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WEIGHTED WEAK GROUP INVERSE IN A RING WITH

INVOLUTION

HUANYIN CHEN

Abstract. We introduce the concept of the weighted weak group inverse for

elements in a ring with involution. This notion naturally extends the weak

group inverse for complex matrices and the weighted weak group inverse for
Hilbert operators. We characterize this generalized inverse through a novel de-

composition (referred to as the w-group decomposition) that involves weighted

group inverses and nilpotent elements. Additionally, the interrelationships
among weighted weak group inverses, weighted Drazin inverses, and weighted

core-EP core inverses are thoroughly investigated.

1. Introduction

Let R be an associative ring with an identity. An involution of R is an anti-
automorphism whose square is the identity map 1. A ring R with involution ∗ is
called a *-ring. An element a in a *-ring R has group inverse provided that there
exists x ∈ R such that

ax2 = x, ax = xa, a = xa2.

Such x is unique if exists, denoted by a#, and called the group inverse of a.
An element a ∈ R has core-EP inverse (i.e., pseudo core inverse) if there exist

x ∈ R and n ∈ N such that

ax2 = x, (ax)∗ = ax, xan+1 = an.

If such x exists, it is unique, and denote it by a D . The core-EP inverse has been
investigated from many different views, e.g., [4, 9, 10, 15, 16, 17, 23, 27].

Wang and Chen (see [24]) introduced and studied a weak group inverse for square
complex matrices. A square complex matrix A has a weak group inverse X if it
satisfies the equations

AX2 = X, AX = A † A.

Here, A † is just the core-EP inverse of A. The involution ∗ is proper if x∗x = 0 =⇒
x = 0 for any x ∈ R. In [25], Zou et al. generalize the concept of the weak group
inverse from complex matrices to elements within a ring with a proper involution.
An element a ∈ R has a weak group inverse if there exist x ∈ R and n ∈ N such
that

ax2 = x, (a∗a2x)∗ = a∗a2x, xan+1 = an.
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If such x exists, it is unique, and denote it by aW . The weak group inverse has
been extensively studied from many different views, e.g., [3, 5, 6, 7, 8, 12, 18, 19,
20, 21, 24, 25, 26].

Let a,w ∈ R. We recall that

Definition 1.1. An element a ∈ R has w-Drazin inverse if there exist x ∈ R such
that

xwawx = x, awx = xwa, (aw)n = xw(aw)n+1

for some n ∈ N. The preceding x is unique if it exists, and we denote it by aD,w.
The most smallest positive integer n is denoted by i(aD,w). The set of all w-Drazin
invertible elements in R is denoted by RD,w.

We say that a has Drazin inverse if w = 1 and denote aD,1 by aD.

Definition 1.2. An element a ∈ R has w-group inverse if there exist x ∈ R such
that

xwawx = x, awx = xwa, awxwa = a.

The preceding x is unique if it exists, and we denote it by a#w . The set of all
w-group invertible elements in R is denoted by R#

w .

Evidently, aD,w = [(aw)D]2a and a#w = [(aw)#]2a. Recently, Ferreyra et al.
introduced and studied the weighted group inverse for complex matrices in [6].
In [18], Mosić and Zhang investigated the weighted weak group inverse for Hilbert
space operators. The aim of this paper is to introduce and explore a new type of
generalized inverse that incorporates a weight, serving as a natural generalization of
the generalized inverses mentioned above. In Section 2, we introduce the weighted
weak group inverse by way of an innovative weighted group decomposition. This
approach enables us to generalize numerous properties of the standard weak group
inverse to this broader context.

Let Rnil
w = {x ∈ R | xw ∈ R is nilpotent}.

Definition 1.3. An element a ∈ R has a weak w-group decomposition if there
exist a1, a2 ∈ R such that

a = a1 + a2, a∗1a2 = a2wa1 = 0, a1 ∈ R#
w , a2 ∈ Rnil

w .

In Section 2, we will establish the connections between the weak w-group de-
composition and a type of generalized inverse, followed by the introduction of the
weighted weak group inverse.

In Section 3, we explore the equivalent characterizations of the weighted weak
group inverse in a ring. The relationship between weighted weak group inverses
and weighted Drazin inverses is investigated.

Following Mosić et al. (see [22]), an element a ∈ R has w-core-EP inverse if
there exists x ∈ R such that

awx2 = x, x(aw)k+1a = (aw)ka, (awx)∗ = awx

for some nonnegative integer k. Such x is unique if it exists and is called the
w-core-EP inverse of a. In Section 4, we examine the interplay between weighted

https://doi.org/10.33044/revuma.5074
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core-EP inverses and weighted weak group inverses. Additionally, we delineate the
circumstances under which an element and its weighted weak group inverse are
commutative with respect to the weight.

Throughout the paper, all rings are associative ring with a proper involution
∗. We use R#, RD, R D and RW to denote the sets of all group invertible, Drazin
invertible, core-EP invertible and weak group invertible elements in R, respectively.
N denotes the set of all natural numbers.

2. Weak w-group inverse

The purpose of this section is to introduce a new weighted weak inverse which is
a natural generalization of weak group inverse. We start with the following lemma,
which is both simple and crucial. We include the proof to make this presentation
self-contained.

Lemma 2.1. Let a,w ∈ R. Then the following are equivalent:

(1) a ∈ R#
w .

(2) aw,wa ∈ R#.
(3) There exist x ∈ R such that x(wa)2 = a, a(wx)2 = x, awx = xwa.

In this case, a#w = (aw)#a(wa)#.

Proof. (1) ⇒ (3) Set x = a#w . Then (xwa)wx = x, awx = xwa, (awx)wa = a.
Hence, x(wa)2 = a, a(wx)2 = x, awx = xwa.

(3) ⇒ (2) By hypothesis, xw(aw)2 = aw, aw(xw)2 = xw, (aw)(xw) = (xw)(aw).
Hence, (aw)# = xw. Likewise, we have (wa)# = wx, as required.

(2) ⇒ (1) Set x = (aw)#a(wa)#. By using Cline’s formula (see [13, Theo-
rem 2.2]), we have

awx = aw(aw)#a(wa)# = aw(aw)#a[w((aw)#)2a]

= (aw)2((aw)#)3a = (aw)#a,

xwa = (aw)#a(wa)#wa = (aw)#a[w((aw)#)2a]wa

= [(aw)#aw((aw)#)2]awa = [(aw)#]2awa = (aw)#a.

This implies that awx = xwa. Analogously, we directly check that
x(wa)2 = a and a(wx)2 = x. Therefore a#w = x = (aw)#a(wa)#, as asserted. □

Lemma 2.2. Let a ∈ R#
w . Then (aw)2a#w = a and a[wa#w ]

2 = a#w .

Proof. Let x = a#w . Then

awxwa = a, xwawx = x, awx = xwa.

Hence, (aw)2x = aw(awx) = (aw)x(wa) = a. Moreover, we have a[wa#w ]
2 =

a(wx)2 = x by Lemma 2.1. □

We now proceed to prove the following result.

Theorem 2.3. Let a,w ∈ R. Then the following are equivalent:

(1) a ∈ R has a weak w-group decomposition.

https://doi.org/10.33044/revuma.5074
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(2) There exist x ∈ R and n ∈ N such that

x = a(wx)2,
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, (aw)n = xw(aw)n+1.

Proof. (1) ⇒ (2) Let a = a1 + a2 be the weak w-group decomposition of a. Let
x = (a1)

#
w . By virtue of Lemma 2.2, we have

awx = (a1w + a2w)(a1)
#
w = a1w(a1)

#
w ,

a(wx)2 = a1[w(a1)
#
w ]

2 = [a1w(a1)
#
w ][w(a1)

#
w ] = [(a1)

#
wwa1][w(a1)

#
w ]

= (a1)
#
wwa1w(a1)

#
w = (a1)

#
w = x.

Since a2 ∈ Rnil
w , (a2w)

n = 0 for some n ∈ N. As a2wa1 = 0, we see that

aw − xw(aw)2 = (a1w + a2w)− [(a1)
#
wwa1w + (a1)

#
wwa2w](a1w + a2w)

= [1− (a1)
#
wwa1w − (a1)

#
wwa2w]a2w.

Hence,

(aw)n − xw(aw)n+1 = [aw − xw(aw)2](aw)n−1

= [1− (a1)
#
wwa1w − (a1)

#
wwa2w]a2w(aw)

n−1

= [1− (a1)
#
wwa1w − (a1)

#
wwa2w](a2w)

n = 0.

Thus, (aw)n = xw(aw)n+1.
Since aw = a1w + a2w, (a2w)(a1w) = 0 and (a2w)

n = 0, we have

(aw)n =

n∑
i=0

(a1w)
i(a2w)

n−i = (a1w)
n +

n−1∑
i=1

(a1w)
i(a2w)

n−i.

As (a1)
∗a2 = 0, we deduce that

(
(aw)n

)∗
a2 =

(
(a1w)

n
)∗
a2 +

n−1∑
n=1

[(a1w)
i(a2w)

n−i]∗a2 = 0;

and then
(
(aw)n

)∗
a1 =

(
(aw)n

)∗
a. Accordingly,(

(aw)n
)∗
(aw)2x =

(
(aw)n

)∗
(a1w + a2w)(a1w + a2w)a

#
1

=
(
(aw)n

)∗
(a1w)

2a#1 =
(
(aw)n

)∗
a1

=
(
(aw)n

)∗
a.

Therefore x = a(wx)2,
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, (aw)n = xw(aw)n+1.

(2) ⇒ (1) By hypothesis, there exist x ∈ R and n ∈ N such that

x = a(wx)2,
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, (aw)n = xw(aw)n+1.

Without loss of generality, we may assume that n ≥ 2. Let a1 = (aw)2x and
a2 = a− (aw)2x.

Claim 1. a2wa1 = 0. Clearly, we have

x = (aw)x(wx) = (aw)2x(wx)2 = (aw)n−1x(wx)n−1.

https://doi.org/10.33044/revuma.5074
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Then

a2wa1 = [a− (aw)2x]w(aw)2x

= (aw)3x− (aw)2xw(aw)2x

= (aw)3x− (aw)2xw(aw)2x

= (aw)3x− (aw)2xw(aw)2(aw)n−1x(wx)n−1

= (aw)3x− (aw)2[xw(aw)n+1]x(wx)n−1

= (aw)3x− (aw)n+2x(wx)n−1

= (aw)3x− (aw)3[(aw)n−1x(wx)n−1] = 0.

Claim 2. a∗1a2 = 0. Obviously, we have

(aw)2x = (aw)2[(aw)n−2x(wx)n−2] = (aw)nx(wx)n−2.

Then

a∗1a2 = [(aw)2x]∗[a− (aw)2x]

= [(aw)nx(wx)n−2]∗[a− (aw)2x]

= [x(wx)n−2]∗[(aw)n]∗[a− (aw)2x] = 0.

Claim 3. a1 ∈ R#
w . Evidently, we verify that

a1wx = (aw)2xwx = awa(wx)2 = awx,

xwa1 = xw(aw)2x = xw(aw)2[(aw)n−1x(wx)n−1]

= [xw(aw)n+1]x(wx)n−1 = (aw)nx(wx)n−1 = awx,

and then a1wx = xwa1. Moreover, we have

a1wxwa1 = (a1wx)wa1 = awxw(aw)2x

= awxw(aw)2[(aw)n−1x(wx)n−1]

= aw[xw(aw)n+1]x(wx)n−1

= (aw)n+1x(wx)n−1 = (aw)2x = a1,

xwa1wx = (xwa1)wx = a(wx)2 = x.

Hence, a1 ∈ R#
w and (a1)

#
w = x.

Claim 4. a2 ∈ Rnil
w . It is easy to verify that

[aw − xw(aw)2]x = [aw − xw(aw)2][(aw)n−1x(wx)n−2]

= [(aw)n − xw(aw)n+1]x(wx)n−2 = 0.

Hence,

[aw − xw(aw)2]2 = [aw − xw(aw)2]aw − [aw − xw(aw)2]xw(aw)2

= [aw − xw(aw)2](aw).

https://doi.org/10.33044/revuma.5074
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This implies that

[aw − xw(aw)2]n = [aw − xw(aw)2]n−2[aw − xw(aw)2]2

= [aw − xw(aw)2]n−3[aw − xw(aw)2]2(aw)

= [aw − xw(aw)2]n−3[aw − xw(aw)2](aw)2

...

= [aw − xw(aw)2](aw)n−1

= (aw)n − xw(aw)n+1 = 0.

Thus, [1− xw(aw)]aw ∈ Rnil, and then aw[1− xw(aw)] = aw− aw(xw)aw ∈ Rnil.
Hence, [1− aw(xw)]aw ∈ Rnil. This implies that aw[1− aw(xw)] ∈ Rnil. That is,
aw − (aw)2xw ∈ Rnil; hence, a2 = a − (aw)2x ∈ Rnil

w . Therefore a = a1 + a2 is
weak w-group decomposition of a, as required. □

Corollary 2.4. Let a,w ∈ R. Then the following are equivalent:

(1) a ∈ R has a weak w-group decomposition.
(2) There exists x ∈ R such that

x = a(wx)2,
(
(aw)m

)∗
(aw)2x =

(
(aw)m

)∗
a, (aw)n = xw(aw)n+1

for some m,n ∈ N.

Proof. (1) ⇒ (2) This is trivial by Theorem 2.3.
(2) ⇒ (1) By hypothesis, there exists x ∈ R such that

x = a(wx)2,
(
(aw)m

)∗
(aw)2x =

(
(aw)m

)∗
a, (aw)n = xw(aw)n+1

for some m,n ∈ N. Then(
(aw)n

)∗
(aw)2x =

(
xw(aw)n+1

)∗
(aw)2x =

(
a(wx)2w(aw)n+1

)∗
(aw)2x

=
(
(aw)(xw)2(aw)n+1

)∗
(aw)2x =

(
(aw)m(xw)m+1(aw)n+1

)∗
(aw)2x

=
(
(xw)m+1(aw)n+1

)∗
[((aw)m)∗(aw)2x] =

(
(xw)m+1(aw)n+1

)∗
[
(
(aw)m

)∗
a]

=
(
(aw)m(xw)m+1(aw)n+1

)∗
a =

(
(aw)(xw)2(aw)n+1

)∗
a

=
(
a(wx)2w(aw)n+1

)∗
a =

(
xw(aw)n+1

)∗
a =

(
(aw)n

)∗
a.

In light of Theorem 2.3, we complete the proof. □

Theorem 2.5. Let a,w ∈ R. Then the following are equivalent:

(1) a ∈ R has a weak w-group decomposition.
(2) There exists unique x ∈ R such that

x = a(wx)2,
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, (aw)n = xw(aw)n+1

for some n ∈ N.

https://doi.org/10.33044/revuma.5074
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Proof. (2) ⇒ (1) Suppose that there exist x, y ∈ R and m,n ∈ N such that

x = a(wx)2,
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, (aw)n = xw(aw)n+1;

y = a(wy)2,
(
(aw)m

)∗
(aw)2y =

(
(aw)m

)∗
a, (aw)m = yw(aw)m+1.

Choose k = max(m,n). Then

x = a(wx)2,
(
(aw)k

)∗
(aw)2x =

(
(aw)k

)∗
a, (aw)k = xw(aw)k+1;

y = a(wy)2,
(
(aw)k

)∗
(aw)2y =

(
(aw)k

)∗
a, (aw)k = yw(aw)k+1.

Claim 1. xw = yw. By hypothesis, we see that xw and yw are both the weak
group inverse of aw. In view of [25, Theorem 3.5], we have xw = yw.

Claim 2. (aw)2x = (aw)2y. Since x = a(wx)2, we have x = (aw)n−2x(wx)n−2,
and so (aw)2x = (aw)nx(wx)n−2. Then

((aw)2x)∗(aw)2x− ((aw)2x)∗a = (x(wx)n−2)∗[((aw)n)∗(aw)2x− ((aw)n)∗a] = 0.

Therefore ((aw)2x)∗(aw)2x = ((aw)2x)∗a. Similarly, we have

((aw)2x)∗(aw)2y = ((aw)2x)∗a,

((aw)2y)∗(aw)2x = ((aw)2y)∗a,

((aw)2y)∗(aw)2y = ((aw)2y)∗a.

Let z = (aw)2x− (aw)2y. Then we check that

z∗z = ((aw)2x− (aw)2y)∗((aw)2x− (aw)2y)

= ((aw)2x)∗(aw)2x− ((aw)2x)∗(aw)2y

− ((aw)2y)∗(aw)2x+ ((aw)2y)∗(aw)2y

= ((aw)2x)∗a− ((aw)2x)∗a− ((aw)2y)∗a+ ((aw)2y)∗a = 0.

Since R is a ring with proper involution, we have z = 0; hence, (aw)2x = (aw)2y.
Claim 3. x = y. We see that

(xw)(awx) = xwaw[(aw)kx(wx)k]w = [xw(aw)k+1]x(wx)k

= (aw)kx(wx)k = x.

Moreover, we have

(xw)2(aw)2x = xw[xw(aw)2](aw)k−1x(wx)k−1

= xw[xw(aw)k+1]x(wx)k−1

= xwaw[(aw)k−1x(wx)k−1] = (xw)(awx).

Therefore x = (xw)2(aw)2x. Likewise, y = (yw)2(aw)2y. By using Claim 1 and
Claim 2, we have

x = (xw)2[(aw)2x] = (yw)2[(aw)2y] = y,

as desired. □

https://doi.org/10.33044/revuma.5074
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We denote x in Theorem 2.5 by a
W

w , and call it the weak w-group inverse of a.

We use R
W

w to stand for the set of all weak w-group invertible elements in R. We
now derive

Corollary 2.6. Let a ∈ R
W

w . Then the following hold.

(1) a
W

w = a
W

w wawa
W

w .

(2) (aw)(a
W

w w) = (aw)m(a
W

w w)m for any m ∈ N.

Proof. (1) Let x = a
W

w . In view of Theorem 2.5, we have x = a(wx)2 and (aw)n =
xw(aw)n+1 for some n ∈ N. Then x = (aw)nx(wx)n. Hence,

a
W

w wawa
W

w = (xwaw)[(aw)nx(wx)n]

= [xw(aw)n+1]x(wx)n = (aw)nx(wx)n = x,

as required.
(2) We easily see that

(aw)2(a
W

w w)2 = aw[a(w(a
W

w )2]w = (aw)(a
W

w w).

By induction, we complete the proof. □

Theorem 2.7. Let a, x ∈ R and w ∈ R−1. Then the following are equivalent:

(1) x = a
W

w .
(2) There exists some n ∈ N such that

x = a(wx)2, [(aw)∗(aw)2xw]∗ = (aw)∗(aw)2xw, (aw)n = xw(aw)n+1.

In this case, x = (aw)Ww−1.

Proof. (1) ⇒ (2) By hypothesis, a has the weak w-group decomposition a = a1+a2.
Let x = (a1)

#
w . In virtue of Theorem 2.3, there exists n ∈ N such that

x = a(wx)2,
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, (aw)n = xw(aw)n+1.

Moreover, we have

(aw)∗(aw)2xw = (a1w + a2w)
∗(a1w + a2w)

2(a1)
#
ww

= (a1w + a2w)
∗(a1w + a2w)a1w(a1)

#
ww

= (a1w + a2w)
∗(a1w)

2(a1)
#
ww

= (a1w + a2w)
∗a1w = (a1w)

∗(a1w).

Therefore [(aw)∗(aw)2xw]∗ = [(a1w)
∗(a1w)]

∗ = (a1w)
∗(a1w) = (aw)∗(aw)2xw, as

desired.
(2) ⇒ (1) By hypotheses, there exist x ∈ R and n ∈ N such that

x = a(wx)2, [(aw)∗(aw)2xw]∗ = (aw)∗(aw)2xw, (aw)n = xw(aw)n+1.

Let a1 = (aw)2x and a2 = a − (aw)2x. As in the proof of Theorem 2.3, we prove
that

a2wa1 = 0, a1 ∈ R#
w and a2 ∈ Rnil

w .
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Moreover, we verify that

a∗1a2w = [(aw)2x]∗[a− (aw)2x]w

= [(aw)2x]∗aw − [awx]∗[(aw)∗(aw)2xw]

= [(aw)2x]∗aw − [awx]∗[(aw)∗(aw)2xw]∗

= [(aw)2x]∗aw − [(aw)∗(aw)2xwawx]∗

= [(aw)2x]∗aw − [(aw)2xwawx]∗aw

= [(aw)2x]∗aw − [(aw)2xwaw((aw)nx(xw)n)]∗aw

= [(aw)2x]∗aw − [(aw)2(xw(aw)n+1)x(xw)n)]∗aw

= [(aw)2x]∗aw − [(aw)2((aw)nx(xw)n)]∗aw

= [(aw)2x]∗aw − [(aw)2x]∗aw = 0.

As w ∈ R−1, we deduce that a∗1a2 = 0. Therefore a = a1 + a2 is weak w-group
decomposition of a.

Obviously, we have

xw = aw(xw)2, [(aw)∗(aw)2xw]∗ = (aw)∗(aw)2xw, (aw)n = xw(aw)n+1.

Hence, xw = (aw)W . As w ∈ R−1, we have x = (aw)Ww−1, as required. □

3. Equivalent characterizations

In this section we establish some equivalent characterizations of weak weighted
group inverses. We now derive

Theorem 3.1. Let a ∈ R. Then a ∈ R
W

w if and only if

(1) a ∈ RD,w;
(2) There exists x ∈ R such that

xR = aD,wR, ((aw)n)∗(aw)2x = ((aw)n)∗a, (aw)n = xw(aw)n+1

for some n ∈ N.

In this case, a
W

w = x.

Proof. =⇒ In view of Theorem 2.3, there exist x ∈ R and n ∈ N such that

x = a(wx)2, ((aw)n)∗(aw)2x = ((aw)n)∗a, (aw)n = xw(aw)n+1.

Here, x = a
W

w . Hence, xw = (aw)(xw)2 and (aw)n = (xw)(aw)n+1. By virtue of
[27, Lemma 2.2], aw ∈ RD. This implies that a ∈ RD,w.

We claim that xR = aD,wR. By virtue of Theorem 2.3, there exist z, y ∈ R such
that

a = z + y, z∗y = ywz = 0, z ∈ R#
w , y ∈ Rnil

w .

Moreover, we have x = z#w . In view of Lemma 2.1, zw ∈ R#. Write (yw)k+1 = 0
for some k ∈ N. Since aw = zw + yw, yw ∈ Rnil and (yw)(zw) = 0, it follows by

https://doi.org/10.33044/revuma.5074
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[1, Corollary 3.5] that aw ∈ RD and

(aw)D = (zw)# +

k∑
n=1

((zw)#)n+1(yw)n.

Since x = a(wx)2, we see that x = awxwx = (aw)m(xw)mx; hence,

xwawx = xwaw(aw)m(xw)mx = [xw(aw)m+1](xw)mx

= (aw)m(xw)mx = (aw)(xw)x = a(wx)2 = x.

Obviously, we have (zw)#(zw)z#w = z#w (wz)(wz)#. Then we directly verify that

(aw)(aw)Dx = (aw)D(zw + yw)z#w

= (aw)Dzwz#w

= [(zw)# +

k∑
n=1

((zw)#)n+1(yw)n](zw)z#w

= (zw)#(zw)z#w = x.

Furthermore, we have

xw(aw)(aw)D = z#ww(zw + yw)[(zw)# +

k∑
n=1

((zw)#)n+1(yw)n]

= z#w (wzw)[(zw)# +

k∑
n=1

((zw)#)n+1(yw)n]

= (zw)#wzw(zw)# + z#w (wzw)

k∑
n=1

((zw)#)n+1(yw)n

= (zw)# +

k∑
n=1

((zw)#)n+1(yw)n = (aw)D.

Accordingly, xR = xwR = aD,wR, as asserted.
⇐= We directly check that

awxw(aw)D = awxw(aw)n+1[(aw)D]n+2

= aw[xw(aw)n+1][(aw)D]n+2

= aw(aw)n[(aw)D]n+2 = (aw)D.

Since aD,w = (aw)Da(wa)D, we have awxwaD,w = aD,w, and so (1 − awxw)aD,w

= 0. As xR = aD,wR, we derive that (1 − awxw)x = 0. Therefore x = awxwx =

a(wx)2. By virtue of Theorem 2.3, a ∈ R
W

w . In this case, a
W

w = x, required. □

Corollary 3.2. Let a ∈ R. Then a ∈ R
W

w if and only if

(1) a ∈ RD,w;
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(2) There exists x ∈ R such that

xwawx = x, xR = (aw)mR = (aw)m+1R, a∗(aw)mR ⊆ x∗R

for some m ∈ N.
In this case, a

W

w = x.

Proof. =⇒ In view of Theorem 3.1, a ∈ RD,w and there exist x ∈ R and m ∈ N
such that

x = a(wx)2,
(
(aw)m

)∗
(aw)2x =

(
(aw)m

)∗
a, (aw)m = xw(aw)m+1.

Then x = awxwx = (aw)m(xw)mx; hence,

xwawx = xwaw(aw)m(xw)mx = [xw(aw)m+1](xw)mx

= (aw)m(xw)mx = (aw)(xw)x = a(wx)2 = x.

Thus, x = awxwx = (aw)mx(wx)m; whence xR ⊆ (aw)mR. On the other hand,
(aw)mR ⊆ xR. Thus, xR = (aw)mR. Obviously, (aw)m+1R ⊆ (aw)mR. On
the other hand, (aw)m = xw(aw)m+1 = (aw)m+1x(wx)m+1w(aw)m+1; hence,
(aw)mR ⊆ (aw)m+1R. This implies that (aw)mR = (aw)m+1R. Moreover,(
(aw)m

)∗
(aw)2x =

(
(aw)m

)∗
a; hence, a∗(aw)m = x∗[

(
(aw)m

)∗
(aw)2]∗. Accord-

ingly, a∗(aw)mR ⊆ x∗R, as required.
⇐= By hypothesis, a ∈ RD,w and there exists x ∈ R such that

xwawx = x, xR = (aw)mR = (aw)m+1R, a∗(aw)mR ⊆ x∗R

for some m ∈ N.
Claim 1. xR = aD,wR. Let k = i(aw). Then xR = (aw)m+kR. Since (aw)k =

(aw)D(aw)k+1, we have xR = (aw)D(aw)m+k+1R = (aw)DR = aD,wwR = aD,wR,
as desired.

Claim 2. ((aw)m)∗(aw)2x = ((aw)m)∗a. Since x = xwawx, we have x(1 −
wawx) = 0. Hence (1 − wawx)∗x∗ = 0, and then (1 − wawx)∗a∗(aw)m = 0.
Therefore [(aw)m]∗(aw)2x = [(aw)m]∗a, as required.

Claim 3. (aw)m = xw(aw)m+1. Since (1 − xwaw)x = 0, we see that (1 −
xwaw)(aw)m = 0. Thus (aw)m = xw(aw)m+1.

Therefore a ∈ R
W

w by Theorem 3.1. □

Theorem 3.3. Let a,w ∈ R. Then the following are equivalent:

(1) a ∈ R
W

w .
(2) a ∈ RD,w and there exist n ∈ N, x ∈ R such that

x = a(wx)2, ((aw)n)∗(aw)2x = ((aw)n)∗a.

(3) a ∈ RD,w and there exists some y ∈ R such that

(aD,ww)∗aD,wwy = (aD,ww)∗a.

In this case, a
W

w = (aw)(aw)Dx = (aD,ww)3y.
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Proof. (1) ⇒ (2) By virtue of Theorem 3.1, a ∈ RD,w and there exists x ∈ R such

that
(
(aw)n

)∗
(aw)2x =

(
(aw)n

)∗
a, as desired.

(2) ⇒ (3) By hypothesis, a ∈ RD,w and there exist n ∈ N, x ∈ R such that
x = a(wx)2, ((aw)n)∗(aw)2x = ((aw)n)∗a. Then we see that ((aw)D)∗(aw)2x =
((aw)D)∗a. Clearly, aD,ww = (aw)D, and so (aD,ww)∗(aw)2x = (aD,ww)∗a.

Since x = a(wx)2 = (aw)x(wx) = (aw)nx(wx)n for any n ∈ N, we observe that

(aD,ww)∗(aw)2x− (aD,ww)∗(aw)D(aw)3x

= (aD,ww)∗(aw)n+2x(wx)n − (aD,ww)∗(aw)D(aw)n+3x(wx)n

= (aD,ww)∗[(aw)n − (aw)D(aw)n+1](aw)2x(wx)n.

Since (aw)n = (aw)D(aw)n+1, we get

(aD,ww)∗(aw)2x− (aD,ww)∗(aw)D(aw)3x = 0;

hence, (aD,ww)∗(aw)D(aw)3x = (aD,ww)∗a. Set y = (aw)3x. Then we verify that

(aD,ww)∗aD,wwy = (aD,ww)∗[aD,ww]awx

= (aD,ww)∗(aw)Dawx = (aD,ww)∗a,

as desired.
(3) ⇒ (1) By hypothesis, (aD,ww)∗aD,wwy = (aD,ww)∗a for a y ∈ R. Then

((aw)D)∗(aw)Dy = ((aw)D)∗a. It is easy to verify that

[aw(aw)D]∗aw(aw)D = [aw(aw)D]∗aw[(aw)D]2yw(aw)D.

Since the involution ∗ is proper, we get aw(aw)D = (aw)Dyw(aw)D. Let z =
((aw)D)3y. Then we verify that

a(wz)2 = aw((aw)D)3yw((aw)D)3y

= ((aw)D)2yw((aw)D)3y

= (aw)D[(aw)Dyw(aw)D]((aw)D)2y

= (aw)Daw(aw)D((aw)D)2y

= ((aw)D)3y = z;(
(aw)D

)∗
(aw)2z =

(
(aw)D

)∗
(aw)2((aw)D)3y

=
(
(aw)D

)∗
(aw)Dy

=
(
(aw)D

)∗
a.
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Set n = i(aw). Then (aw)n = (aw)D(aw)n+1. Thus,

(aw)n − zw(aw)n+1 = [(aw)n − (aw)D(aw)n+1] + [(aw)D(aw)n+1 − zw(aw)n+1]

= (aw)D(aw)n+1 − ((aw)D)3yw(aw)n+1

= −((aw)D)3yw[1− (aw)D(aw)](aw)n+1

+ [(aw)D(aw)n+1 − ((aw)D)3yw(aw)D(aw)n+2]

= (aw)D(aw)n+1 − ((aw)D)3yw(aw)D(aw)n+2

= [(aw)D]2[(aw)(aw)D](aw)n+2 − ((aw)D)3yw(aw)D(aw)n+2

= [(aw)D]2[(aw)Dyw(aw)D](aw)n+2

− ((aw)D)3yw(aw)D(aw)n+2

= 0.

That is, (aw)n = zw(aw)n+1. Accordingly, a ∈ R
W

w . In this case,

a
W

w = ((aw)D)3y = (aD,ww)3y = (aD,ww)3(aw)3x = (aw)(aw)Dx,

as asserted. □

Corollary 3.4. Let a ∈ R. Then a ∈ R
W

w if and only if

(1) a ∈ RD,w;
(2) There exists an idempotent q ∈ R such that

aD,wR = qR and (aD,w)∗awq = (aD,w)∗a.

Proof. =⇒ By using Theorem 3.3, a ∈ RD,w and there exists some y ∈ R such that

(aD,ww)∗aD,wwy = (aD,ww)∗a.

Then

(aD,ww)∗(aw)[(aw)D]2y = (aD,ww)∗a.

Set q = [(aw)D]2y. Then (aD,w)∗awq = (aD,w)∗a. Obviously, qR ⊆ aD,wwR.

Moreover, a
W

w = (aD,ww)3y = [(aw)D]3y. Then a
W

w = (aw)Dq, and then q =

(aw)[(aw)Dq] = awa
W

w . Thus qw = (aw)(a
W

w w), and so qw(aw)D = (aw)(a
W

w w)
(aw)D. We observe that

(aw)D − qw(aw)D = (aw)D − (aw)(a
W

w w)(aw)D

= (aw)n+1[(aw)D]n+2 − (aw)(a
W

w w)(aw)n+1[(aw)D]n+2

= aw[(aw)n − (a
W

w w)(aw)n+1][(aw)D]n+2.

Since (aw)n = (a
W

w w)(aw)n+1, we get (aw)D − qw(aw)D = 0; hence, aD,ww =
(aw)D = qw(aw)D. Thus aD,wwR ⊆ qR. Accordingly, aD,wR = aD,wwR = qR, as
desired.

⇐= By hypothesis, a ∈ RD,w and there exists an idempotent q ∈ R such that

aD,wR = qR and (aD,w)∗awq = (aD,w)∗a.
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Since aD,wR = aD,wwR = (aw)DR, we write q = (aw)Dz with z ∈ R. Choose
y = awz. Then

(aD,ww)∗aD,wwy = (aD,ww)∗aD,ww(aw)z

= (aD,ww)∗(aw)D(aw)z

= (aD,ww)∗aw[(aw)Dz]

= (aD,ww)∗awq = (aD,ww)∗a,

the result follows by Theorem 3.3. □

4. Relations with weighted core-EP inverses

In this section we investigate relations between weighted weak group and weighted

core-EP inverses. We use a
D
w to denote the w-core-EP inverse of a. Our starting

point is the following.

Theorem 4.1. Let a ∈ R
D
w . Then a ∈ R

W

w and

a
W

w = (a D

w )2a =
(
awa D

wa
)#
w
.

Proof. Let x = a
D
w . In view of [22, Theorem 2.4], we have some nonnegative integer

k such that awx2 = x, x(aw)k+1a = (aw)ka, xawx = x, awx(aw)ka = (aw)ka,
(awx)∗ = awx. Set n = k + 1. Then awx(aw)n = [awx(aw)ka]w = [(aw)ka]w =
(aw)n = x(aw)n+1. Obviously, we have x = (aw) D . Let z = x2a. Then we check
that

a(wz)2 = aw[x2a]w[x2a]

= [awx2][awx2]a = x2a = z,(
(aw)n

)∗
(aw)2z =

(
(aw)n

)∗
(aw)2[x2a]

=
(
(aw)n

)∗
[(aw)2x2]a =

(
(aw)n

)∗
(awx)a

=
(
(aw)n

)∗
(awx)∗a = [awx(aw)n]∗a = [(aw)n]∗a.

Moreover, we see that

(aw)n − zw(aw)n+1 = (aw)n − [x2a]w(aw)n+1

= (aw)n − x(aw)n+1 + x(aw)n+1 − x2(aw)n+2

= [(aw)n − x(aw)n+1] + x[(aw)n − x(aw)n+1)]aw = 0,

and so (aw)n = zw(aw)n+1. Therefore a
W

w = [a
D
w ]2a.

One directly checks that

awa D

wa = aw[aw(a D

w )2]a

= (aw)2(a D

w )2]a

= (aw)2a
W

w .
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As in the proof of Theorem 2.3, we have (aw)2a
W

w ∈ R#
w and

a
W

w =
(
(aw)2a

W

w

)#
w
=

(
awa D

wa
)#
w
,

as asserted. □

Let A,W ∈ Cn×n. By using Theorem 4.1 and [22, Theorem 2.14], we have

A
W

W = (A
D

W )2A = [(AW ) D ]2A =
(
AWA

D

WA
)#
W
.

Corollary 4.2. Let a ∈ R
D
w . Then a

W

w = x if and only if a(wx)2 = x, awx = a
D
wa.

Proof. =⇒ In view of Theorem 4.1, a ∈ R
W

w and x := a
W

w = (a
D
w )2a. a(wx)2 = x.

Moreover, we have

awx = aw(a D

w )2a = [aw(a D

w )2]a = a D

wa,

as required.

⇐= By hypotheses, a(wx)2 = x, awx = a
D
wa. Then we have

x = a(wx)2 = (awx)wx = [a D

wa](wx)

= a D

w (awx) = a D

w (a D

wa) = (a D

w )2a.

In light of Theorem 4.1, x = a
W

w , as desired. □

Corollary 4.3. Let A,W ∈ Cn×n. Then X is the weak W -group inverse of A if
and only if X satisfies

A(WX)2 = X,AWX = A
D

WA.

Proof. Let Cn×n be the ring of all n×n complex matrices, with conjugate transpose
∗ as the involution. Then the involution ∗ is proper. Therefore we obtain the result
by Corollary 4.2. □

Theorem 4.4. Let a ∈ R
D
w . Then the following are equivalent:

(1) a
D
w = a

W

w w.

(2) awa
D
w = a

D
waw.

Proof. (1) ⇒ (2) In view of Theorem 4.1, a
W

w = (a
D
w )2a. Hence,

awa D

w = awa
W

w w = aw[(a D

w )2a]w

= [aw(a D

w )2]aw = a D

waw,

as desired.
(2) ⇒ (1) Since awa

D
w = a

D
waw, it follows by Theorem 4.1 that a ∈ R

W

w and

a
W

w w = (a D

w )2aw = a D

w [a D

waw]

= a D

w [awa D

w ] = a D

w ,

as required. □

Corollary 4.5. Let a ∈ R D . Then the following are equivalent:
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(1) a D = aW .
(2) aa D = a D a.

Proof. This is obvious by choosing w = 1 in Theorem 4.4. □

We turn to investigate when the weighted group inverse possesses the commuting
property.

Lemma 4.6. Let a ∈ AW

w . Then awa ∈ AW

w . In this case,

(awa)
W

w = (a
W

w w)3a.

Proof. Let x = (a
W

w w)3a and c = awa. Then we can find n ∈ N such that

((aw)n)∗(aw)2a
W

w = [(aw)n]∗a and (aw)n = a
W

w w(aw)n+1.

Accordingly, we have

c(wx)2 = awaw(a
W

w w)3aw(a
W

w w)3a

= aw[a(wa
W

w )2w](a
W

w w)aw(a
W

w w)3a

= a(wa
W

w )2waw(a
W

w w)3a

= [a
W

w wawa
W

w ]w(a
W

w w)2a

= a
W

w wa
W

w wa
W

w wa

= (a
W

w w)3a = x,(
(cw)n

)∗
(cw)2x = ((aw)2n)∗(aw)4(a

W

w w)3a

= ((aw)2n)∗(aw)2[(aw)2(a
W

w w)2](a
W

w w)a

= ((aw)2n)∗(aw)2(aw)(a
W

w w)(a
W

w w)a

= ((aw)2n)∗(aw)2[a(wa
W

w )2]wa

= [(aw)n]∗[((aw)n)∗(aw)2a
W

w ]wa

= [(aw)n]∗[((aw)n)∗a]wa

= [(aw)2n]∗(awa)

=
(
(cw)n

)∗
c.

Moreover, we see that

(cw)n − xw(cw)n+1 = (aw)2n − (a
W

w w)3aw(aw)2n+2

= (aw)2n − (a
W

w w)2a
W

w w(aw)2n+3

= (aw)2n − a
W

w w(aw)2n+1

= [(aw)n − a
W

w w(aw)n+1](aw)n = 0.

Hence, (cw)n = xw(cw)n+1. Therefore we complete the proof. □
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Theorem 4.7. Let a ∈ R
W

w . Then the following are equivalent:

(1) awa
W

w = a
W

w wa.

(2) (awa)
W

w = a
W

w wa
W

w .
(3) a has a weak w-group decomposition a = a1 + a2 with a1wa2 = 0.

Proof. Let a = a1 + a2 be the weak w-group decomposition of a.
(1) ⇔ (3) We check that

awa
W

w = aw(a1)
#
w = (a1w + a2w)(a1)

#
w = a1w(a1)

#
w ,

a
W

w wa = (a1)
#
wwa = (a1)

#
w (wa1 + wa2) = (a1)

#
wwa1 + (a1)

#
wwa2.

Thus, (a1)
#
wwa2 = 0 if and only if awa

W

w = a
W

w wa.
If a1wa2 = 0, then

(a1)
#
wwa2 = [(a1)

#
wwa1w(a1)

#
w ]wa2 = [(a1)

#
ww]

2[a1wa2] = 0.

If (a1)
#
wwa2 = 0, then

a1wa2 = [a1w(a1)
#
wwa1]wa2 = [a1w]

2[(a1)
#
wwa2] = 0.

Thus, a1wa2 = 0 if and only if (a1)
#
wwa2 = 0. Accordingly, awa

W

w = a
W

w wa if and
only if a1wa2 = 0.

(2) ⇔ (3) In light of Lemma 4.6, we verify that

(awa)
W

w = (a
W

w w)3a

= ((a1)
#
ww)

3(a1 + a2)

= ((a1)
#
ww)

3a1 + ((a1)
#
ww)

3a2

= ((a1)
#
ww)

2[(a1)
#
wwa1] + ((a1)

#
ww)

2[(a1)
#
wwa2]

= ((a1)
#
ww)

2[a1w(a1)
#
w ] + ((a1)

#
ww)

2[(a1)
#
wwa2]

= ((a1)
#
ww)[(a1)

#
wwa1w(a1)

#
w ] + ((a1)

#
ww)

2[(a1)
#
wwa2]

= (a1)
#
ww(a1)

#
w + ((a1)

#
ww)

2[(a1)
#
wwa2]

= (a1)
#
ww(a1)

#
w + ((a1)

#
ww)

2[(a1)
#
wwa2]

= a
W

w wa
W

w + ((a1)
#
ww)

2[(a1)
#
wwa2].

If a1wa2 = 0, as in the argument above, we have (a1)
#
wwa2 = 0. Hence

((a1)
#
ww)

2[(a1)
#
wwa2] = 0.

If ((a1)
#
ww)

2[(a1)
#
wwa2] = 0, then [a1w(a1)

#
ww(a1)

#
w ]w[(a1)

#
wwa2] = 0; hence,

[(a1)
#
wwa1w(a1)

#
w ]w[(a1)

#
wwa2] = 0.

This implies that (a1)
#
ww[(a1)

#
wwa2] = 0. Moreover, [a1(w(a1)

#
w )

2]wa2 = 0. We
infer that (a1)

#
wwa2 = 0. Similarly to the preceding argument, we have a1wa2 = 0.

Then a1wa2 = 0 if and only if ((a1)
#
ww)

2[(a1)
#
wwa2] = 0. Therefore a1wa2 = 0 if

and only if (awa)
W

w = a
W

w wa
W

w , as asserted. □

Corollary 4.8. Let a ∈ R
W

w and m ∈ N. Then the following are equivalent:
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(1) awa
W

w = a
W

w wa.

(2) (aw)ma
W

w = a
W

w (wa)m.

Proof. (1) ⇒ (2) Since awa
W

w = a
W

w wa, we verify that

(aw)2a
W

w = aw[awa
W

w ] = aw[a
W

w wa] = [awa
W

w ](wa)

= [(a
W

w wa](wa) = a
W

w (wa)2.

By iteration of this process, we prove that (aw)ma
W

w = a
W

w (wa)m.
(2) ⇒ (1) Let a = a1 + a2 be the weak w-group decomposition of a. Let m = 2.

Since a2wa1 = 0, we derive

(aw)2 = (a1w + a2w)
2 = (a1w)

2 + (a1w)(a2w) + (a2w)
2;

(wa)2 = (wa1 + wa2)
2 = (wa1)

2 + (wa1)(wa2) + (wa2)
2.

Clearly, a2wa
W

w = a2w(a1)
#
w = (a2wa1)w[(a1)

#
w ]

2 = 0. Then

(aw)2a
W

w = (a1w)
2a

W

w + (a1w)(a2w)a
W

w + (a2w)
2a

W

w

= (a1w)
2a

W

w ;

a
W

w (wa)2 = a
W

w (wa1)
2 + a

W

w (wa1)(wa2) + a
W

w (wa2)
2.

As (a1w)
2a

W

w = (a1w)
2(a1)

#
w = (a1)

#
w (wa1)

2 = a
W

w (wa1)
2, we deduce that

[a1w(a1)
#
w ](wa2) + (a1)

#
w (wa2)

2 = (a1)
#
w (wa1)(wa2) + (a1)

#
w (wa2)

2 = 0.

As wa2 ∈ Rnil, we write (wa2)
k = 0 for some k ∈ N. Then [wa1w(a1)

#
w ](wa2)

k−1

= 0. By iteration of this process, we have [wa1w(a1)
#
w ]

k−1(wa2) = 0. As a1 ∈ R#
w ,

we see that a1 = (a1w)
2(a1)

#
w = a1[wa1w(a1)

#
w ] = a1[wa1w(a1)

#
w ]

k−1, we deuce

that a1wa2 = 0. By using Theorem 4.7, awa
W

w = a
W

w wa. The general case can be
proved in a similar way. □

Corollary 4.9. Let a ∈ R
W

w and i(aD,w) = k. Then the following hold:

(1) awa
W

w = a
W

w wa.

(2) (aw)ka
W

w = aD,w(wa)k.

Proof. In view of Theorem 3.1, a ∈ RD,w. Let x = a
W

w . Then a(wx)2 = x, (aw)k =
(xw)(aw)k+1. Hence (aw)(xw)2 = xw, (aw)k = (xw)(aw)k+1. In view of [27,
Lemma 2.2], aw ∈ RD and (aw)D = (xw)k+1(aw)k. Also we have wa(wx)2 =
wx, (wa)k+1 = (wx)(wa)k+2. By [27, Lemma 2.2] again, (wa)D = (wx)k+2(wa)k+1.
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Accordingly,

aD,w = (aw)Da(wa)D = (xw)k+1(aw)ka(wx)k+2(wa)k+1

= (xw)k+1(aw)k+1(xw)k+1x(wa)k+1

= (xw)k+1(aw)(xw)x(wa)k+1 = (xw)k+1[a(wx)2](wa)k+1

= (xw)k+1x(wa)k+1 = x(wx)k+1(wa)k+1.

One directly verifies that

aD,w(wa)k = x(wx)k+1(wa)k+1(wa)k

= x(wx)k+1(wa)2k+1 = x(wx)k[(wx)(wa)k+1](wa)k

= x(wx)k(wa)2k = x(wx)k−1[(wx)(wa)k+1](wa)k−1

= x(wx)k−1(wa)2k−1 = · · · = x(wx)(wa)k+1

= x(wa)k = a
W

w (wa)k.

This completes the proof by Corollary 4.8. □

Theorem 4.10. Let a ∈ R
W

w . Then the following are equivalent:

(1) awa
W

w = a
W

w wa.

(2) (aw)Da
W

w = a
W

w (wa)D.

Proof. (1) ⇒ (2) In view of Theorem 3.1, aw ∈ RD. By using Cline’s formula (see

[13, Theorem 2.2]), wa ∈ RD. Therefore (aw)Da
W

w = a
W

w (wa)D by [2, Theorem 2.3].
(2) ⇒ (1) By virtue of Theorem 2.3, there exist z, y ∈ R such that

a = z + y, z∗y = ywz = 0, z ∈ R#
w , y ∈ Rnil

w .

Explicitly, a
W

w = z#w and (yw)k = (wy)k = 0 for some k ∈ N. Since aw = zw +
yw,wa = wz + wy and (yw)(zw) = (wy)(wz) = 0, it follows by [1, Corollary 3.5]
that

(aw)D = (zw)D +

k−1∑
i=1

((zw)D)i+1(yw)i,

(wa)D = (wa)D +

k−1∑
i=1

((wz)D)i+1(wy)i.
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It is easy to verify that

(aw)Da
W

w = [(zw)D +

k−1∑
i=1

((zw)D)i+1(yw)i]z#w = (zw)Dz#w ,

a
W

w (wa)D = z#w [(wz)D +

k−1∑
i=1

((wz)D)i+1(wy)i]

= z#w (wz)D + z#w

k−1∑
i=1

((wz)#)i+1(wy)i.

Sine (zw)z#w = z#w (wz), it follows by [2, Theorem 2.3] that (zw)Dz#w = z#w (wz)D,
we have

z#w

k−1∑
i=1

((wz)D)i+1(wy)i = 0.

By Cline’s formula (see [13, Theorem 2.2]), we have wzwz#w = wzw
(
[(zw)D]2z

)
=

wz
(
w[(zw)D]2z

)
= wz(wz)D. Then

k−1∑
i=1

((wz)D)i+1(wy)i = wzw
[
z#w

k−1∑
i=1

((wz)D)i+1(wy)i
]
= 0.

That is,

[(wz)D]2(wy) + [(wz)D]3(wy)2 + · · ·+ [(wz)D]k(wy)k−1 = 0.

Since (wy)k = 0, we have [(wz)D]2(wy)k−1 = 0; hence, [(wz)D]2(wy)k−2 = 0. By
iteration of this process, we see that [(wz)D]2wy = 0. Hence, z[(wz)D]2wy = 0.
By Cline’s formula again, we get (zw)Dy = 0. As z ∈ R#

w , we see that zw ∈ R#.
This implies that zwy = (zw)2[(zw)Dy] = 0. Therefor we have

awa
W

w = (zw + yw)z#w

= zwz#w + (ywz)[wz#w ]2 = zwz#w ,

a
W

w wa = z#ww(z + y) = z#wwz + z#wwy

= z#wwz + (z#ww)2(zwy) = z#wwz.

Hence, awa
W

w = a
W

w wa, as asserted. □

Following directly from Theorem 4.10, we present a property of the weak group
inverse as follows.

Corollary 4.11. Let a ∈ RW . Then the following are equivalent:

(1) aaW = aW a.

(2) aDaW = aW aD.
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