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THE E-RELATIVE m-WEAK GROUP INVERSE

D. E. FERREYRA, F. E. LEVIS, P. MOAS, D. MOSIĆ, AND V. ORQUERA

Abstract. In this paper the notion of the m-weak group inverse of a com-
plex square matrix relative to an invertible Hermitian weight E is introduced.

We show several equivalent algebraic characterizations of this new type of

generalized inverse. Additionally, different properties, representations, and
characterizations involving the column space, null space, rank equalities, and

projectors are presented. Finally, we solve a linear equation using this new

generalized inverse.

1. Introduction

In 2018, the weak group inverse (or WG inverse) was introduced in [20] as an
alternative extension of the group inverse. Several characterizations and represen-
tations of the WG inverse and its extension to rectangular matrices were discussed
in [6, 7]. This inverse has since been studied in more general contexts such as rings
and Hilbert spaces [9, 14, 23]. The latest results related to the WG inverse can be
found in [12, 13, 21].

To extend the WG inverse, the m-weak group inverse (or m-WG inverse) was
introduced in [22] for an element in a ring with involution. Later, [8, 15] studied the
m-WG inverse of square matrices in depth. Various research studies have arisen
from the m-WG inverse because it represents a significant extension of other known
inverses, depending on the different values of the parameter m. More precisely,
if m = 1, the m-WG inverse coincides with the WG inverse [20]; if m = 2, it
reduces to the generalized group inverse (or GG inverse) [5]; and if m is greater
than or equal to the index of the matrix, it reduces to the Drazin inverse, and
therefore the group inverse. In [10], the authors presented the m-WG inverse for
rectangular matrices. Interesting applications of m-WG inverses in optimization
problems and matrix partial orders can be found in [9, 11]. Prassad and Bapat
[17] introduced the weighted Moore-Penrose inverse of a rectangular matrix with
respect to two Hermitian positive definite matrices. The weighted Moore-Penrose
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inverse is particularly useful in various applications, such as, least squares problems,
signal processing, control theory, machine learning [3, 19].

Recently, Behera et al. [2] extended the core-EP inverse [18] with respect to an
invertible Hermitian weight, introducing the so-called E-weighted core-EP inverse,
which is unique whenever it exists. Some recent results in this direction for element
in rings can be found in [16, 24].

Motivated by previous research, our main goal is to study the m-WG inverse of
a square matrix relative to an invertible Hermitian matrix E which will be used
as a weight. The rest of this paper is organized as follows. Section 2 provides the
necessary notations and some preliminary results. In Section 3, we introduce the
notion of the E-relative m-WG inverse by using an invertible Hermitian matrix E
as a weight. Then, assuming the existence of the E-weighted core-EP inverse, it
follows that this new inverse exists and is unique. We explore various of its char-
acterizations and properties. In particular, we consider the relation between the
E-relative m-WG inverse and the E-relative (m+ 1)-WG inverse. Section 4 deals
with expressions of the E-relativem-WG inverse as an outer inverse with prescribed
range and null space and we derive some special idempotent matrices determined
by this inverse. Section 5 provides additional characterizations involving the col-
umn space, null space, rank equalities, and projectors. Finally, in Section 6, we
solve a linear equation using the E-relative m-WG inverse.

2. Notation and preliminaries results

For A ∈ Cm×n, the symbols A∗, R(A), N(A), and rk(A) will be stand for
the conjugate transpose, the column space, the null space, and the rank of A,
respectively. The index of A ∈ Cn×n is the smallest nonnegative integer k such
that rk(Ak) = rk(Ak+1) and is denoted by Ind(A). By convention A0 = In (when
m = n). We denote by PS,T the projector onto S along T when Cn is equal to the
direct sum of subspaces S and T .

The Moore-Penrose inverse of a matrix A ∈ Cm×n is the unique matrix A† =
X ∈ Cn×m that satisfies the Penrose equations

AXA = A, XAX = X, (AX)∗ = AX, (XA)∗ = XA.

Denote by PA := AA† the orthogonal projector onto R(A).
The Drazin inverse of a matrix A ∈ Cn×n of index k is the unique matrix

Ad = X ∈ Cn×n that satisfies

XAk+1 = Ak, XAX = X, AX = XA.

When Ind(A) = 1, the Drazin inverse is called the group inverse of A and is denoted
by A#.

The core-EP inverse of a matrix A ∈ Cn×n of index k is the unique matrix A †○ =
X ∈ Cn×n satisfying the conditions XAX = X and R(X) = R(X∗) = R(Ak) [18].
When Ind(A) = 1, A †○ := A#○ = A#AA† becomes the core inverse of A [1].

In [23], Zhou et al. introduced the concept of m-weak group in rings with involu-
tion and provided several characterizations and properties of this new generalized
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inverse. For A ∈ Cn×n a matrix of index k and m ∈ N, the m-WG inverse is the
unique matrix Aw○m = X ∈ Cn×n satisfying the equations

XAk+1 = Ak, AX2 = X, (A∗)kAm+1X = (A∗)kAm, m ∈ N.
Using the core-EP inverse, the authors of [8] derived the following characteriza-

tion of the m-WG inverse:

AX2 = X, AX = (A †○)mAm, (2.1)

where the unique solution of the above system is given by Aw○m = (A †○)m+1Am.
Note that if m = 1, the m-weak group inverse reduces to the WG inverse [20], i.e.
Aw○1 = (A †○)2A. When m = 2, the m-WG inverse coincides with the GG inverse
studied recently by Ferreyra and Malik in [5], that is, Aw○2 = (A †○)3A2. Moreover,
if m ≥ Ind(A), Aw○m = Ad. Therefore, the m-WG inverse extends the notions of
WG inverse, GG inverse, Drazin inverse, and therefore of group inverse.

In 1992, Prassad and Bapat [17] introduced the weighted Moore-Penrose inverse
of a matrix A ∈ Cm×n respect to two Hermitian positive definite matrices E ∈
Cm×m and F ∈ Cn×n as the unique matrix A†

E,F = X ∈ Cn×m satisfying the
fourth conditions

(1) AXA = A, (2) XAX = X, (3E) (EAX)∗ = EAX, (4F ) (FXA)∗ = FXA.
(2.2)

It was proved that the unique solution to (2.2) is given by

A†
E,F = (A∗EA)†A∗E = F−1A∗(AF−1A∗)†.

When E = Im and F = In in (2.2), X represents the classical Moore-Penrose
inverse of A.

Inspired by the ideas of previous works, Behera et al. recently introduced the
concept of core-EP inverse with respect to an invertible Hermitian weight. More
specifically, they presented the following definition:

Definition 2.1 ([2]). Let E ∈ Cn×n be an invertible Hermitian matrix and A ∈
Cn×n with Ind(A) = k. A matrix X ∈ Cn×n satisfying

(1k) XAk+1 = Ak, (7) AX2 = X, (3E) (EAX)∗ = EAX,

is called the E-weighted core-EP inverse of A and is denoted by A †○,E. In particular,
if k = 1, it is called E-weighted core inverse of A and is denoted by A#○,E.

Any matrix satisfying equations involved in γ ⊆ {1, 2, 1k, 7, 3E , 4F }, is a γ-
inverse of A, and A{γ} is the set of all γ-inverses of A.

A necessary and sufficient condition for the existence of the E-weighted core-EP
inverse in the context of rings was given in [24, Theorem 3.9]. In the matrix setting,
we have

A †○,E exists ⇐⇒ Ak{1, 3E} ̸= ∅,
In this case, A †○,E = AdAkY , for some Y ∈ Ak{1, 3E}. This characterization can
also be derived from [2, Lemma 3.7] and [2, Theorem 3.13]. Moreover, from [2,
Proposition 3.17] we can deduce

Ak{1, 3E} ̸= ∅ ⇐⇒ Ak = Z(A∗)kEAk, for some Z ∈ Cn×n.
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It is also proved in [2] that if the E-weighted core-EP inverse exists, then it is
unique and can be characterized by three specific conditions

XAX = X, R(X) = R(Ak), R(X∗) = R(EAk). (2.3)

In order to present some properties of the E-weighted core-EP inverse of a matrix
we establish the following results.

Proposition 2.2 ([2, 4]). Let A ∈ Cn×n, ℓ ≥ Ind(A), and p ∈ N. Then the
following hold:

(a) If X ∈ A{7}, then AX = ApXp.
(b) If X ∈ A{1ℓ, 7} then X ∈ A{2} and R(X) = R(Aℓ).

Lemma 2.3 ([2]). Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈
Cn×n, ℓ ≥ Ind(A) = k, and p ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then the following
hold:

(a) Ad =
(
A †○,E

)ℓ+1
Aℓ.

(b) Aℓ(A †○,E)ℓAℓ = Aℓ.
(c) (A †○,E)p = (Ap) †○,E.

3. The E-relative m-WG inverse

In this section, we introduce the concept of m-weak group inverse relative to an
invertible Hermitian weight. Different characterizations and properties of this new
generalized inverse are determined.

Definition 3.1. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈
Cn×n, Ind(A) = k, and m ∈ N. Suppose Ak{1, 3E} ̸= ∅. The matrix Aw○E

m ∈ Cn×n

satisfying

Aw○E
m = (A †○,E)m+1Am, (3.1)

is called the m-weak group inverse of A relative to E (shortly, E-relative m-WG
inverse).

In the above definition, we have assumed that Ak{1, 3E} ̸= ∅, which ensures the

existence of the E-weighted core-EP inverse of A ∈ Cn×n. Consequently, Aw○E
m

also exists and is unique.

Remark 3.2. (a) If m ≥ Ind(A), note that from Lemma 2.3 (a) we have Aw○E
m =

Ad.
(b) According to item (a), it is evident that Aw○E

m = A# when Ind(A) = 1.
(c) If E = In, the E-relative m-WG inverse coincides with the m-WG inverse, that

is, Aw○E
m = Aw○m .

In the following example, we show that when 1 ≤ m < k, the E-relative m-WG
inverse is different from the E-weighted core-EP inverse and the m-WG inverse
(whenever E ̸= In).



Revista de la Unión Matemática Argentina Accepted article · Early view version

This peer-reviewed unedited article has been accepted for publication. The final copyedited version
may differ in some details. Volume, issue, and page numbers will be assigned at a later stage. Cite
using this DOI, which will not change in the final version: https://doi.org/10.33044/revuma.5181.

Submitted: March 15, 2025
Accepted: August 11, 2025
Published (early view): August 12, 2025

THE E-RELATIVE m-WEAK GROUP INVERSE 5

Example 3.3. Consider the matrices

A =


1 1 1 0
0 0 1 0
0 0 0 1
0 0 0 0

 and E =


−4 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 .

As Ind(A) = 3, we consider 1 ≤ m < 3. Thus,

A †○ =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 , A †○,E =


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

Aw○1 =


1 1 1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , Aw○E
1 =


1 1 2 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

Aw○2 =


1 1 2 1
0 0 0 0
0 0 0 0
0 0 0 0

 , Aw○E
2 =


1 1 2 2
0 0 0 0
0 0 0 0
0 0 0 0

 .

In order to establish characterizations and properties of the E-relative m-WG
inverse, we first show an auxiliary lemma.

Lemma 3.4. Let A ∈ Cn×n , ℓ ≥ Ind(A) = k, and p, q ∈ N. Then the following
hold:

(a) If X ∈ A{7}, then AqXp+q = Xp.
(b) If X ∈ A{1k}, then XpAℓ+p = Aℓ.

Proof. (a) In order to prove the assertion, we will apply mathematical induction
on p and q. In fact, as X ∈ A{7}, the affirmation is true for p = q = 1.
Now, we assume that AqXp+q = Xp is true for some p, q ∈ N. Then, AqXq+p+1 =
(AqXp+q)X = Xp+1. Moreover, Proposition 2.2 (a) yields to

Aq+1X(q+1)+p = (Aq+1Xq+1)Xp = AqXq+p = Xp.

Thus, the statement is true for all p, q ∈ N.
(b) As X ∈ A{1k}, it is evident that XAℓ+1 = Aℓ for each integer ℓ ≥ k. Therefore,
assertion (b) holds for p = 1. Now, suppose that XpAℓ+p = Aℓ is true for some
p ∈ N. Then Xp+1Aℓ+p+1 = X(XpAℓ+p)A = XAℓ+1 = Aℓ, which implies that the
affirmation is true for all p ∈ N. □

From Definition 2.1, we know that A †○,E ∈ A{1k, 7}. Therefore, the following
corollary can be deduced from the above lemma.

Corollary 3.5. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈ Cn×n,
ℓ ≥ Ind(A) = k, and p, q ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then the following hold:

(a) Aq(A †○,E)p+q = (A †○,E)p.
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(b) (A †○,E)pAℓ+p = Aℓ.

Now, we give the first algebraic characterization of the E-relative m-WG inverse.

Theorem 3.6. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈ Cn×n,
Ind(A) = k, and m ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then the system of equations

AX = (A †○,E)mAm and R(X) ⊆ R(Ak), (3.2)

is consistent and its unique solution is the matrix X = Aw○E
m .

Proof. Existence. Let X := Aw○E
m = (A †○,E)m+1Am. By applying Corollary 3.5

(a) with p = m and q = 1, we have that X satisfies the first condition in (3.2).
Also, from (2.3) it follows that R(X) ⊆ R(A †○,E) = R(Ak), which implies that X
satisfies the second condition in (3.2).
Uniqueness. Let X1 and X2 be two solutions of the system (3.2), that is,

AX1 = AX2 = (A †○,E)mAm, R(X1) ⊆ R(Ak), R(X2) ⊆ R(Ak).

Thus, R(X1−X2) ⊆ N(A) ⊆ N(Ak) and R(X1−X2) ⊆ R(Ak). Therefore, R(X1−
X2) ⊆ R(Ak) ∩N(Ak) = {0}. Thus, X1 = X2. □

Note that we always have

AX2 = X =⇒ R(X) ⊆ R(Ak), (3.3)

where k = Ind(A) [4, Lemma 4.1]. So, we derive the following characterization.

Corollary 3.7. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈ Cn×n,
Ind(A) = k, and m ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then the system of equations

AX = (A †○,E)mAm and AX2 = X, (3.4)

is consistent and its unique solution is the matrix X = Aw○E
m .

Proof. Let X := Aw○E
m = (A †○,E)m+1Am. As in the proof of Theorem 3.6, it is

clear that X satisfies the first condition of system (3.4). In consequence, from
Corollary 3.5 (a) with q = m and p = 1, we obtain

AX2 = (A †○,E)m(Am(A †○,E)m+1)Am = (A †○,E)mA †○,EAm = X.

Finally, the uniqueness immediately follows from (3.3) and Theorem 3.6. □

Now, some properties and recursive expressions (depending on m ∈ N) of the
E-relative m-WG inverse are established.

Theorem 3.8. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈ Cn×n,
ℓ ≥ Ind(A) = k, and m, p, q ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then the following hold:

(a) Aw○E
m ∈ A{1ℓ, 2, 7}.

(b) (Aw○E
m)ℓ ∈ (Aℓ){1}.

(c) Aq(Aw○E
m)p+q = (Aw○E

m)p.

(d) (Aw○E
m)pAℓ+p = Aℓ.

(e) Aw○E
m+1 = A †○,EAw○E

mA.
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(f) Aw○E
mAw○E

m+1A = Aw○E
mAAw○E

m+2 .

Proof. (a) By Corollary 3.7 we get Aw○E
m ∈ A{7}. Also, as Aw○E

m = (A †○,E)m+1Am,

from Corollary 3.5 (a) with q = m and p = 1, we obtain that Aw○E
m is an outer

inverse of A. Moreover, from Corollary 3.5 (b) with p = m + 1, we deduce

Aw○E
mAℓ+1 = (A †○,E)m+1Aℓ+m+1 = Aℓ, that is, Aw○E

m ∈ A{1ℓ}.
(b) From (a) we know that Aw○E

m ∈ A{7}. Thus, from Proposition 2.2 (a) and
Theorem 3.6 we obtain

Aℓ(Aw○E
m)ℓAℓ = AAw○E

mAℓ = (A †○,E)mAm+ℓ = Aℓ,

where the last equality is due to Corollary 3.5 (b) with p = m.
(c) Follows from statement (a) and Lemma 3.4.
(d) It is due to (a) and Lemma 3.4 (b).

(e) As Aw○E
m = (A †○,E)m+1Am we get A †○,EAw○E

mA = (A †○,E)m+2Am+1 = Aw○E
m+1 .

(f) By using (e) and the first condition of Theorem 3.6 with m + 2 instead of m,
we deduce

Aw○E
mAw○E

m+1A = Aw○E
mA †○,EAw○E

mA2 = Aw○E
m(A †○,E)m+2Am+2 = Aw○E

mAAw○E
m+2 .

□

Corollary 3.9. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈ Cn×n,
Ind(A) = k, and m ∈ N. Suppose Ak{1, 3E} ̸= ∅ and define AE

1 = AA †○,EA. Then
the following properties hold:

(a) Aw○E
m ∈ AE

1 {2}.
(b) If k = 1, then Aw○E

m ∈ AE
1 {1, 2}.

Proof. (a) From (2.3) and Theorem 3.8 (a) we have

Aw○E
mAE

1 A
w○E

m = Aw○E
mAA †○,EA(A †○,E)m+1Am = Aw○E

mAAw○E
m = Aw○E

m .

(b) From Theorem 3.6, Corollary 3.5 (a) with p = m and q = 1, and Corollary 3.5
(b) with p = m and ℓ = 1, we have

AE
1 A

w○E
mAE

1 = AA †○,E(AAw○E
m)AA †○,EA = (A(A †○,E)m+1)Am+1A †○,EA

= ((A †○,E)mAm+1)A †○,EA = AA †○,EA = AE
1 . □

4. Some geometric properties of the E-relative m-WG inverse

In this section, we show that the E-relative m-WG inverse can be written as a
generalized inverse with prescribed range and null space. Also, we consider some
special idempotent matrices determined by this inverse.

Recall that the outer inverse of a matrix A ∈ Cm×n which is uniquely determined

by the null space S and the column space T is denoted by A
(2)
T,S = X ∈ Cn×m and

satisfies XAX = X, N(X) = S, and R(X) = T , where s ≤ r = rk(A) is dimension
of the subspace T ⊆ Cn and n− s is dimension of the subspace S ⊆ Cn.

From (2.3), for each ℓ ≥ Ind(A), we have R(A †○,E) = R(Aℓ). Next, we will
derive information about the null space.
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Proposition 4.1. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈
Cn×n, ℓ ≥ Ind(A) = k. Suppose Ak{1, 3E} ̸= ∅. Then N(A †○,E) = N((Aℓ)∗E).

Proof. From (2.3), we have N(A †○,E)⊥ = R((A †○,E)∗) = R(EAk) = E R(Ak) =
R(EAℓ). Thus, as E is Hermitian, N(A †○,E) = R(EAℓ)⊥ = N((Aℓ)∗E). □

Remark 4.2. Let A, B, and C be complex rectangular matrices of adequate size
such that N(A) = N(B). Then N(AC) = N(BC).

Theorem 4.3. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈ Cn×n

and Ind(A) = k. Suppose Ak{1, 3E} ̸= ∅. Then the following hold:

(a) A †○,E = A
(2)

R(Ak),N((Ak)∗E)
= Ak((Ak)∗EAk+1)†(Ak)∗E.

(b) AA †○,E = PR(Ak),N((Ak)∗E).

(c) A †○,EA = PR(Ak),N((Ak)∗EA).

Proof. (a) The first equality follows from (2.3) and Proposition 4.1. By Urquhart
formula [3], we obtain the second equality.
(b) From (2.3), AA †○,E is idempotent and R(AA †○,E) = AR(A †○,E) = R(Ak+1) =
R(Ak). Moreover, Proposition 4.1 yields to N(AA †○,E) = N(A †○,E) = N((Ak)∗E).
(c) Since A †○,E is an outer inverse, it is evident that A †○,EA is idempotent and
R(A †○,EA) = R(A †○,E) = R(Ak). Also, from Proposition 4.1 it follows that
N(A †○,EA) = N((Ak)∗EA) due to Remark 4.2. □

Theorem 4.4. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈ Cn×n,
ℓ ≥ Ind(A) = k, and m ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then the following hold:

(a) R(Aw○E
m) = R(Aℓ).

(b) rk(Aw○E
m) = rk(Aℓ) = rk((Aℓ)∗EAm).

(c) N(Aw○E
m) = N((Aℓ)∗EAm).

Proof. (a) From Theorem 3.8, (a) we have that Aw○E
m ∈ A{1ℓ, 7}. Now, the asser-

tion follows from Proposition 2.2 (b).

(b) From (a), it is clear that rk(Aw○E
m) = rk(Aℓ). Moreover, using the fact that

Aw○E
m = (A †○,E)m+1Am and (2.3) we obtain

rk(Aw○E
m) ≤ rk(A †○,EAm) = rk((Am)∗(A †○,E)∗) = rk((Am)∗EAℓ)

= rk((Aℓ)∗EAm) ≤ rk(Aℓ).

(c) Theorem 3.8 (a) implies Aw○E
m ∈ A{2}, whence N(Aw○E

m) = N(AAw○E
m). In

consequence, from Theorem 3.6, Corollary 3.5 (a) with p = 1 and q = m, Proposi-
tion 4.1, and Remark 4.2, we obtain

N(Aw○E
m) = N((A †○,E)mAm) ⊆ N(A †○,EAm) = N((Aℓ)∗EAm).

Now, the affirmation follows from (b). □

According to Theorem 4.4, by a procedure similar to the proof of Theorem 4.3,
one can show the following result.
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Theorem 4.5. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈ Cn×n,
ℓ ≥ Ind(A) = k, and m ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then the following hold:

(a) Aw○E
m = A

(2)

R(Aℓ),N((Aℓ)∗EAm)
= Aℓ((Aℓ)∗EAm+ℓ+1)†(Aℓ)∗EAm.

(b) AAw○E
m = PR(Aℓ),N((Aℓ)∗EAm).

(c) Aw○E
mA = PR(Aℓ),N((Aℓ)∗EAm+1).

5. Further characterizations of the E-relative m-WG inverse

In this section, we present more characterizations of the E-relativem-WG inverse
involving the column space, null space, rank equalities, and projectors.

We begin with an auxiliary lemma.

Lemma 5.1. Let A ∈ Cn×n and Ind(A) = k. Then the following are equivalent:

(a) R(X) ⊆ R(Ak) and XAk+1 = Ak;
(b) R(Ak) = R(X) and XAX = X;
(c) AX2 = X and XAk+1 = Ak.

Proof. (a)⇔(b) It was proved in [4, Lemma 4.2].
(b)⇔(c) By [5, Lemma 4.3]. □

Theorem 5.2. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈
Cn×n, Ind(A) = k, and m ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then the following are
equivalent:

(a) X = Aw○E
m ;

(b) XAX = X, R(X) = R(Ak), ((Am)∗EAm+1X)∗ = (Am)∗EAm+1X;
(c) XAX = X, R(X) = R(Ak), N(X) = N((Ak)∗EAm);
(d) XAX = X, XAk+1 = Ak, AX = (A †○,E)mAm.

Proof. (a)⇒(b) Let X := Aw○E
m . The first two conditions follow from Theorem 4.5.

Also, by Theorem 3.6 and Proposition 2.2 (a), we obtain

(Am)∗EAm+1X = (Am)∗EAm+1(A †○,E)m+1Am = (Am)∗EAA †○,EAm,

which is an Hermitian matrix because EAA †○,E is Hermitian too.
(b)⇒(c) The second and third conditions imply

R((Am)∗EAk) = R((Am)∗EAm+k+1) = R((Am)∗EAm+1X) ⊆ R(X∗).

Moreover, from Theorem 4.4 (b), we get rk(X∗) = rk(Ak) = rk((Am)∗EAk). So,
R(X∗) = R((Am)∗EAk), or equivalently N(X) = N((Ak)∗EAm).
(c)⇒(d) By Lemma 5.1, we have XAk+1 = Ak. Also, as X = XAX, we have that
AX is idempotent. In consequence, Proposition 4.1 and Remark 4.2 imply

N(AX) = N(X) = N((Ak)∗EAm) = N((A †○,E)mAm).

Also, Corollary 3.5 (b) with p = m and ℓ = k, yields

R(AX) = R(Ak) = R((A †○,E)mAm+k) ⊆ R((A †○,E)mAm) ⊆ R(A †○,E) = R(Ak).

As (A †○,E)m = (Am) †○,E by Lemma 2.3 (c), it is evident that (A †○,E)mAm is
idempotent. Now, by uniqueness of projectors, we deduce that AX = (A †○,E)mAm.
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(d)⇒(a) From XAk+1 = Ak, we get R(Ak) ⊆ R(X). Also, AX = (A †○,E)mAm

implies rk(X) = rk(AX) = rk((A †○,E)mAm) ≤ rk(A †○,E) = rk(Ak). Thus, R(X) =
R(Ak). Finally, Theorem 3.6 completes the proof. □

Theorem 5.3. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈
Cn×n, Ind(A) = k, and m ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then the following are
equivalent:

(a) X = Aw○E
m ;

(b) XAk+1 = Ak, AX2 = X, Am+1X = PR(Ak),N((Ak)∗E)A
m;

(c) XAk+1 = Ak, AX2 = X, ((Am)∗EAm+1X)∗ = (Am)∗EAm+1X;
(d) XAk+1 = Ak, rk(X) = rk(Ak), AX = (A †○,E)mAm.

Proof. (a)⇒(b) Let X := Aw○E
m . Clearly, X satisfy the first two conditions due to

Theorem 3.8 (a). In order to prove the third condition, note that, by Theorem 3.6,
we have AX = (A †○,E)mAm. Multiplying this expression by Am on the left side
and using Proposition 2.2 (a), we have Am+1X = Am(A †○,E)mAm = AA †○,EAm =
PR(Ak),N((Ak)∗E)A

m, where the last equality is due to Theorem 4.3 (b).
(b)⇒(c) Pre-multiplying the third condition by (Am)∗E and applying Theorem 4.3
(b), we have that

(Am)∗EAm+1X = (Am)∗EPR(Ak),N((Ak)∗E)A
m = (Am)∗EAA †○,EAm,

which is Hermitian because A †○,E ∈ A{3E}.
(c)⇒(d) It is a consequence from Lemma 5.1 and Theorem 5.2.
(d)⇒(a) The first two conditions imply R(X) = R(Ak). Now, Theorem 3.6 con-
cludes the proof. □

Theorem 5.4. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈
Cn×n, Ind(A) = k, and m ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then the following are
equivalent:

(a) X = Aw○E
m ;

(b) AX = PR(Ak),N((Ak)∗EAm), XA = PR(Ak),N((Ak)∗EAm+1), XAX = X;

(c) AX = PR(Ak),N((Ak)∗EAm), XA = PR(Ak),N((Ak)∗EAm+1), rk(X) = rk(Ak).

Proof. (a)⇔(b) By Theorem 4.5 and [3, Theorem 14, p. 72].
(b)⇒(c) As XAX = X, we have rk(X) = rk(AX) = rk(PR(Ak),N((Ak)∗EAm)) =

rk(Ak).
(c)⇒(b) The second and third conditions imply R(X) = R(Ak) = R(XA) = N(In−
XA) because XA is idempotent. In consequence, XAX = X. □

Corollary 5.5. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈
Cn×n, Ind(A) = k, and m ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then the following are
equivalent:

(a) X = Aw○E
m ;

(b) AX = PR(Ak),N((Ak)∗EAm) and R(X) ⊆ R(Ak);

(c) XA = PR(Ak),N((Ak)∗EAm+1) and N((Ak)∗EAm) ⊆ N(X).
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Proof. (a)⇔(b) It is sufficient to note that PR(Ak),N((Ak)∗EAm) = (A †○,E)mAm.
Now, the equivalence follows from Theorem 3.6.

(a)⇔(c) Let X := Aw○E
m . From Theorem 5.2 and Theorem 5.4 we can see that X

satisfy XA = PR(Ak),N((Ak)∗EAm+1) and N((Ak)∗EAm) ⊆ N(X). The uniqueness
can be proved in a similar manner to the proof of Theorem 3.6. □

6. Applications of the E-relative m-WG inverse

In order to solve a linear equation in this section, we apply the E-relative m-WG
inverse.

Firstly, we present new representation of the E-relative m-WG inverse, which
will be useful.

Lemma 6.1. Let E ∈ Cn×n be an invertible Hermitian matrix and let A ∈ Cn×n,

Ind(A) = k, and m, p ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then, for (Ak)(1,3
E) ∈

(Ak){1, 3E}, the following hold:

(a) (A †○,E)p = (Ad)pAk(Ak)(1,3
E).

(b) Aw○E
m = (Ad)m+1Ak(Ak)(1,3

E)Am.

Proof. By [2], A †○,E = AdAk(Ak)(1,3
E). Then item (a) follows by induction on p

and item (b) is a direct consequence of item (a). □

Theorem 6.2. Let E ∈ Cn×n be an invertible Hermitian matrix and let B ∈ Cn×q,
A ∈ Cn×n, Ind(A) = k, and m ∈ N. Suppose Ak{1, 3E} ̸= ∅. Then the equation

(Ak)∗EAm+1X = (Ak)∗EAmB, (6.1)

has the general solution expressed by

X = Aw○E
mB + (In −Aw○E

mA)Y, (6.2)

for arbitrary Y ∈ Cn×q.

Proof. Using Lemma 6.1, Aw○E
m = (Ad)m+1Ak(Ak)(1,3

E)Am, where (Ak)(1,3
E) ∈

(Ak){1, 3E}. Now,

(Ak)∗EAm+1Aw○E
m = (Ak)∗EAm+1(Ad)m+1Ak(Ak)(1,3

E)Am

= (Ak)∗EAAdAk(Ak)(1,3
E)Am

= (Ak)∗EAk(Ak)(1,3
E)Am = (EAk(Ak)(1,3

E)Ak)∗Am

= (Ak)∗EAm.

For X given by (6.2), it follows that (6.1) holds. Assume that X is a solution to
(6.1). Since E is invertible and

EAk(Ak)(1,3
E)Am+1X = ((Ak)(1,3

E))∗((Ak)∗EAm+1X)

= ((Ak)(1,3
E))∗(Ak)∗EAmB

= EAk(Ak)(1,3
E)AmB,
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we deduce that Ak(Ak)(1,3
E)Am+1X = Ak(Ak)(1,3

E)AmB. Therefore,

Aw○E
mB = (Ad)m+1Ak(Ak)(1,3

E)AmB = (Ad)m+1Ak(Ak)(1,3
E)Am+1X

= Aw○E
mAX,

which gives X = Aw○E
mB + (In −Aw○E

mA)X has the form (6.2). □

Notice that, for E = In in Theorem 6.2, we recover [15, Theorem 4.1].
We also can give the next result related to the E-weighted core-EP inverse.

Corollary 6.3. Let E ∈ Cn×n be an invertible Hermitian matrix and let B ∈ Cn×q,
A ∈ Cn×n, and Ind(A) = k. Suppose Ak{1, 3E} ̸= ∅. Then the equation

(Ak)∗EAX = (Ak)∗EB,

has the general solution expressed by

X = A †○,EB + (In −A †○,EA)Y,

for arbitrary Y ∈ Cn×q.
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[11] D. Mosić, P.S. Stanimirović and L.A. Kazakovtsev, Application of m-weak group inverse in

solving optimization problems, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 118
(2024), 13.
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5800, Ŕıo Cuarto, Argentina
deferreyra@exa.unrc.edu.ar, flevis@exa.unrc.edu.ar, pmoas@exa.unrc.edu.ar, vor-
quera@exa.unrc.edu.ar

Dijana Mosić
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