2,...,mk
contains

an induced path of length k− 1. By Lemma 2.1, we have Z(G) ≤ n− k+ 1. This,
together with Lemma 2.3 and the inequality (1), yields{

Z(G) = n− k + 1 if k is odd,
n− k ≤ Z(G) ≤ n− k + 1 if k is even.

This proves the desired inequalities, and it remains to consider the equality cases.
Suppose that Z(G) = n−k. By the previous part of this proof, k must be even.

We next show that one of the conditions (i), (ii) or (iii) holds. Let S be a zero
forcing set in G with |S| = n−k, and let V (G)\S = {v1, v2, . . . , vk}. Observe that
for every i (1 ≤ i ≤ k), the vertices in V (Omi

) \ S share the same neighbourhood
in G. By employing Lemma 2.5, we obtain 0 ≤ |V (Omi

)\S| ≤ 1, for every i. Since
Z(G) = n−k, we get |V (Omi

)\S| = 1. Without loss of generality, we assume that
vi ∈ V (Omi

) \ Z for 1 ≤ i ≤ k, and denote by ui a vertex in V (Omi
) ∩ S when

mi ≥ 2.
The desired conclusion follows whenever mi ≥ 2 holds for either all odd i or

all even i. Therefore, we suppose that ℓ is the smallest odd integer and t is the
largest even integer, such that mℓ = mt = 1. By the choice of ℓ and t, we have
m1,m3, . . . ,mℓ−2 ≥ 2 and mt+2,mt+4, . . . ,mk ≥ 2. Thus, we have ui → vi+1

for i ∈ {1, 3, . . . , ℓ − 2} and uj → vj−1 for j ∈ {k, k − 2, . . . , t + 2}. Let S1 =
S ∪ {v2, v4, . . . , vℓ−1} ∪ {vt+1, vt+3, . . . , vk−1}. This yields S1 ⊆ F(S). If t > ℓ,
then every vertex of S1 has at least two neighbours outside S1, which implies
S1 = F(S). However, this contradicts F(S) = V (G), because vℓ, vt ̸∈ S1. Hence,
t < ℓ. Again, by the choice of ℓ and t, we have 3 ≤ ℓ ≤ k − 1 and 2 ≤ t ≤ k − 2.
Then m1,m3, . . . ,mℓ−2 ≥ 2 and mℓ+1,mℓ+3, . . . ,mk ≥ 2, and so (iii) holds by
setting s = ℓ− 2.

Conversely, suppose that one of the conditions (i), (ii) and (iii) holds. Note that
(i) is equivalent to (ii) by reordering mi = mk−i+1, for every i (1 ≤ i ≤ k). Hence,
it is sufficient to consider the case in which one of (i) or (iii) holds. We conclude
the proof by explicit constructions of the corresponding forcing sequences.

If the condition (i) holds (i.e., mi ≥ 2 for all odd i (1 ≤ i ≤ k)), then on the
basis of the assumptions on ui and vi, we obtain a forcing sequence

u1 → v2, u3 → v4, . . . , uk−1 → vk, vk → vk−1, vk−2 → vk−3, . . . , v2 → v1.

This implies that S is a zero forcing set in G, which gives Z(G) = n− k.
If (iii) holds, then we obtain a forcing sequence

u1 → v2, u3 → v4, . . . , us → vs+1, uk → vk−1, uk−2 → vk−3, . . . , us+3 → vs+2,

vs+1 → vs, vs−1 → vs−2, . . . , v2 → v1, vs+2 → vs+3, vs+4 → vs+5, . . . , vk−1 → vk.

This implies that S is a zero forcing set in G, along with Z(G) = n− k. □

We proceed with the next proof.

https://doi.org/10.33044/revuma.5022
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Proof of Theorem 1.2. An expanded cycle G ∼= Cm1,m2,...,mk
contains an induced

cycle of length k. By Lemma 2.2, we have Z(G) ≤ n− k + 2. This, together with
Lemma 2.4 and (1), immediately gives n− k ≤ Z(G) ≤ n− k + 2.

In what follows, we improve the lower bound on Z(G) to the bound given in
the formulation of the theorem. Let S be a zero forcing set in G with |S| =
Z(G). Observe that for i (1 ≤ i ≤ k), the vertices in V (Omi) \ S share the same
neighbourhood in G. Using this, by Lemma 2.5, we obtain 0 ≤ |V (Omi) \ S| ≤ 1
for each i. Now, assuming that Z(G) = n − k, we obtain |V (Omi

) \ S| = 1 for
each i. Thus, every vertex in S has exactly two neighbours outside S, which implies
S = F(Z). From S ⫋ V (G), we have F(S) ⫋ V (G), contradicting F(S) = V (G).
Hence, n− k + 1 ≤ Z(G), as desired.

Therefore, there are exactly two possibilities for Z(G), and we need to decide
whether each of them occurs.

Suppose that Z(G) = n − k + 1, and let V (G) \ S = {v1, v2, . . . , vk−1}. The
inequality |V (Omi

) \Z| ≤ 1 (for each i), allows us to assume that ui ∈ V (Omi
)∩S

(if mi ≥ 2) and vi ∈ V (Omi
) \ S for 1 ≤ i ≤ k − 1.

We first show that k must be odd. Namely, if k is even and mi ≥ 2 holds for each
odd i (1 ≤ i ≤ k), then by applying the forces ui → vi+1 for i ∈ {1, 3, . . . , k−3}, we
obtain F(S) = S ∪ {v2, v4, . . . , vk−2}, but this contradicts F(S) = V (G). Hence,
the set I = {i : mi = 1, i is odd} is non-empty. By fixing ℓ and t to be the
smallest and the largest element of I, we obtain F(S) = S ∪ {v2, v4, . . . , vℓ−1} ∪
{vk−2, vk−4, . . . , vt+1}. In particular, v1 ̸∈ F(S), which is impossible. Hence, k is
odd.

In what follows, we assume that there exist an odd i and an even j, such that
mi = mj = 1. We can do this because if this assumption does not hold, then we
would have mi ≥ 2 for either all even i or all odd i, which is a conclusion given the
formulation of the theorem.

As before, let ℓ be the smallest odd integer and t the largest even integer, such
thatmℓ = mt = 1. This impliesm1,m3, . . . ,mℓ−2 ≥ 2 andmt+2,mt+4, . . . ,mk−1 ≥
2. Thus, we have ui → vi+1 for every i ∈ {1, 3, . . . , ℓ − 2} and uj → vj−1

for every j ∈ {k − 1, k − 3, . . . , t + 2}. Denote S1 = S ∪ {v2, v4, . . . , vℓ−1} ∪
{vt+1, vt+3, . . . , vk−2}. It holds S1 ⊆ F(S).

If t > ℓ, then every vertex of S1 has at least two neighbours outside S1, which
implies S1 = F(S). However, this contradicts F(S) = V (G), because vℓ, vt ̸∈ S1.
Therefore, we have t < ℓ and, by the choice of ℓ and t, 3 ≤ ℓ ≤ k − 2 and
2 ≤ t ≤ k − 3, giving m1,m3, . . . ,mℓ−2 ≥ 2 and mℓ+1,mℓ+3, . . . ,mk−1 ≥ 2. By
reordering the indices from {1, 2, . . . , k} to {ℓ, ℓ+1, . . . , k, 1, 2, . . . , k−1}, we obtain
mi ≥ 2 for each even i, which concludes this part of the proof.

Suppose now that k is odd and mi ≥ 2 holds for each i. By taking vi ∈ V (Omi
),

for 1 ≤ i ≤ k−1, we create the set S0 = V (G)\{v1, v2, . . . , vk−1}. For each even i,
we may also take ui ∈ V (Omi) ∩ S, ui ̸= vi, as we have mi ≥ 2. This leads to the
forcing sequence

uk−1 → vk−2, uk−3 → vk−4, . . . , u2 → v1, v1 → v2, v3 → v4, . . . , vk−2 → vk−1.

https://doi.org/10.33044/revuma.5022
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Therefore, S0 is a zero forcing set in G, and so Z(G) ≤ n − k + 1. Together with
already obtained n − k + 1 ≤ Z(G), this leads to Z(G) = n − k + 1, and we are
done. □

We now prove a corollary, actually a known result. For a graph G, we say that
a vertex dominates a subset of V (G) if it is adjacent to every vertex of this subset.

Proof of Corollary 1.3 If G ∈ {P1,m1,m2,1, P1,1,m1,m2
, C1,1,1,m1,m2

: m1,m2 ≥ 1},
Then Z(G) = n− 3 by Theorems 1.1 and 1.2.

In the remainder of the proof, we assume that Z(G) = n−3. Lemma 2.1 ensures
that G is P5-free. Together with the assumption that G is triangle-free, this yields
that G is either bipartite or contains C5 as an induced subgraph.

Case 1: G is bipartite. This immediately implies that G is not C1,1,1,m1,m2 . Sup-
pose that

G /∈
{
P1,m1,m2,1, P1,1,m1,m2

: m1,m2 ≥ 1
}
, (2)

and let X and Y be the colour classes of G. Also, let X ′ ⊆ X be the set of vertices
that do not dominate Y and Y ′ ⊆ Y the set of vertices do not dominate X.

Denote s1 = |X ′|, s2 = |Y ′|, t1 = |X \ X ′| and t2 = |Y \ Y ′|. If either s1 = 0
or s2 = 0, then G is a complete bipartite graph Kt1,t2 with Z(G) ̸= n − 3, which
contradicts the initial assumption. Hence, s1, s2 ≥ 1. However, we claim a stronger
restriction: s1, s2 ≥ 2. Namely, if s1 = 1, then G ∼= P1,t2,t1,s2 by definition of Y ′.
Together with (2), this leads to s2 ≥ 2 and t2 ≥ 2. By Theorem 1.1, we have
Z(G) = Z(P1,t2,t1,s2) = n− 4, which is impossible. The case s2 = 1 is symmetric,
and so s1, s2 ≥ 2, as claimed.

Let X ′ = {x1, x2, . . . , xs1} and Y (xi) = Y \N(xi), for 1 ≤ i ≤ s1. By definition
of X ′, we have Y (xi) ̸= ∅. Since G is connected, we also have Y (xi) ̸= Y . If
Y (x1) = Y (x2) = · · · = Y (xs1), then Y ′ = Y (x1), and so G ∼= Ps1,t2,t1,s2 (with
s1, s2 ≥ 2). By employing Theorem 1.1, we obtain Z(G) = n − 4, which is a
contradiction. Thus there exist two vertices inX ′, say x1 and x2, such that Y (x1) ̸=
Y (x2). If Y (x1) ⊈ Y (x2) and Y (x2) ⊈ Y (x1), then there are two vertices y1, y2 ∈
Y , such that y1 ∈ N(x1) \ N(x2) and y2 ∈ N(x2) \ N(x1). This tells us that G
contains an induced path Pk, k ≥ 5, with x1, x2, y1, y2 ∈ V (Pk). By Lemma 2.1,
we have Z(G) ≤ n− 4, a contradiction as before.

By symmetry, we may assume that ∅ ≠ Y (x1) ⊂ Y (x2) ⊂ Y . Let y1 ∈ Y (x1),
y2 ∈ Y (x2) \ Y (x1) = N(x1) \ N(x2) and y3 ∈ Y \ Y (x2) = N(x2). Since G is
connected, there exists x3 ∈ X \ {x1, x2}, such that x3 is adjacent to y1. We set
S = V (G)\{x1, x3, y2, y3}. Note that the set {x1, x2, y1, y2} induces the edge x1y2.
By applying the forces

y1 → x3, x2 → y3, y3 → x1, x1 → y2,

we obtain that S features as a zero forcing set in G, and so Z(G) ≤ n − 4. This
contradiction denies (2) and concludes this case.

Case 2: G contains C5. In this case (2) holds true, and we need to show that
G is isomorphic to C1,1,1,m1,m2

. Let C be an induced cycle of G with V (C) =
{v1, v2, . . . , v5} and Si(C) = {x ∈ V (G)\V (C) : NG(x)∩V (C) = NG(vi)∩V (C)},
for 1 ≤ i ≤ 5.

https://doi.org/10.33044/revuma.5022
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We claim that

V (G) \ V (C) =

5⋃
i=1

Si(C). (3)

Indeed, by taking x ∈ V (G) \V (C), since G is triangle-free and P5-free, we deduce
that x is adjacent to exactly two non-adjacent vertices vj , vk of C, that is x ∈ Si(C),
where vi is the common neighbour of vj and vk in C.

We proceed with the following structural examinations. First, sinceG is triangle-
free, every Si(C) is an independent set. Secondly, by taking any two vertices
ui ∈ Si(C) and uj ∈ Sj(C), for i ̸= j, we arrive at the following implications:
vivj ∈ E(G) =⇒ uiuj ∈ E(G) (otherwise, {si, sj} ∪ V (C) \ {vi, vj} induces P5)
and vivj ̸∈ E(G) =⇒ uiuj ̸∈ E(G) (otherwise, there exists a triangle C3 : vksisjvk,
where vk is the unique common neighbour of vi and vj in C).

Now, the previous implications, together with (3) and the fact that Si(C) is
an independent set for each i, give the structure of G, i.e., lead to the conclusion
that G is an expanded cycle. By Theorem 1.2, we have G ∼= C1,1,1,m1,m2 . □

It remains to prove the result on cycle-spliced graphs.

Proof of Theorem 1.4 We use the induction on c(G). If c(G) = 1, then G is a cycle,
and so Z(G) = 2 = c(G) + 1. Next, we set c = c(G) ≥ 2 and suppose that the
result holds for every cycle-spliced graph with cyclomatic number c− 1. Consider
a pendant block C of G, which contains exactly one cut-vertex u1. Let G1 be a
subgraph of G induced by (G\V (C)) ∪ {u1}, and let C = u1u2 · · ·uru1.

It holds c(G1) = c − 1 and, by the induction hypothesis, there exists a zero
forcing set S1 of G1 with |S1| = c. Then S = S1 ∪ {u2} is a zero forcing set of G,
which implies Z(G) ≤ c+ 1.

We next show that Z(G) ≥ c + 1. Let S2 be a minimum zero forcing set of G.
Since NG(u1) ∩ V (C) = {u2, ur}, we have 1 ≤ |S2 ∩ V (C)| ≤ 2.

If |S2 ∩ V (C)| = 1, then u1 ̸∈ S2, and so S2 \ V (C) is a zero forcing set of G1.
Then we have c = Z(G1) ≤ |S2| − 1, that is Z(G) ≥ c+ 1.

If |S2 ∩ V (C)| = 2, then (S2 \ V (C)) ∪ {u1} is a zero forcing set of G1. Hence,
c = Z(G1) ≤ |S2| − 1, which implies Z(G) ≥ c+ 1. □
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(Zoran Stanić) Faculty of Mathematics, University of Belgrade, Studentski trg 16,

11 000 Belgrade, Serbia
Email address: zstanic@matf.bg.ac.rs

https://doi.org/10.33044/revuma.5022

	1. Introduction
	2. Preliminaries
	3. Proofs
	References

