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ADDITIVE AND MULTIPLICATIVE RELATIONS

WITH ALGEBRAIC CONJUGATES

ARTŪRAS DUBICKAS AND PAULIUS VIRBALAS

Abstract. In this paper we prove that every nontrivial additive relation be-

tween algebraic conjugates of degree d over Q has a corresponding to it mul-

tiplicative relation. The proof is constructive. The reverse statement is not
true. These findings supplement the research of Smyth, Dixon, Girstmair and

others. In addition, following a result of Kitaoka we show that all additive

relations between four distinct algebraic conjugates of degree 4 over Q can be
described as Z-linear combinations of several basic nontrivial relations. On the

other hand, we prove that an analogous result no longer holds for algebraic

conjugates of degree 6 over Q.

1. Introduction

Let K be a field and let α be an algebraic number of degree d with conjugates
α1, . . . , αd over K. The additive relation

k1α1 + · · ·+ kdαd = 0 (1.1)

is called nontrivial, if it holds for some k1, . . . , kd ∈ K, not all equal. Likewise, the
multiplicative relation

αk1
1 . . . αkd

d = 1 (1.2)

is called nontrivial, if it holds for some k1, . . . , kd ∈ Z, not all equal. Note that
if K = Q, then multiplying (1.1) by an appropriate integer, we can assume that
k1, . . . , kd ∈ Z.

First, note that not every nontrivial multiplicative relation has the corresponding
nontrivial additive relation. That is, if (1.2) holds for some α of degree d with
(k1, . . . , kd) ∈ Zd, then another algebraic number with the same degree d and some
(k1, . . . , kd) ∈ Zd that satisfies (1.1) may not exist. Indeed, take an irreducible
over Q polynomial x6 − 3x3 + 1. Then, three of its roots lie on the circle |z| =
3

√
(3 +

√
5)/2. One of them, say α1 is real, and two other, say α2 and α3, are

complex conjugate numbers. Consequently, their product α2α3 equals α2
1, which

implies the multiplicative relation α2
1α

−1
2 α−1

3 = 1. This means that (1.2) holds for
the vector

(k1, k2, k3, k4, k5, k6) = (2,−1,−1, 0, 0, 0) (1.3)
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2 ARTŪRAS DUBICKAS AND PAULIUS VIRBALAS

and the sextic algebraic number α1. In contrast, by a result of Smyth [24, Lemma
1], we know that there is no corresponding nontrivial additive relation for the vector
(1.3) between distinct algebraic conjugates of a sextic algebraic number.

The first result of this paper shows that the converse is actually true, if the
ground field is taken to be Q. That is, if an additive relation (1.1) holds for some
α of degree d over Q and some (k1, . . . , kd) ∈ Zd, then there exists β of degree
d over Q such that the corresponding multiplicative relation (1.2) holds with the
same vector (k1, . . . , kd).

Theorem 1.1. Assume that there is an algebraic number α of degree d over Q
with conjugates α1, . . . , αd and some k1, . . . , kd ∈ Z, not all equal, such that

k1α1 + · · ·+ kdαd = 0.

Then, there is an algebraic number β of degree d over Q with conjugates β1, . . . , βd

such that
βk1
1 . . . βkd

d = 1.

The proof of Theorem 1.1 is constructive, i.e., it shows how to construct βi

from α1, . . . , αd. This supplements the techniques applied by Girstmair in [13],
where the link between additive and multiplicative relations was investigated by
non-constructive type of arguments.

The research in this area originated with the works of Kurbatov [19], Girstmair
[12] and Smyth [24], [25]. The latter paper of Smyth contains a similar characteri-
zation of nontrivial additive and multiplicative relations, but the conjugates of the
corresponding algebraic number are allowed to be equal and there is no restriction
on its degree. (Note that nontrivial has a different meaning in (1.1), (1.2) and in
[25].) The problem of determining whether a particular nontrivial additive or mul-
tiplicative relation may occur is then reduced to a purely combinatorial problem;
see [25, Theorem 1]. In that case, additive and multiplicative problems are in some
sense equivalent [25, Corollary 1].

Since then some general results related to (1.1) or (1.2) have been obtained in
[3], [5], [7], [8], [9], [13], and [17]. However, the only nontrivial relations of the form
(1.1) or (1.2) that are completely understood remain the simplest ones, namely,

αi + αj = 0 and αiαj = 1,

where αi, αj denote distinct algebraic conjugates of an algebraic number α of degree
d > 2 over Q. Note that the relation αi + αj = 0 occurs if and only if the minimal
polynomial f of α is of the form f(x) = g(x2) for some g ∈ Q[x], while the
relation αiαj = 1 occurs if and only if the minimal polynomial f of α satisfies
f(x) = xdf(1/x) for x ̸= 0. Note that in both cases d must be even, but the degree
of α whose three conjugates sum to zero is not necessarily divisible by 3, see [11]. In
this direction, it is still not known what are the sufficient and necessary conditions
for relations

αi + αj + αk = 0, αiαjαk = 1 (1.4)

or
αi + αj = αk, αiαj = αk (1.5)
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to hold.
Since the general solution is not attainable at the moment, the topic of nontrivial

relations has been mainly investigated either by imposing restrictions on the Galois
group G of the splitting field of f , where f(x) is the minimal polynomial of α over
Q, or by fixing the degree d of α. Various aspects of relations (1.4) or (1.5) were
investigated in [2], [4], [10], [14], [15], [16], [22], and [23], while the papers [20], [21],
[24] deal with slightly different type of nontrivial relations.

In this paper, we deviate from the research described earlier by seeking to obtain
some structural insights about the nature of all possible nontrivial relations for a
fixed degree d of α by considering all possible relations as a lattice in Zd. See, e.g.,
[26], [27] for some computational results related to the lattice in Zd of multiplicative
relations (1.2) for some α of degree d.

If d is a prime number, then there are no nontrivial additive relations between
algebraic conjugates of degree d, see [4], [19]. For d = 4 we show the following
result about all possible nontrivial additive relations (1.1) over Q.

Theorem 1.2. Assume that there is an algebraic number α of degree 4 over Q
with conjugates α1, . . . , α4 and some k1, . . . , k4 ∈ Z, not all equal, such that

k1α1 + · · ·+ k4α4 = 0.

Then, after re-indexing of the conjugates if necessary, we have

α1 + α2 − α3 − α4 = 0 (1.6)

and

k1 = k2, k3 = k4. (1.7)

In the proof of Theorem 1.2, we derive that for some r ∈ Q we have α1 + α2 =
α3 + α4 = r. The relation (1.6), though not explicitly stated, can be derived from
the work of Kitaoka [18]. Our main contribution is the proof that the relation
(1.7) must also hold. Moreover, it will be shown that if r ̸= 0, then any nontrivial
additive relation with four conjugates of an algebraic number of degree 4 over Q,
up to the re-indexing of conjugates, has the form

Z(α1 + α2 − α3 − α4), (1.8)

while for r = 0 it has the more general form

Z(α1 + α2) + Z(α3 + α4). (1.9)

Hence, for d = 4, there is a finite list of nontrivial additive relations (one nontrivial
relation α1 +α2 −α3 −α4 = 0 or two such relations α1 +α2 = 0 and α3 +α4 = 0)
such that any possible additive relation is a Z-linear form of those one or two basic
relations.

It seems very likely that such a result holds only for d = 4, and we should not
expect it for other composite degrees d. We next show that it is impossible to
expect a result analogous to Theorem 1.2 and (1.8), (1.9) for d = 6.
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4 ARTŪRAS DUBICKAS AND PAULIUS VIRBALAS

Theorem 1.3. Let m ∈ N and let

fi(x1, . . . , x6) =

6∑
j=1

uijxj ,

i = 1, . . . ,m, be a set of m linear forms such that for each i the coefficients
ui1, . . . , ui6 ∈ Z are not all equal. Then, there are infinitely many algebraic num-
bers α of degree 6 over Q whose conjugates α1, . . . , α6 satisfy a nontrivial additive
relation of the form

k1α1 + k2α2 + k3α3 = 0,

where k1, k2, k3 ∈ N, but this relation is not of the form∑
j∈S

Zfj(α1, . . . , α6),

where S ⊆ {1, . . . ,m} is such that fj(α1, . . . , α6) = 0 for each j ∈ S.

The paper is structured as follows. In Section 2, we state some auxiliary results
that will be applied later. Then, in Sections 3, 4 and 5, we present the proofs of
Theorems 1.1, 1.2 and 1.3, respectively.

2. Auxiliary results

The following lemma will be the main tool in the proof of Theorem 1.1.

Lemma 2.1 ([6, Lemma 2.1]). Let n and X be positive integers, and let z1, . . . , zn
be pairwise distinct complex numbers. Then, there is a positive integer k for which
the equality

(k + z1)
x1 . . . (k + zn)

xn = 1

does not hold for x1, . . . , xn ∈ Z satisfying |x1|, . . . , |xn| ≤ X, unless we have
x1 = · · · = xn = 0.

The next two lemmas will be used in the proof of Theorem 1.2.

Lemma 2.2 ([18, Proposition 3]). Let p ∈ Q[x] be a quartic monic irreducible
polynomial over Q. If there is a nontrivial additive relation between the roots of p,
then

p(x) = f(g(x))

for quadratic polynomials g and f .

Lemma 2.3 ([23, Lemma 2.3]). If for some non-zero rationals mi,mj and distinct
algebraic conjugates αi, αj over Q we have

miαi +mjαj = 0,

then mi = mj and αi = −αj.

The next lemma is essential for the proof of Theorem 1.3.
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Lemma 2.4. Let S be a finite set, and let R be a positive integer. Then, there are
infinitely many triplets of positive integers (a, b, c) satisfying

a2 + b2 − ab = c2, (2.1)

a, b, c > R, (2.2)

and
a

b
/∈ S. (2.3)

Proof. Our original proof was based on considering Pell’s equationX2−3Y 2 = 1. It
has infinitely many solutions (X,Y ) = (2xn, 2yn−1) with (xn, yn) ∈ N2. Then, one
can take (a, b, c) = (yn, 2yn − 1, xn) and for infinitely many n ∈ N both conditions
(2.2), (2.3) clearly hold.

Alternatively, the referee observed that setting in (2.1) X = a/b and Y = c/b
we get the equation

X2 −X + 1− Y 2 = 0.

It is a non-degenerate conic with integer coefficients. Since it has a rational solution
(X,Y ) = (1, 1), it must have infinitely many rational solutions. In fact, it is easy
to see that infinitely many of them satisfy X,Y > 0. So, for infinitely many
of them, the conditions (2.2) and (2.3) also hold for the corresponding positive
integers a, b, c, where (a, b, c) = (bX, b, bY ) and b is the least positive integer for
which bX, bY ∈ N. □

3. Proof of Theorem 1.1

Assume that there exists an algebraic number α of degree d over Q with conju-
gates α1, . . . , αd and some k1, . . . , kd ∈ Z, not all equal, such that

k1α1 + · · ·+ kdαd = 0. (3.1)

Let L be the Galois closure of Q(α) over Q. Set G = Gal(L/Q), and put
n = [L : Q] = |G|. Let σ1, . . . , σn denote all distinct automorphisms of G. By the
normal basis theorem (see [1]), there exists w ∈ L such that wj = σj(w), where
j = 1, . . . , n, form a basis of L. Hence, there are rational numbers a1, . . . , an for
which

α = a1w1 + · · ·+ anwn.

Note that replacing α by its proper integer multiple does not change the property
(3.1), so we can assume that a1, . . . , ad ∈ Z.

Next, observe that for each σ ∈ G, we have

σ(α) = a1σ(w1) + · · ·+ anσ(wn) = aτ(1)w1 + · · ·+ aτ(n)wn,

where τ = σ−1 ∈ G acts as a permutation of the set {1, . . . , n}. Note that the sums
aτ(1)w1 + · · ·+ aτ(n)wn and aτ ′(1)w1 + · · ·+ aτ ′(n)wn are distinct if and only if the
vectors (aτ(1), . . . , aτ(n)) and (aτ ′(1), . . . , aτ ′(n)) are distinct. Since the degree of α

over Q is d, there are d distinct vectors among (aτ(1), . . . , aτ(n)) as τ = σ−1 runs
over all n distinct automorphisms σ ∈ G. (All other possible vectors are repetitions
of those d vectors, and each distinct vector occurs exactly n/d times.)

https://doi.org/10.33044/revuma.5106
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Select d automorphisms τ1, . . . , τd ∈ G so that

αi = aτi(1)w1 + · · ·+ aτi(n)wn,

where i = 1, . . . , d. Then, from (3.1), and the fact that w1, . . . , wn is a basis of L,
follows that

k1aτ1(j) + · · ·+ kdaτd(j) = 0 (3.2)

for j = 1, . . . , n.
Now we are in the position to construct an algebraic number β of degree d with

conjugates β1, . . . , βd over Q that satisfy

βk1
1 . . . βkd

d = 1 (3.3)

with the same vector (k1, . . . , kd) ∈ Zd as in (3.1). Consider the number

β = (k + w1)
a1 . . . (k + wn)

an , (3.4)

where k is a positive integer that will be chosen later. It is clear that β ∈ L, since
w1, . . . , wn ∈ L and a1, . . . , an ∈ Z. Applying the automorphism σi = τ−1

i to (3.4)
we obtain

σi(β) = (k + wσi(1))
a1 . . . (k + wσi(n))

an = (k + w1)
aτi(1) . . . (k + wn)

aτi
(n).

Set βi = σi(β), where i = 1, . . . , d. Then, from (3.2) follows that

βk1
1 . . . βkd

d = 1.

It remains to show that β is of degree d over Q. Observe that the conjugates of
β are all of the form

(k + w1)
aτ(1) . . . (k + wn)

aτ(n) , (3.5)

where τ runs through all n distinct automorphisms of G corresponding to n permu-
tations of the set {1, . . . , n}. Consequently, the degree of α equals to the number of
distinct products among the n conjugates (not necessarily distinct) in (3.5). Now,
in Lemma 2.1 choosing

X = 2max{|a1|, . . . , |an|}
and an appropriate k ∈ N, we conclude that two such products are equal if and
only if the vectors (aτ(1), . . . , aτ(n)) and (aτ ′(1), . . . , aτ ′(n)) are equal for some per-
mutations τ and τ ′. This implies that the degree of β is equal to the number of
distinct vectors among (aτ(1), . . . , aτ(n)). As it was mentioned earlier, the number
of distinct vectors is equal to d. This completes the proof of the theorem.

4. Proof of Theorem 1.2

Assume that there is an algebraic number α of degree 4 over Q with conjugates
α1, . . . , α4 and some k1, . . . , k4 ∈ Z, not all equal, such that

k1α1 + · · ·+ k4α4 = 0. (4.1)

From Lemma 2.2 we deduce that the minimal polynomial of α over Q must be of
the form f(g(x)), where f, g ∈ Q[x] are both quadratic. Writing

g(x) = (x+ u)2 + u′ and f(x) = (x+ v)2 + v′

https://doi.org/10.33044/revuma.5106
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with u, u′, v, v′ ∈ Q we deduce

f(g(x)) = ((x+ u)2 + u′ + v)2 + v′ = (x+ u)4 + w(x+ u)2 + s, (4.2)

where u,w, s ∈ Q.
Consider the polynomial

h(x) = x4 + wx2 + s.

By its construction, h is irreducible over Q. From (4.2) it follows that β = α + u
is a root of h. Moreover, it is clear that −β is also a root of h. Let β,−β, β′,−β′

denote all four roots of h. Then

h(x) = (x− β)(x+ β)(x− β′)(x+ β′) = (x2 − β2)(x2 − β′2). (4.3)

Writing α1 = β − u, α2 = −β − u, α3 = β′ − u and α4 = −β′ − u, we obtain

α1 + α2 = α3 + α4 = −2u (4.4)

which implies the relation in (1.6).
Next, set m1 = k1 − k2 and m2 = k3 − k4. In view of (4.1) and (4.4), we get

0 = k1α1 + · · ·+ k4α4 = m1α1 − 2uk2 +m2α3 − 2uk4.

By setting m = 2uk2 + 2uk4, we see that

m1α1 +m2α3 = m ∈ Q. (4.5)

To establish the relation in (1.7) it suffices to show that m1 = m2 = 0.
It is clear that exactly one of the integers m1,m2 cannot be zero, since α1 and

α3 are irrational. Hence m1m2 ̸= 0. Consider an automorphism σ of the Galois
group Gal(Q(α1, . . . , α4)/Q) that maps α1 to α2. Then, by (4.4), we get

α2 + σ(α2) = −2u.

It follows then that σ(α2) = α1, and consequently, σ(α3) = αj , where j ∈ {3, 4}.
Applying the same automorphism σ to (4.5), we find that

m1α2 +m2αj = m. (4.6)

Addition of (4.5) with (4.6) and application of (4.4) gives

2m = m1(α1 + α2) +m2(α3 + αj) = −2um1 +m2(α3 + αj).

As m2 ̸= 0 and α3 /∈ Q, this is impossible in the case when j = 3. Therefore, j = 4
and so, by (4.4),

2m = −2um1 − 2um2,

which yields

um1 + um2 = −m.

Now, combining this with (4.5), we find that

0 = m1α1 +m2α3 −m = m1(α1 + u) +m2(α3 + u) = m1β +m2β
′.

By Lemma 2.3, this is only possible if β = −β′. However, this implies that h
defined in (4.3) has a double root, and so is reducible over Q, a contradiction. This
completes the proof of the theorem.

https://doi.org/10.33044/revuma.5106
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Thus, we have proved that if (4.1) holds, then

α1 + α2 = α3 + α4 = −2u and k1 = k2, k3 = k4. (4.7)

Consequently, we must have

k1(α1 + α2) + k3(α3 + α4) = 0. (4.8)

Set r = −2u in (4.7). If r ̸= 0, then (4.8) forces k3 = −k1. Therefore, in this
case, any nontrivial additive relation between four distinct algebraic conjugates of
an algebraic number α of degree 4 over Q (up to re-indexing of the conjugates) has
the form

Z(α1 + α2 − α3 − α4),

as claimed in (1.8). If r = 0, then it has the more general form

Z(α1 + α2) + Z(α3 + α4),

as claimed (1.9).

5. Proof of Theorem 1.3

Let

fi(x1, . . . , x6) =

6∑
j=1

uijxj ,

i = 1, . . . ,m, be a set of m linear forms such that for each i the coefficients
ui1, . . . , ui6 ∈ Z are not all equal. Set

U = max
1≤i≤m, 1≤j≤6

|uij |. (5.1)

Next, according to Lemma 2.4, fix positive integers a, b, c such that

a, b, c > 2U and a2 + b2 − ab = c2. (5.2)

We first introduce the nontrivial relation between algebraic conjugates of degree
6 that was discovered in [23]. Let L be the splitting field of the irreducible polyno-

mial x6+3 over Q. It is easy to verify that L = Q( 6
√
−3, e

2πi
6 ) is a normal extension

of Q, so [L : Q] = 6. The Galois group G = Gal(L/Q) has transitivity number
6T2 (it is permutation isomorphic to the symmetric group S3 acting regularly on
its six elements). Hence, by the normal basis theorem, there exists β ∈ L whose
conjugates can be re-indexed so that G is generated by (β1, β2, β3)(β4, β5, β6) and
(β1, β4)(β2, β5)(β3, β6). With this notation, let us consider the algebraic number α
of degree 6 with conjugates

α1 = cβ1 + cβ2 − 2cβ3 − (a+ b)β4 + (2b− a)β5 + (2a− b)β6,

α2 = cβ1 − 2cβ2 + cβ3 + (2a− b)β4 − (a+ b)β5 + (2b− a)β6,

α3 = −(a+ b)β1 + (2b− a)β2 + (2a− b)β3 + cβ4 + cβ5 − 2cβ6,

α4 = −2cβ1 + cβ2 + cβ3 + (2b− a)β4 + (2a− b)β5 − (a+ b)β6,

α5 = (2a− b)β1 − (a+ b)β2 + (2b− a)β3 + cβ4 − 2cβ5 + cβ6,

α6 = (2b− a)β1 + (2a− b)β2 − (a+ b)β3 − 2cβ4 + cβ5 + cβ6.

(5.3)

https://doi.org/10.33044/revuma.5106
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In view of (5.2) and (5.3), the conjugates of α satisfy the following relation

aα1 + bα2 + cα3 = 0. (5.4)

From (5.3) it is also clear that

α1 + α2 + α4 = 0 (5.5)

and
α3 + α5 + α6 = 0. (5.6)

Fix any i ∈ {1, . . . ,m}. In all that follows, we will show that

fi(α1, . . . , α6) = 0

is true only if

fi(x1, . . . , x6) = Z(x1 + x2 + x5) + Z(x3 + x4 + x6). (5.7)

In other words, (5.5), (5.6) and their Z-linear combinations are the only nontrivial
additive linear relations with conjugates of α and coefficients of moduli at most U .

For a contradiction, assume that for some integers u1, . . . , u6, not all equal,
satisfying |ui| ≤ U we have

u1α1 + · · ·+ u6α6 = 0.

By (5.5) and (5.6), we obtain

(u1 − u4)α1 + (u2 − u4)α2 + (u3 − u6)α3 + (u5 − u6)α5 = 0. (5.8)

If
u1 = u2 = u4 and u3 = u5 = u6, (5.9)

then (5.7) holds and we are done. In contrast, if one of the equalities in (5.9) is
not true, then from (5.8) it follows that for some integers

k1 = u1 − u4, k2 = u2 − u4, k3 = u3 − u6, k5 = u5 − u6,

not all zeros, satisfying |k1|, |k2|, |k3|, |k4| ≤ 2U , the additive relation

k1α1 + k2α2 + k3α3 + k5α5 = 0

holds. Multiplying this equality by c ̸= 0 and using (5.4) we get

(ck1 − ak3)α1 + (ck2 − bk3)α2 + ck5α5 = 0. (5.10)

We claim that this implies

ak5 − bk3 + ck2 = 0. (5.11)

Indeed, inserting the expressions for α1, α2, α5 from (5.3) into (5.10), and collecting
the terms for β1 and β2, we find that

c(ck1 − ak3) + c(ck2 − bk3) + c(2a− b)k5 = 0

and
c(ck1 − ak3)− 2c(ck2 − bk3)− c(a+ b)k5 = 0.

Subtracting the latter equality from the former, we derive that

3c(ck2 − bk3) + 3cak5 = 3c(ck2 − bk3 + ak5) = 0,

which implies (5.11).
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We will show that (5.11) cannot hold for the triplets (a, b, c) constructed in
Lemma 2.4 with R = 2U and an appropriate finite set S. Indeed, if k2 = 0, then
(5.11) implies that a/b = k3/k5. As |k3|, |k5| ≤ 2U , the set of such quotients is
finite.

If k2 ̸= 0, then c = (ak5 − bk3)/k2, and therefore

a2 + b2 − ab = c2 =
a2k25 + b2k23 − 2abk5k3

k22
.

Hence, q = a/b satisfies the quadratic equation

q2
(
1− (k5/k2)

2
)
+ q(2k5k3/k

2
2 − 1) + 1− (k3/k2)

2 = 0.

This means that q belongs to a finite set depending on U only, unless all three
coefficients of the quadratic polynomial

1− (k5/k2)
2, 2k5k3/k

2
2 − 1, 1− (k3/k2)

2

are equal to zero. However, looking at the first and the last coefficients, we see
that this is possible only if

k5 = ±k2, k3 = ±k2.

But then the second coefficient equals

2k5k3/k
2
2 − 1 = ±2− 1 ̸= 0,

a contradiction.
Thus, we have shown that if

fi(α1, . . . , α6) = 0

for some i ∈ {1, . . . ,m}, then
fi(x1, . . . , x6) = Z(x1 + x2 + x5) + Z(x3 + x4 + x6).

This implies that if some nontrivial relation between the conjugates of α is of the
form ∑

j∈S

Zfj(α1, . . . , α6),

where S ⊆ {1, . . . ,m} and fj(α1, . . . , α6) = 0 for each j ∈ S, then it can be
expressed in the simpler form, namely

Z(α1 + α2 + α5) + Z(α3 + α4 + α6). (5.12)

On the other hand, it is clear that the nontrivial relation introduced in (5.4),
namely,

aα1 + bα2 + cα3 = 0 (5.13)

is not of the form described in (5.12). According to Lemma 2.4, there are infinitely
many nontrivial relations with conjugates of a sextic algebraic number satisfying
(5.13), each of them induced by distinct (a, b, c) ∈ N3. This completes the proof
because different triplets (a, b, c) ∈ N3 define different algebraic numbers α in (5.3).
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